Document Type : Research Paper


1 Materials engineering, University of Technology, Baghdad ,Iraq

2 Materials Engineering Department, University of Technology - Iraq

3 Materials engineering, University of Technology, Baghdad,Iraq


Epoxy–nanoceramic composites of BiVO4 (BVO), LaNbO4 (LNO), and Li6Mg7Ti3O16 (LMT) were prepared using the solvent mixing method. The ceramic nano-fillers volume fractions were (5, 8, 10, and 12%). X-ray diffraction (XRD) and Atomic Force Microscopy (AFM) were used to investigate the crystal structure and size distribution of nanoceramics, respectively. The dielectric constant and loss tangent were measured in the frequency range of (4-8) GHz. The measurement technique was the waveguide approach via a Vector Network analyzer (VNA). The effect of the volume fraction of ceramic fillers on the dielectric constant and loss tangent of the composites at 5.28 GHz (5G) was investigated. This work aims to design composite materials for 5G antennas of lower cost while maintaining the properties of 5G antennas. The results show that an optimum volume fraction of the ceramic filler brings the dielectric properties to their best value. However, epoxy composite with a 5% volume fraction of LMT shows good microwave dielectric properties (dielectric constant = 2.17 and loss tangent = 0.011) at 5.28 GHz. In addition, epoxy- LMT composite with an exceptionally low volume fraction of 5% provides a low-cost material for a 5G antenna. Another aspect of the cost reduction is the elimination of the costly and troublesome compaction and high-temperature sintering process. Furthermore, the epoxy composite overcomes the disadvantages of the high brittleness of the sintered all-ceramic products. As a result, epoxy composite with the 5% volume fraction of LMT is a potential candidate for 5G antenna materials.

Graphical Abstract


  • Epoxy/ceramic composites were prepared using the solvent mixing method with four different volume fractions.
  • The dielectric constant and loss tangent of composites were measured in the range of (4-8) GHz using Vector Network Analyzer (VNA)
  • Epoxy composites with a 5 % volume fraction of Li6Mg7Ti3O16 are suitable for 5G antenna materials.


Main Subjects

[1] H. Hao, D. Hui, D. Lau, Material advancement in technological development for the 5G wireless communications, Nanotechnol. Rev. 9 (2020) 683-699. doi: 10.1515/ntrev-2020-0054
[2] A.C. Sodré, I.F. da Costa, R.A. dos Santos, H.R.D. Filgueiras, D.H. Spadoti, Waveguide-Based Antenna Arrays for 5G Networks, Int. J. Antennas Propag. 2018 (2018) 1-10. doi: 10.1155/2018/5472045
[3] H. Al-Saif, M. Usman, M.T. Chughtai, J. Nasir, Compact Ultra-Wide Band MIMO Antenna System for Lower 5G Bands, Wireless Commun. Mobile Comput.2018 (2018) 1-6. doi: 10.1155/2018/2396873
[4] D.Y.C. Lie, J.C. Mayeda, Y. Li, J. Lopez, A Review of 5G Power Amplifier Design at cm-Wave and mm-Wave Frequencies, Wireless Commun. Mobile Comput.              2018 (2018) 1-16. doi: 10.1155/2018/6793814
[5] K. Khamoushi, Characterization and Dielectric Properties of Microwave Rare Earth Ceramics Materials for Telecommunications, arXiv preprint arXiv:1509.04445, (2015). doi: 10.48550/arXiv.1509.04445
[6] M. Yang, Y. Sun, F. Li, A Compact Wideband Printed Antenna for 4G/5G/WLAN Wireless Applications, Int. J. Antennas Propag. 2019 (2019) 1-9. doi: 10.1155/2019/3209840
[7] S. N.H. Sa'don, M.H. Jamaluddin, M.R. Kamarudin, F. Ahmad, Y. Yamada, K. Kamardin, I.H. Idris, Analysis of Graphene Antenna Properties for 5G Applications, Sensors (Basel), 19 (2019). doi: 10.3390/s19224835
[8] Y. Ji, K. Song, S. Zhang, Z. Lu, G. Wang, L. Li, D. Zhou, D. Wang, I.M. Reaney, Cold sintered, temperature-stable CaSnSiO5-K2MoO4 composite microwave ceramics and its prototype microstrip patch antenna, J. Eur. Ceram. Soc. 41 (2021) 424-429. doi: 10.1016/j.jeurceramsoc.2020.08.053
[9] S. Wang, W. Luo, L. Li, M. Du, J. Qiao, Improved tri-layer microwave dielectric ceramic for 5 G applications, J. Eur. Ceram. Soc. 41 (2021) 418-423. doi: 10.1016/j.jeurceramsoc.2020.09.008
[10] L. Zhang, J. Zhang, Z. Yue, L. Li, New three-phase polymer-ceramic composite materials for miniaturized microwave antennas, AIP Adv. 6 (2016). doi: 10.1063/1.4964150
[11] D. Zhou, L.-X. Pang, D.-W. Wang, Z.-M. Qi, I.M. Reaney, High Quality Factor, Ultralow Sintering Temperature Li6B4O9Microwave Dielectric Ceramics with Ultralow Density for Antenna Substrates, ACS Sustainable Chem. Eng. 6 (2018) 11138-11143. doi: 10.1021/acssuschemeng.8b02755
[12] W. A.W. Muhamad, R. Ngah, M.F. Jamlos, P.J. Soh, M.A. Jamlos, H. Lago, Antenna array bandwidth enhancement using polymeric nanocomposite substrate, Appl. Phys. A, 122 (2016). doi: 10.1007/s00339-016-9887-z
[13] L. Zhang, J. Zhang, Z. Yue, L. Li, Thermally stable polymer–ceramic composites for microwave antenna applications, J. Adv. Ceram. 5 (2016) 269-276. doi: 10.1007/s40145-016-0199-8
[14] M. P.F. Graça, K.D.A. Sabóia, F. Amaral, L.C. Costa, Microwave Dielectric Properties of CCTO/PVA Composites, Adv. Mater. Sci. Eng. 2018 (2018) 1-7. doi: 10.1155/2018/6067519
[15] Z. H. Jiang, Y. Yuan, Microwave dielectric properties of SrAl2Si2O8 filled Polytetrafluoroethylene composites, IOP Conf. Ser.: Mater. Sci. Eng. 479,2019. doi: 10.1088/1757-899x/479/1/012090
[16] S. K. Yoon, H.G. Lee, W.S. Lee, E.S. Kim, Dielectric properties of ZnNb2O6/epoxy composites, J. Electroceram.     30 (2012) 93-97. doi: 10.1007/s10832-012-9737-0
[17] S. Dash, R.N.P. Choudhary, A. Kumar, M.N. Goswami, Enhanced dielectric properties and theoretical modeling of PVDF–ceramic composites, J. Mater. Sci.: Mater. Electron.     30 (2019) 19309-19318. doi:10.1007/s10854-019-02291-z
[18] N. Hasan, N.S.M. Hussain, A.A.M. Faudzi, S.M. Shaharum, N.A.T. Yusof, N.H. Noordin, N.A.A. Mohtadzar, M.S.A. Karim, Cured epoxy resin dielectric characterization based on accurate waveguide technique, in:  Applied Physics of Condensed Matter (Apcom 2019), 2019. doi: 10.1063/1.5118088  
[19] S. M. Seng, K.Y. You, F. Esa, M.Z.H. Mayzan, Dielectric and Magnetic Properties of Epoxy with Dispersed Iron Phosphate Glass Particles by Microwave Measurement, IEEE J. Microwaves       IEEE, Optoelectronics and Electromagnetic Applications, 19 (2020) 165-176. doi: 10.1590/2179-10742020v19i2824
[20] T. H. Lin, P.M. Raj, A. Watanabe, V. Sundaram, R. Tummala, M.M. Tentzeris, Nanostructured miniaturized artificial magnetic conductors (AMC) for high-performance antennas in 5G, IoT, and smart skin applications, in:  2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO), 2017, 911-915. doi: 10.1109/NANO.2017.8117483
[21] A. Dantas de Oliveira, C. Augusto Gonçalves Beatrice, Polymer Nanocomposites with Different Types of Nanofiller, in:  Nanocomposites - Recent Evolutions, 2019. doi: 10.5772/intechopen.81329
[22] G. Shimoga, S.-Y. Kim, High-k Polymer Nanocomposite Materials for Technological Applications, Appl. Sci. 10 (2020). doi: 10.3390/app10124249
[23] L. Wang, J. Yang, W. Cheng, J. Zou, D. Zhao, Progress on Polymer Composites With Low Dielectric Constant and Low Dielectric Loss for High-Frequency Signal Transmission, Front. Mater. 8 (2021). doi: 10.3389/fmats.2021.774843
[24] X. Huang, B. Sun, Y. Zhu, S. Li, P. Jiang, High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications, Prog. Mater Sci.100 (2019) 187-225. doi: 10.1016/j.pmatsci.2018.10.003
[25] S. Mourdikoudis, R.M. Pallares, N.T. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties, Nanoscale, 10 (2018) 12871-12934. doi: 10.1039/C8NR02278J
[26] M. Govindarajan, G. Benelli, A Facile One-Pot Synthesis of Eco-Friendly Nanoparticles Using Carissa carandas: Ovicidal and Larvicidal Potential on Malaria, Dengue and Filariasis Mosquito Vectors, J. Cluster Sci.   28 (2016) 15-36. doi:10.1007/s10876-016-1035-6
[27] H.Y. Yao, Y.W. Lin, T.H. Chang, Dielectric Properties of BaTiO3-Epoxy Nanocomposites in the Microwave Regime, Polymers (Basel), 13 (2021). doi: 10.3390/polym13091391
[28] M. Zhang, P. Xu, H. Peng, F. Qin, A rational design of core-shell-satellite structured BaTiO3 fillers for epoxy-based composites with enhanced microwave dielectric constant and low loss, Composites, Part B, 215 (2021). doi:10.1016/j.compositesb.2021.108764
[29] N. Hasan, N. H. Noordin, M.S.A. Karim, M.R.M. Rejab, Q.J. Ma, Dielectric properties of epoxy–barium titanate composite for 5 GHz microstrip antenna design, SN Appl. Sci. 2 (2019). doi: 10.1007/s42452-019-1801-9
[30] G. Subodh, M. Joseph, P. Mohanan, M.T. Sebastian, Low Dielectric Loss Polytetrafluoroethylene/TeO2Polymer Ceramic Composites, J. Am. Ceram. Soc.     90 (2007) 3507-3511. doi: 10.1111/j.1551-2916.2007.01914.x
[31] J. Chameswary, M.T. Sebastian, Effect of Ba(Zn1/3Ta2/3)O3 and SiO2 ceramic fillers on the microwave dielectric properties of butyl rubber composites, J. Mater. Sci.: Mater. Electron.               24 (2013) 4351-4360. doi:10.1007/s10854-013-1410-0
[32] R. Bowrothu, H.-I. Kim, C.S. Smith, D.P. Arnold, Y.-K. Yoon, 35-GHz Barium Hexaferrite/PDMS Composite-Based Millimeter-Wave Circulators for 5G Applications, IEEE Trans. Microwave Theory Tech. 68 (2020) 5065-5071. doi:10.1109/tmtt.2020.3022556