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H I G H L I G H T S   A B S T R A C T  
• A 3-D total potential energy was developed. 
• A derived shape function of the plate was 

obtained. 
• An expression for stress and moment of the 

plate was formulated. 

 An exact solution for the bending attributes of a thick rectangular plate under 
transverse loading is modeled herein using three-dimensional (3-D) elasticity 
plate theory and fourth-order polynomial shear deformation function. Precluding 
coefficients of shear correction, this model captured the effect of shear 
deformation along with the transverse normal strain stress. The expression for 
total potential energy was derived from a 3-D kinematic and constitutive relation 
the equilibrium equation was developed and employed from the energy 
functional transformation to get the relationship between slope and deflection. 
Exact polynomial functions were obtained from the outcome of the equilibrium 
equation and with the aid of the direct variation approach, the coefficient of 
deflection of the plate was generated from the governing equation. The 
expression for computing the displacement, bending moments, and stress 
components along the three axes of the plate was established from these solutions 
for the assessment of the bending characteristics of a rectangular plate. The result 
of a simply supported at one edge, free at one edge and clamped at the two outer 
edges (SCFC) was evaluated using the obtained functions in this study. The 
report of this study confirms the exactness and consistency of the 3-D model 
unlike the refined plate theories applied by previous authors in the available 
literature. The value of 8.05% is the comprehensive average percentage variation 
of the values for center deflection obtained by Onyeka and Okeke (2020) and 
Gwarah (2019). It is established that at the 92 % confidence level, this model is 
worthy of adoption for safe, cost-effective and accurate bending analysis of thick 
plates of any support condition. 
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1. Introduction 
Plates are three-dimensional structural members having spatial dimensions along x, y, and z-axis whose thickness is 

geometrically less compared to other dimensions [1-2]. They are vastly applied in aeronautical, naval, mechanical, 
Geotechnical, and structural engineering for modeling water tanks, bridge deck slabs, turbine disks, ship hulls, retaining walls, 
machine parts, and architectural structures [3-5].   

Plates can be classified according to shapes such as; quadrilateral, square, circular, or rectangular; they can be classified 
based on the integral constituents as homogeneous, non-homogeneous, orthotropic, anisotropic, or isotropic [6-7]. Considering 
boundary status, plates are fixed, free, or simply supported, and they can be thin, moderately thick, or thick based on the span-
to-thickness ratio of the plate [8-10].  

Rectangular plates a/t ≤ 20 are addressed as thick plates, while 20 ≤ a/t ≤ 50 as moderately-thick plates and 50 ≤ a/t ≤ 100 
as thin plates, where a/t is the span-to-depth ratio [11]; given a and t to be the width and thickness respectively. There is 
increasing research interest for thick plates in engineering structures among scholars due to their pertinence and captivating 
attributes, features such as lightweight, heavy loads carrying-capacities, cost reduction, high mechanical properties, and ability 
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to be customized to the desired state [12]. The properties of thick plates can be improved with adequate perspicacity of its 
failure form and structural trait.  

The investigation on thick plates can be generally and thoroughly made through bending, vibration or buckling [13-15]). 
The deformation of plates, due to the application of lateral loads or external forces on the plate, at right angles towards the 
surface of the plate is considered as a bending phenomenon. Deformation extends as the induced load exceeds the critical load 
[16-17]. This results in plate failure. This study is of great essence because the bending mannerism of thick plates requires 
adequate attention to circumvent structural instability emanating from deformations and obtain an exact solution.  

Several theories such as the classical plate theory (CPT), refined plate theories (RPTs), and three-dimensional theory (3-D) 
[18] were formulated and deployed by diverse scholars to solve the plight of instability arising from bending. RPTs consist of 
the first-order shear deformation plate theory (FSDT) [19-20], the trigonometric shear deformation theories (TSDT) [21-22], 
exponential shear deformation theories (ESDT) [23], polynomial shear deformation theories (PSDT) [24] and the higher-order 
shear deformation plate theories (HSDT) [25-26]. An accurate solution for the bending of thick plates cannot be actualized 
using classical plate theory (CPT) [27] because it neglects transverse shear effects. Although RPTs give a better analytical 
result, their solution is incomplete and inconsistent as they overlook the normal stress and strain along the thickness axis of the 
plate.  

The solutions of the 3D model are accurate and reliable as the limitations of 2D-RPT are terminated with the 
comprehensive system of fifteen governing equations which consists of material constitutive laws for generalized stress - strain 
equations, the kinematic relations for six strains and displacements and the three differential equations of equilibrium [28-30]. 
This study is needful as thick plate analysis is a three-dimensional problem and it is advantageous as it investigates thick plates 
with SCFC support order. 

Studies on bending can be carried out numerically, analytically or using an energy approach or a miscellany of any [31]. In 
the analytical approach, the outcome of the bending issue covers the edge requirements of the plate in the governing equations 
at different positions of the plate surface. This method includes; Integral transforms, Eigen expansion, Naiver, and Levy series 
[1, 32], while the numerical approach whose solutions are approximate [33-34], consists of; Galerkin, Collocation, Bubnov-
Galerkin, truncated double Fourier series, Kantorovich methods, boundary element, Ritz, and finite difference. The energy 
method whose total energy is equal to the sum of strain and potential energy or external work on the continuum [35]; can be in 
an analytical or a numerical form. 

Unlike the preceding works, this study evaluates the deflection, shear stresses at the x-y axis, x-z axis, and y-z axis, the 
normal stresses along x, y, and z co-ordinates produced due to the applied load on the plate, as well as the in-plane 
displacement in the direction of x and y co-ordinates. Inexact solutions were obtained by past authors that employed assumed 
displacement-shape functions and others that used an exact process only applied to the solution of the 2-D bending problem of 
the thick plate. The nature of the shape functions used during analysis matters so much to the designer as it affects the 
applicability and performance of the structure; to enhance the robustness of the process and at the same time ensure structural 
integrity and accuracy of solutions in the plate bending problem, a 3-D polynomial theory is required. This study also 
addresses this gap by excellently combining RPT of fourth order polynomial with a 3-D elasticity plate theory which is an 
improvement to past works and more advantageous as it can easily be employed to analyze plates with any boundary 
condition. A thick plate that is subjected to a uniformly-distributed transverse loads, and simply supported at one edge, free at 
one edge and clamped at the two other edges (SCFC) was evaluated herein, using a 3-D polynomial plate theory and exact 
polynomial displacement function to determine the value of displacements, moments and stresses along x, y and z co-ordinate 
at arbitrary nodes of plates. 

Bi-directional bending investigation of thick isotropic plates was carried out by Bhaskar et al., [36] using a new inverse 
TSDT and a finite element solution was developed, considering the effects of transverse shear deflection and rotating inertia. 
With the application of the dynamic version of the virtual work principle, the dominant equations and edge conditions of the 
theory were obtained. Although their model showed precise predictions of stresses-displacements when collated with other 
RPTs, it was unable to capture thick plates with SCFC-support order, polynomial functions, and an analytical and 3D 
approach.  

Neglecting the use of shear correction elements connected with FSDTs, Sayyad and Ghugal [37], as well as Ghugal and 
Gajbhiye [38] captured the effect of shear and strain deformation in their bending study. The phenomenon of zero-shear 
transverse stresses was satisfactory. Polynomial displacement functions with 3D theory and SCFC plates were not considered 
in their assessment.  

Simply-supported plates under transverse bi-sinusoidal loads were evaluated by Mantari and Soares [39] using the precept 
of virtual work and HSDT with an assumed variation of the mechanical properties of the plates in the thickness axis. The 
authors obtained a Navier-type analytical solution which showed a level of accuracy compared to the previous shear 
deformation model. The 3D theory and polynomial shape functions were not applied.  Plates with SCFC edge status were not 
covered.  

Both trigonometric and polynomial displacement functions were employed by Onyeka and Okeke [40] to formulate the 
governing differential equation for SSFS plates. They used the direct energy method in their bending analysis and the 
deflection and stresses obtained in their study were in good agreement with the other RPTs. 3-D theory and SCFC plates were 
not encapsulated in their study.  Mantari et al. [41] employed trigonometric functions and shear deformation plate theory to 
obtain the displacement and stresses in the thick rectangular plates. The approach applied by the authors cannot be reliable for 
a thick plate analysis as they cannot give an exact solution. The authors did not apply 3D theory, neither were polynomial 
functions incorporated. Plates with SSFS support status were not addressed in their study. An alternate refined plate model was 
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developed by Onyeka et al., [42] for analyzing the effect of bending CCFC thick plates using the energy method. The authors 
obtained exact solutions as 3-D kinematic and constitutive relations were applied to formulate the equilibrium equations and 
total energy function.  The beauty of their analytical approach and solutions is undeniable but their model was not a blend of 
the polynomial RPT and the 3D plate theory rather a trigonometric displacement function was used. In addition, plates with 
SCFC edge status were not considered in their study.  

The spline-collocation method with two-coordinate directions and a numerical approach based on the 3-D theory was 
employed by Grigorenko et al., [43] to get the bending solutions of a thick plate. They determined the displacements-stresses 
in clamped plates. Their approach did not capture accurately the value for out-of-plane displacements at any given point in the 
plate. They did not cover plates with the SCFC support - condition. Onyeka et al. [1] and Onyeka and Mama [44] presented a 
3D trigonometric model for CSCS and SSSS plates respectively. The authors solved the bending issue of these plates using a 
direct variational energy approach. The solutions obtained in their study validate the accuracy of 3D prediction. But a 
combination of 2D-RPT and 3D theory with the polynomial function was not considered in their study. Plates with the SCFC 
boundary condition were also not addressed.   

Antecedently, refined plate theories were mostly used by many scholars in the bending investigation of rectangular plates 
while the 3D model was used by a few authors as shown in the available literature. The solutions obtained by those that 
employed 2D-RPTs were inexact because the stresses along the thickness axis were not analyzed. Although those who applied 
3D theory had exact solutions, polynomial displacement-shape functions were not deployed. This study addressed these 
research gaps and distinctively presented the coalescence of 3-D and RPT of fourth-order polynomial function which was not 
seen in preceding studies. The assumed shape functions applied in prior studies birthed erroneous and unreliable solutions as 
the functions were not derived from the governing compatibility equation that was obtained from the first principle. Discordant 
to other studies that used trigonometric functions to proffer solutions to bending problems, this work utilized polynomial shape 
functions, which is an easy and simplified approach that can solve any boundary condition of thick plates. The importance and 
the application of this study is to achieve a more economic analysis by considering all parameters responsible for the 
deformation of the plate structure. 

In this study, a theoretical formulation was developed using the principle of 3-D elasticity to achieve an exact bending 
solution for thick isotropic plates carrying uniformly distributed transverse loads. The solution of a rectangular plate with one 
simply supported edge, one free edge, and clamped at the two outer edges (SCFC), is presented using a derived polynomial 
model. Furthermore, the function of stresses, shear stresses, slope, and displacement at the three planes of the plate at different 
span - thickness ratios and aspect ratios of the plate were examined. 

2. Theoretical Section 
The model of this study was formulated by considering a rectangular plate in Figure 1 as a three-dimensional element in 

which the deformation exists in three-axisxis: length (a), width (b) and thickness (t). 

 
Figure 1: An element of thick rectangular plate showing middle surface 

The displacement field which includes the displacements along x, y and z-axis: p, q and U are obtained assuming that the 
x-z section and y-z section, which are initially normal to the x-y plane before bending go off normal to the x-y plane after 
bending of the plate see Figure 2. 
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Figure 2: Displacement of x-z (or y-z) section after bending [4] 

2.1 Kinematics 
The kinematics of the study if formulated by taking the assumption of the plate that the x-z section and y-z section, is no 

longer normal to the x-y plane after bending. Thus, the 3-D displacement kinematics along x, y and z axis are obtained in line 
with the work of Onyeka et al. [2], as: 

 

 𝑝𝑝 = 𝑧𝑧.∅𝑥𝑥    (1) 

 

 𝑞𝑞 = 𝑧𝑧.∅𝑦𝑦 (2) 

Given that:  

 𝑧𝑧 = 𝑘𝑘𝑘𝑘 (3) 

 𝛽𝛽 = a
𝑡𝑡
 (4) 

 𝛾𝛾 = b
𝑎𝑎
 (5) 

 
All the used symbols are defined in the nomenclature section. Thus, the six non-dimensional coordinates strain 

components were derived using strain-displacement expression according to Hooke’s law and presented in Equations (6) - 
(11): 

 ε𝑥𝑥 =  1
a

. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (6) 

 ε𝑦𝑦 = 1
aγ

. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (7) 

 ε𝑧𝑧 = 1
t

. 𝜕𝜕∪
𝜕𝜕𝜕𝜕

 (8) 

 γ𝑥𝑥𝑦𝑦 = 1
a

. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
aγ

. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (9) 

 γ𝑥𝑥𝑧𝑧 = 1
a

. 𝜕𝜕∪
𝜕𝜕𝜕𝜕

+ 1
t

. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (10) 

 γ𝑦𝑦𝑧𝑧 = 1
aγ

. 𝜕𝜕∪
𝜕𝜕𝜕𝜕

+ 1
t

. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (11) 

2.2 Constitutive Relations 
The three dimensional constitutive relation for isotropic material is given as [45]: 
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⎣
⎢
⎢
⎢
⎢
⎡
εx
εy
εz
γxz
γyz
γxy⎦

⎥
⎥
⎥
⎥
⎤

= 1
E

⎣
⎢
⎢
⎢
⎢
⎡

1 −µ −µ 0 0 0
−µ 1 −µ 0 0 0
−µ −µ 1 0 0 0
0 0 0 2(1 + µ) 0 0
0 0 0 0 2(1 + µ) 0
0 0 0 0 0 2(1 + µ)⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
σx
σy
σz
τxz
τyz
τxy⎦

⎥
⎥
⎥
⎥
⎤

 (12) 

The six stress components were obtained by substituting Equations 6 to 11 into Equation 12 and simplifying the outcome 
gave: 

 

 σ𝑥𝑥 = �µ kt
γa
∗ 𝜕𝜕∅𝑦𝑦

𝜕𝜕𝜕𝜕
+ (1 − µ) kt

a
∗ 𝜕𝜕∅𝑥𝑥
𝜕𝜕𝜕𝜕

+ µ 1
t
∗ ∂∪
∂k
� E

(1+µ)(1−2µ)
( 13) 

 σ𝑦𝑦 = �µ𝑘𝑘t ∗ 𝜕𝜕∅𝑥𝑥
𝑎𝑎𝜕𝜕𝜕𝜕

+ µ
𝑡𝑡
∗ 𝜕𝜕∪
𝜕𝜕𝜕𝜕

+ (1−𝜇𝜇)kt
𝛾𝛾𝑎𝑎

∗ 𝜕𝜕∅𝑦𝑦
𝜕𝜕𝜕𝜕
� E

(1+µ)(1−2µ)
 (14) 

 σ𝑧𝑧 = �µ𝜕𝜕t
𝛾𝛾𝑎𝑎

∗ 𝜕𝜕∅𝑦𝑦
𝜕𝜕𝜕𝜕

+ (1−𝜇𝜇)
𝑡𝑡

∗ 𝜕𝜕∪
𝜕𝜕𝜕𝜕

+ µ𝑘𝑘t ∗ 𝜕𝜕∅𝑥𝑥
𝑎𝑎𝜕𝜕𝜕𝜕

� E
(1+µ)(1−2µ)

 (15) 

 τ𝑥𝑥𝑦𝑦 = �kt𝜕𝜕∅𝑦𝑦
𝑎𝑎2𝜕𝜕𝜕𝜕

∗ kt
2𝛾𝛾𝑎𝑎

𝜕𝜕∅𝑥𝑥
𝜕𝜕𝜕𝜕
� 𝐸𝐸(1−2µ)

(1+𝜇𝜇)(1−2𝜇𝜇)
 (16) 

 τ𝑦𝑦𝑧𝑧 = � 1
𝑎𝑎2𝛾𝛾

𝜕𝜕∪
𝜕𝜕𝜕𝜕

+ ∅𝑦𝑦
2
� (1−2µ)𝐸𝐸

(1+𝜇𝜇)(1−2𝜇𝜇)
 (17) 

 τ𝑥𝑥𝑧𝑧 = �1
𝑎𝑎
𝜕𝜕∪
2𝜕𝜕𝜕𝜕

+ ∅𝑥𝑥
2
� (1−2µ)𝐸𝐸

(1+𝜇𝜇)(1−2𝜇𝜇)
 (18) 

2.3 Formulation of Energy 
The potential energy which is the summation of all the external work done on the body of the material and strain energy 

generated due to the applied load on the plate is mathematically defined as: 

 ∄ = ∈ −∋ (19) 

Given that ∄, ∈ and ∋  are the potential energy, strain energy and external work-done on the plate respectively, let; 

 ∋ = 𝑤𝑤𝑤𝑤𝑤𝑤 ∩ ∫ ∫ ∁10
1
0 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 (20) 

and; 

 ∈ = 𝑡𝑡𝑎𝑎𝑡𝑡
2 ∫ ∫ ∫ �σ𝑥𝑥ε𝑥𝑥 + σ𝑦𝑦ε𝑦𝑦 + σ𝑧𝑧ε𝑧𝑧 + 𝜏𝜏𝑥𝑥𝑦𝑦γ𝑥𝑥𝑦𝑦 + 𝜏𝜏𝑥𝑥𝑧𝑧γ𝑥𝑥𝑧𝑧 + 𝜏𝜏𝑦𝑦𝑧𝑧γ𝑦𝑦𝑧𝑧�

0.5
−0.5

1
0

1
0 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑘𝑘 (21) 

The strain energy is presented as triple integration of the sum of dot product of stresses and strain, shear stresses and shear 
strain with respect to x, y and z axis of the plate. The domain (boundary) for x and y axis is between 0 and 1 while boundary 
for z axis is between 0 and 0.5, given that deflection occurs at mid-plane of the thickness of the plate. The symbol u, v and k 
represents non-dimensional form for x, y and z axis of the plane. Thus, substituting Equations 22 and 25 into Equation 24 to 
get the energy Equation as: 

 

∄ = Et3𝛾𝛾
24(1+µ)(1−2µ)∫ ∫ ��𝜕𝜕∅𝑦𝑦

𝜕𝜕𝜕𝜕
�
2 (1−2µ)

2
 + 1

𝛾𝛾
𝜕𝜕∅𝑥𝑥
𝜕𝜕𝜕𝜕

∗ 𝜕𝜕∅𝑦𝑦
𝜕𝜕𝜕𝜕

+ (1−𝜇𝜇)
𝛾𝛾2

�𝜕𝜕∅𝑦𝑦
𝜕𝜕𝜕𝜕
�
2

+ (1−𝜇𝜇)
𝑡𝑡2

∗ �𝜕𝜕∪
𝜕𝜕𝜕𝜕
�
2
𝛽𝛽2 +1

0
1
0

 (1−2µ)
2𝛾𝛾2

�𝜕𝜕∅𝑥𝑥
𝜕𝜕𝜕𝜕
�
2

+ 6(1−2µ)
𝑡𝑡2

�𝑤𝑤2∅𝑥𝑥
2 + �𝜕𝜕∪

𝜕𝜕𝜕𝜕
�
2

+ 𝑤𝑤2∅𝑦𝑦
2 + �𝜕𝜕∪

𝜕𝜕𝜕𝜕
�
2 1
𝛾𝛾2

+ 𝑤𝑤 �𝜕𝜕∪
𝜕𝜕𝜕𝜕
� 2∅𝑥𝑥 + �𝜕𝜕∪

𝜕𝜕𝜕𝜕
�2𝑤𝑤 ∗ ∅𝑦𝑦

𝛾𝛾
� +

�𝜕𝜕∅𝑥𝑥
𝜕𝜕𝜕𝜕
�
2

(1 − 𝜇𝜇)� 𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑 −𝑤𝑤𝛾𝛾𝑤𝑤2 ∫ ∫ ∁𝑆𝑆 𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑 1
0

1
0   (22) 

2.4 Solution to The Equilibrium Equation 
The two compatibility equations were obtained by minimizing the total potential energy functional with respect to 

rotations in x-z and in y-z plane to give: 
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  Et3𝛾𝛾
24(1+µ)(1−2µ)∫ ∫ �

2(1 − µ) 𝜕𝜕
2∅𝑥𝑥
𝜕𝜕𝜕𝜕2

 + 𝜕𝜕2∅𝑦𝑦
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

∗ 1
𝛾𝛾

+ (1−2µ)
γ2

𝜕𝜕2∅𝑥𝑥
𝜕𝜕𝜕𝜕2

+

�2a2θ𝑠𝑠𝑥𝑥 + 2a. 𝜕𝜕∪
𝜕𝜕𝜕𝜕
� 6(1−2µ)

t2

�1
0

1
0 𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑 = 0  (23) 

 Et3𝛾𝛾
24(1+µ)(1−2µ)∫ ∫ �

𝜕𝜕2∅𝑥𝑥
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 

∗ 1
𝛾𝛾

+ 2 𝜕𝜕2∅𝑦𝑦
𝜕𝜕𝜕𝜕2

∗ (1−µ)
𝛾𝛾2

+ 2 (1−2µ)
2

𝜕𝜕2∅𝑦𝑦
𝜕𝜕𝜕𝜕2

+

�2a2∅𝑦𝑦 + 2a.
𝛾𝛾
𝜕𝜕∪
𝜕𝜕𝜕𝜕
� 6(1−2µ)

t2

�1
0

1
0 𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑 = 0  (24) 

The solution of the equilibrium differential equation gives the characteristics trigonometric displacement and rotation 
functions as presented in the Equation 25-27 as: 

 ∪= 𝐻𝐻0[(1  𝑑𝑑  𝑑𝑑2  𝑑𝑑3  𝑑𝑑4)

⎣
⎢
⎢
⎢
⎡
𝑤𝑤0
𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
𝑤𝑤4⎦
⎥
⎥
⎥
⎤

. (1  𝑑𝑑  𝑑𝑑2  𝑑𝑑3  𝑑𝑑4)

⎣
⎢
⎢
⎢
⎡
𝑤𝑤0
𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
𝑤𝑤4⎦
⎥
⎥
⎥
⎤

] (25) 

 ∅𝑥𝑥 = 𝑐𝑐
𝑎𝑎

.𝐻𝐻0[(1  2𝑅𝑅  3𝑅𝑅2  4𝑅𝑅3) �

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
𝑤𝑤4

� . (1  𝑄𝑄  𝑄𝑄2  𝑄𝑄3  𝑄𝑄4)

⎣
⎢
⎢
⎢
⎡
𝑤𝑤0
𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
𝑤𝑤4⎦
⎥
⎥
⎥
⎤

] (26) 

 ∅𝑦𝑦 = 𝑐𝑐
𝑎𝑎β

.𝐻𝐻0[(1  𝑅𝑅  𝑅𝑅2  𝑅𝑅3  𝑅𝑅4)

⎣
⎢
⎢
⎢
⎡
𝑤𝑤0
𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
𝑤𝑤4⎦
⎥
⎥
⎥
⎤

. (1  2𝑄𝑄  3𝑄𝑄2  4𝑄𝑄3) �

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
𝑤𝑤4

�] (27) 

A specific problem is presented in Figure 3 which contains a transversely loaded rectangular isotropic plate whose 
Poisson’s ratio is 0.3 under uniformly distributed load as shown in the Figure 3. The plate has three dimensions; width (a), 
length (b) and thickness (t) which is situated along the direction of x, y and z co-ordinate under SCFC boundary condition to 
get the particular solution of the deflection. The symbol u, v and k represents non-dimensional form for x, y and z planes of the 
plate as seen in the figure below. 

 
Figure 3: SCFC Rectangular Plate 

Applying the initial conditions of the plate in Figure 2, the relationship between the displacement and shape function of the 
plate as: 

 ∪ = ∁.∩   (28) 

 ∅𝑥𝑥 = ℎ
𝑎𝑎

. 𝜕𝜕∁
𝜕𝜕𝜕𝜕

 (29) 

 ∅𝑦𝑦 = 𝑔𝑔
𝛾𝛾𝑎𝑎

. 𝜕𝜕∁
𝜕𝜕𝜕𝜕

 (30) 



Festus C. Onyeka et al. Engineering and Technology Journal 41 (05) (2023) 603- 618  
 

609 
 

 

The in trigonometric form of the shape function of the plate after satisfying the boundary conditions is given as: 
 

 ∁= (𝑅𝑅2 − 2𝑅𝑅3 +  𝑅𝑅4) × �7𝜕𝜕
3
− 10

3
𝑄𝑄3 + 10

3
𝑄𝑄4 − 𝑄𝑄5� (31) 

Substituting Equation 28, 29 and 30 into 22, gives: 
 

∄ = Et3𝛾𝛾
24(1+µ)(1−2µ)

�(1 − 𝜇𝜇)ℎ2𝑟𝑟𝑥𝑥  + 1
𝛾𝛾2
�ℎ.𝑔𝑔 + (1−2µ)ℎ2

2
+ (1−2µ)𝑔𝑔2

2
� 𝑟𝑟𝑥𝑥𝑦𝑦 + (1−𝜇𝜇)𝑔𝑔2

𝛾𝛾4
𝑟𝑟𝑦𝑦 + 6(1 −

2µ)𝛽𝛽2 �[ℎ2 +∩2+ 2 ∩ ℎ]. 𝑟𝑟𝑧𝑧 + 1
𝛾𝛾2

. [𝑔𝑔2 +∩2+ 2 ∩ 𝑔𝑔]. 𝑟𝑟2𝑧𝑧� −
2𝜕𝜕𝑎𝑎4𝑟𝑟𝑐𝑐∩

𝐷𝐷∗
� (32) 

Where:     

 𝑟𝑟𝑥𝑥 = ∫ ∫ �𝜕𝜕
2∁

𝜕𝜕𝜕𝜕2
�
21

0
1
0 𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑 (33) 

 𝑟𝑟𝑥𝑥𝑦𝑦 = ∫ ∫ � 𝜕𝜕2∁
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�
21

0
1
0 𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑    (34) 

 𝑟𝑟𝑦𝑦 = ∫ ∫ �𝜕𝜕
2∁

𝜕𝜕𝜕𝜕2
�
21

0
1
0 𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑 (35) 

 𝑟𝑟𝑧𝑧 = ∫ ∫ �𝜕𝜕∁
𝜕𝜕𝜕𝜕
�
21

0
1
0 𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑   (36) 

 𝑟𝑟2𝑧𝑧 = ∫ ∫ �𝜕𝜕∁
𝜕𝜕𝜕𝜕
�
21

0
1
0 𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑 (37) 

 𝑟𝑟𝑐𝑐 = ∫ ∫ ∁10
1
0 𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑   (38) 

Minimizing Equation 32 with respect to ℎ gives: 

 1
2𝛾𝛾2

[𝑔𝑔 + ℎ(1 − 2µ)]𝑟𝑟𝑥𝑥𝑦𝑦 + ℎ𝑟𝑟𝑥𝑥(1 − 𝜇𝜇)  = −6(1 − 2µ)𝛽𝛽2[ℎ +∩]. 𝑟𝑟𝑧𝑧 (39) 

Minimizing Equation 32 with respect to 𝑔𝑔 gives: 
 

 1
2𝛾𝛾2

[ℎ + 𝑔𝑔(1 − 2µ)]𝑟𝑟𝑥𝑥𝑦𝑦 + (1−𝜇𝜇)𝑔𝑔
𝛾𝛾4

𝑘𝑘𝑦𝑦 = + 6
𝛾𝛾2

(1 − 2µ)𝛽𝛽2([𝑔𝑔 +∩]. 𝑟𝑟2𝑧𝑧) (40) 

Re-write the Equation (39) and (40) and simplifying to give: 

 ℎ =∩ (𝜕𝜕12𝜕𝜕23−𝜕𝜕13𝜕𝜕22)
(𝜕𝜕12𝜕𝜕12−𝜕𝜕11𝜕𝜕22) (41) 

 𝑔𝑔 =∩ (𝜕𝜕12𝜕𝜕13−𝜕𝜕11𝜕𝜕23)
(𝜕𝜕12𝜕𝜕12−𝜕𝜕11𝜕𝜕22) (42) 

Where; 

 𝑘𝑘11 = (1 − 𝜇𝜇)𝑟𝑟𝑥𝑥 + 1
2𝛾𝛾2

(1 − 2µ)𝑟𝑟𝑥𝑥𝑦𝑦 + 6(1 − 2µ)𝛽𝛽2𝑟𝑟𝑧𝑧 (43) 

 𝑘𝑘12 = 𝑘𝑘21 = 1
2𝛾𝛾2

𝑟𝑟𝑥𝑥𝑦𝑦;  𝑘𝑘13 = −6(1 − 2µ)𝛽𝛽2𝑟𝑟𝑧𝑧 (44) 

 𝑘𝑘22 = (1−𝜇𝜇)
𝛾𝛾4

𝑟𝑟𝑦𝑦 + 1
2𝛾𝛾2

(1 − 2µ)𝑟𝑟𝑥𝑥𝑦𝑦 + 6
𝛾𝛾2

(1 − 2µ)𝛽𝛽2𝑟𝑟2𝑧𝑧 (45) 

 𝑘𝑘23 = 𝑘𝑘32 = − 6
𝛾𝛾2

(1 − 2µ)𝛽𝛽2𝑟𝑟2𝑧𝑧 (46) 
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Minimizing Equation 32 with respect to ∩ gives: 
 

Et3𝛾𝛾
24(1 + µ)(1 − 2µ) �6

(1 − 2µ)𝛽𝛽2 �[2 ∩ +2ℎ]. 𝑟𝑟𝑧𝑧 +
1
𝛾𝛾2

. [2 ∩ +2𝑔𝑔]. 𝑟𝑟2𝑧𝑧�� 

−24𝑤𝑤𝑎𝑎4𝑟𝑟𝑐𝑐(1+𝜇𝜇)(1−2𝜇𝜇)
Et3

= 0 (47) 

(1−2µ)𝛽𝛽2Et3𝛾𝛾
4(1+µ)(1−2µ)

��∩ + ∩ (𝜕𝜕12𝜕𝜕23−𝜕𝜕13𝜕𝜕22)
(𝜕𝜕12𝜕𝜕12−𝜕𝜕11𝜕𝜕22)

� . 𝑟𝑟𝑧𝑧 + 1
𝛽𝛽2

. �∩ + ∩ (𝜕𝜕12𝜕𝜕13−𝜕𝜕11𝜕𝜕23)
(𝜕𝜕12𝜕𝜕12−𝜕𝜕11𝜕𝜕22)

� . 𝑟𝑟2𝑧𝑧�  

= 𝑤𝑤𝑎𝑎4𝑟𝑟𝑐𝑐(1+𝜇𝜇)(1−2𝜇𝜇)𝛽𝛽3

E
 (48) 

Factorizing Equations (48) and simplifying gives: 
 

 ∩ = 2𝜕𝜕(1+𝜇𝜇)(1−2𝜇𝜇)𝛽𝛽3

𝐸𝐸
� 𝑎𝑎𝑟𝑟𝑐𝑐

(1−2µ)�𝑎𝑎𝑡𝑡�
2
��1+(𝑘𝑘12𝑘𝑘23−𝑘𝑘13𝑘𝑘22)

(𝑘𝑘12𝑘𝑘12−𝑘𝑘11𝑘𝑘22)�.𝑟𝑟𝑧𝑧+
1
𝛽𝛽2

.�1+(𝑘𝑘12𝑘𝑘13−𝑘𝑘11𝑘𝑘23)
(𝑘𝑘12𝑘𝑘12−𝑘𝑘11𝑘𝑘22)�.𝑟𝑟2𝑧𝑧�

� (49) 

2.5 Exact Displacement and Stress Expression 
By substituting the value of ∩ in Equation 49 into Equation 28, the deflection equation after satisfying the boundary 

condition of SCFC plate is given as: 

 ∪ = ∩ (𝑅𝑅2 − 2𝑅𝑅3 +  𝑅𝑅4) × �7𝜕𝜕
3
− 10

3
𝑄𝑄3 + 10

3
𝑄𝑄4 − 𝑄𝑄5� (50) 

Similarly, the in-plane displacement along x-axis becomes: 
 

 𝑝𝑝 = (𝜕𝜕12𝜕𝜕23−𝜕𝜕13𝜕𝜕22)
(𝜕𝜕12𝜕𝜕12−𝜕𝜕11𝜕𝜕22) �

12𝜕𝜕(1+𝜇𝜇)(1−2𝜇𝜇)𝛽𝛽2𝜕𝜕𝑟𝑟𝑐𝑐

(1−2µ)�𝑎𝑎𝑡𝑡�
2
��1+(𝑘𝑘12𝑘𝑘23−𝑘𝑘13𝑘𝑘22)

(𝑘𝑘12𝑘𝑘12−𝑘𝑘11𝑘𝑘22)�.𝑟𝑟𝑧𝑧+
1
𝛽𝛽2

.�1+(𝑘𝑘12𝑘𝑘13−𝑘𝑘11𝑘𝑘23)
(𝑘𝑘12𝑘𝑘12−𝑘𝑘11𝑘𝑘22)�.𝑟𝑟2𝑧𝑧�

� 1
𝐸𝐸
𝜕𝜕∁
𝜕𝜕𝜕𝜕

 (51) 

 𝑝𝑝 = 12𝜕𝜕(1+𝜇𝜇)(1−2𝜇𝜇)𝛽𝛽2

𝐸𝐸
� 𝜕𝜕𝑘𝑘𝑟𝑟𝑐𝑐

𝐿𝐿
� 𝜕𝜕∁
𝜕𝜕𝜕𝜕

 (52) 

Where; 

 𝐿𝐿 = 6(1 − 2µ)𝛽𝛽2 �[1 + ℎ]. 𝑟𝑟𝑧𝑧 + 1
𝛾𝛾2

. [1 + 𝑔𝑔]. 𝑟𝑟2𝑧𝑧� (53) 

 𝑁𝑁 = (𝑟𝑟12𝑟𝑟23−𝑟𝑟13𝑟𝑟22)
(𝑟𝑟12𝑟𝑟12−𝑟𝑟11𝑟𝑟22) (54) 

 𝑀𝑀 = (𝑟𝑟12𝑟𝑟13−𝑟𝑟11𝑟𝑟23)
(𝑟𝑟12𝑟𝑟12−𝑟𝑟11𝑟𝑟22) (55) 

Similarly, the in-plane displacement along y-axis becomes; 

 𝑞𝑞 = 12𝜕𝜕(1+𝜇𝜇)(1−2𝜇𝜇)𝛽𝛽
𝐸𝐸

� 𝜕𝜕𝑘𝑘𝑟𝑟𝑐𝑐
𝐿𝐿
� 𝜕𝜕∁
𝜕𝜕𝜕𝜕

 (56) 

The six stress elements after satisfying the boundary condition are presented in Equations (57) – (62) as: 
 

 σ𝑥𝑥 = E
(1+µ)(1−2µ)

� k
β

. ∂
2∁

∂𝜕𝜕2
 (1 − µ) + µ𝛽𝛽4 ∗ 12𝜕𝜕(1+𝜇𝜇)(1−2𝜇𝜇)

𝐸𝐸
� 𝑟𝑟𝑐𝑐
𝐿𝐿
� ∂∁
∂k

+ µk
𝛾𝛾𝛽𝛽

. ∂
2∁

∂𝜕𝜕2
� (57) 

 σ𝑦𝑦 = E
(1+µ)(1−2µ)

� µk
β

. ∂
2∁

∂𝜕𝜕2
+ µ𝛽𝛽4 ∗ 12𝜕𝜕(1+𝜇𝜇)(1−2𝜇𝜇)

𝐸𝐸
� 𝑟𝑟𝑐𝑐
𝐿𝐿
� ∂∁
∂k

+ (1−𝜇𝜇)k
𝛾𝛾𝛽𝛽

. ∂
2∁

∂𝜕𝜕2
� (58) 



Festus C. Onyeka et al. Engineering and Technology Journal 41 (05) (2023) 603- 618  
 

611 
 

 

 σ𝑧𝑧 = E
(1+µ)(1−2µ)

�µk
β

. ∂
2∁

∂𝜕𝜕2
+ (1 − 𝜇𝜇)𝛽𝛽4 ∗ 12𝜕𝜕(1+𝜇𝜇)(1−2𝜇𝜇)

𝛽𝛽
� 𝑟𝑟𝑐𝑐
𝐿𝐿
� ∂∁
∂k

+ µk
𝛾𝛾𝛽𝛽

. ∂
2∁

∂𝜕𝜕2
� (59) 

 τ𝑥𝑥𝑦𝑦 = 𝐸𝐸(1−2µ)
(1+𝜇𝜇)(1−2𝜇𝜇)

. � k
2𝛽𝛽

. ∂
2𝜕𝜕∁

∂𝜕𝜕 ∂𝜕𝜕
+ 𝛽𝛽2k

2𝑎𝑎𝛾𝛾
. 12𝜕𝜕(1+𝜇𝜇)(1−2𝜇𝜇)

𝐸𝐸
� 𝑟𝑟𝑐𝑐
𝐿𝐿
� ∂2𝜕𝜕∁
∂𝜕𝜕 ∂𝜕𝜕

� (60) 

 τ𝑥𝑥𝑧𝑧 = (1−2µ)𝐸𝐸
(1+𝜇𝜇)(1−2𝜇𝜇)

. �1
2
∂∁
∂u

+ 𝛽𝛽3

2
∗ 12𝜕𝜕(1+𝜇𝜇)(1−2𝜇𝜇)

𝐸𝐸
� 𝑟𝑟𝑐𝑐
𝐿𝐿
� 𝜕𝜕∁
𝜕𝜕𝜕𝜕
� (61) 

 τ𝑦𝑦𝑧𝑧 = (1−2µ)𝐸𝐸
(1+𝜇𝜇)(1−2𝜇𝜇)

. �1
2
∂∁
∂𝜕𝜕

+ 𝛽𝛽3

2𝛾𝛾
∗ 12𝜕𝜕(1+𝜇𝜇)(1−2𝜇𝜇)

𝐸𝐸
� 𝑟𝑟𝑐𝑐
𝐿𝐿
� 𝜕𝜕∁
𝜕𝜕𝜕𝜕
� (62) 

3. Results and Discussion  
A 3-D polynomial shear deformation model was developed to obtain the numerical outcome for the non-dimensional 

values of displacements, perpendicular and shear stresses of SCFC thick plate subjected to a transverse load. The variation of 
the displacements and stresses in a different span-depth ratio at varying length-breadth ratio, was presented in Tables 1 to 3 and 
Figures 4 to 12. The range of span-thickness ratio is considered between 4, 5, 10, 15, 20, 50, 100 and CPT, which covers the 
span of thick, moderately thick and thin plates. The length-breadth aspect ratio captured in this study is 1.0, 1.5 and 2.0.  

Table 1: Displacement and Stresses of SCFC plate (length/width = 1) 

∝=
𝐚𝐚
𝐭𝐭  ∪ 𝐩𝐩 𝐐𝐐 𝛔𝛔𝐱𝐱��� 𝛔𝛔𝐲𝐲��� 𝛔𝛔𝒛𝒛��� 𝛕𝛕𝐱𝐱𝐲𝐲���� 𝛕𝛕𝐱𝐱𝐱𝐱���� 𝛕𝛕𝐲𝐲𝐱𝐱���� 

4 0.0041 -0.0044 -0.0007 0.1551 -0.3106 0.0180 -0.0407 0.0191 0.0009 
5 0.0034 -0.0040 -0.0006 0.1459 -0.2631 0.0170 -0.0358 0.0120 0.0005 
10 0.0025 -0.0034 -0.0004 0.1350 -0.2002 0.0158 -0.0295 0.0029 0.0001 
15 0.0024 -0.0033 -0.0004 0.1331 -0.1886 0.0156 -0.0283 0.0013 5E-05 
20 0.0023 -0.0033 -0.0004 0.1325 -0.1846 0.0155 -0.0279 0.0007 3E-05 
50 0.0023 -0.0033 -0.0004 0.1318 -0.1802 0.0154 -0.0275 0.0001 5E-06 
100 0.0023 -0.0033 -0.0004 0.1317 -0.1795 0.0154 -0.0274 3E-05 1E-06 
CPT 0.0023 -0.0033 -0.0004 0.1317 -0.1793 0.0154 -0.0274 3E-07 1E-08 

Table 2: Displacement and Stresses of SCFC plate (length/width = 1.5) 

∝=
𝐚𝐚
𝐭𝐭  ∪ 𝐩𝐩 𝐐𝐐 𝛔𝛔𝐱𝐱��� 𝛔𝛔𝐲𝐲��� 𝛔𝛔𝒛𝒛��� 𝛕𝛕𝐱𝐱𝐲𝐲���� 𝛕𝛕𝐱𝐱𝐱𝐱���� 𝛕𝛕𝐲𝐲𝐱𝐱���� 

4 0.0036 -0.0043 -0.00041 0.2173 -0.0813 -0.0129 -0.0329 0.0125 0.0003 
5 0.0033 -0.0040 -0.00037 0.2068 -0.0714 -0.0104 -0.0304 0.0086 0.0002 
10 0.0027 -0.0037 -0.00032 0.1919 -0.0570 -0.0270 0.0030 7.7E-05 -0.0270 
15 0.0026 -0.0036 -0.00030 0.1874 -0.0525 -0.0259 0.0013 3.4E-05 -0.0259 
20 0.0025 -0.0035 -0.00030 0.1859 -0.0510 -0.0255 0.0008 1.9E-05 -0.0255 
50 0.0024 -0.0035 -0.00029 0.1842 -0.0493 0.0114 -0.0251 0.0001 2E-06 
100 0.0024 -0.0035 -0.00029 0.1840 -0.0490 0.0114 -0.0251 3E-05 7.4E-07 
CPT 0.0024 -0.0035 -0.00029 0.1839 -0.0490 0.0114 -0.0250 3E-07 7.4E-09 

Table 3: Displacement and Stresses of SCFC plate (length/width = 2) 

∝=
𝐚𝐚
𝐭𝐭  ∪ 𝐩𝐩 𝐐𝐐 𝛔𝛔𝐱𝐱��� 𝛔𝛔𝐲𝐲��� 𝛔𝛔𝒛𝒛��� 𝛕𝛕𝐱𝐱𝐲𝐲���� 𝛕𝛕𝐱𝐱𝐱𝐱���� 𝛕𝛕𝐲𝐲𝐱𝐱���� 

4 0.0043 -0.0048 -0.00037 0.2691 -0.0179 0.0180 -0.0288 0.0202 -0.0048 
5 0.0036 -0.0044 -0.00031 0.2446 -0.0111 0.0170 -0.0253 0.0126 -0.0044 
10 0.0027 -0.0038 -0.00025 0.2136 -0.0020 -0.0207 0.0031 -0.0038 -0.0207 
15 0.0025 -0.0037 -0.00023 0.2080 -0.0002 -0.0199 0.0014 -0.0037 -0.0199 
20 0.0024 -0.0036 -0.00023 0.2061 0.0004 -0.0196 0.0008 -0.0036 -0.0196 
50 0.0024 -0.0036 -0.00022 0.2040 0.0010 0.0154 -0.0193 0.0001 -0.0036 
100 0.0024 -0.0036 -0.00022 0.2037 0.0011 0.0154 -0.0192 3E-05 -0.0036 
CPT 0.0024 -0.0036 -0.00022 0.2036 0.0011 0.0154 -0.0192 3E-07 -0.0036 

The plot in Figures 4 to 6 showed that as the span-depth ratio increased, the out-of-plane displacements (∪) decreased 
positively while the in-plane displacements (p and q) increased negatively. Considering a span - depth ratio of 4 to 20, the 
result as presented in figures showed that the deflection values varied from 0.0041 & 0.0023, 0.0036 & 0.0025 and 0.0043 & 
0.0024 at length-breadth ratio of 1.0, 1.5 and 2.0 respectively. It is observed that the value of deflection varies less as the span-
depth ratio increases under the same loading capacity/condition. This implies that as the span of the plate is increasing, the 
deflection that will occur in the plate gradually goes higher. Plates at a span - depth ratio between 4 and 20 can be regarded as 
thick plates while span-thickness ratio of 50 and beyond can be considered as moderately-thick or thin plates as they are almost 
equivalent to the value of the CPT. The plate structure tends to fail when the reductions continues to the point where the 
deflection exceeds the elastic yield stress.  
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Figure 4: Displacements versus span-depth ratio of the plate at length-breadth ratio of 1.0 

 
Figure 5: Displacements versus span-depth ratio of the plate at length-breadth ratio of 1.5 

 
Figure 6: Displacements versus span-depth ratio of the plate at length-breadth ratio of 2.0 

The stresses perpendicular to the x and z axis (σx, and σz) decreased positively while the ones in the y-axis (σy) increased 
negatively with an increase in span-thickness ratio, as shown in Figure 7.  In Figure 8, the stresses perpendicular to the x-axis 
(σx) reduced positively while stresses perpendicular to the y-axis (σy) increased negatively as the span-depth ratio kept rising. 
Between span-depth ratios of 4 and 5, the normal stress in the z-plane (σz) increased negatively, dropped in the negative order 
at a span - depth ratio of 10 with a gradual negative increment till span-depth ratio of 20 and a constant value of 0.0114 at 
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span-depth ratio of 50 and beyond. The normal stresses in the x-axis (σx), as shown in Figure 9 decreased in the positive 
coordinate as the span-thickness ratio increased, perpendicular stresses in the y-axis (σy) increased negatively from span-depth 
ratio of 4 to 15 with a positive increase from span-depth of 20 to CPT. This implies that as the span of the plate is increasing, 
the stresses induced in the plate gradually goes higher. Figure 9 equally showed that stresses perpendicular to the z-axis (σz) 
dropped positively  span-depth ratio of 4 and 5, with an increase in the negative sense between span-depth ratio of 10 till 20, 
maintaining a positive value of 0.0154 for span-depth ratio of 50, 100 and CPT.  

 
Figure 7: Normal stresses versus span-depth ratio of the plate at length-breadth ratio of 1.0 

 
Figure 8: Normal stresses versus span-depth ratio of the plate at length-breadth ratio of 1.5 

 
Figure 9: Normal stresses versus span-depth ratio of the plate at length-breadth ratio of 2.0 

The non-dimensional parameters for the shear stresses in the in the x-y plane (τxy) increased in the negative order with each 
rise in the span - depth ratio and the shear stresses in the x-z, and y-z plane (τxz and τyz) reduced positively as presented in 
Figure 10.  In Figure 11, there was a negative increase for the shear stresses in the x-y plane (τxy) for a span - depth ratio of 4 to 
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5 and 50 to CPT, with a reduction in the positive sense of span-depth ratio of 10 till 20. The same chart revealed the reduction 
of shear stresses in the x-z plane (τxz) positively. It also showed a positive reduction for span-depth ratio of 4 to 5, a negative 
rise in the span - depth ratio of 10 to 20 and a positive decrease for span-thickness ratio of 50 till CPT for shear stresses in the 
y-z plane (τyz). This implies that as the span (width) of the plate is increasing, the shearing stresses induced in the plate 
gradually goes higher even without increase of load in the plate material.   

In Figure 12, shear stresses in the x-y plane (τxy) increased in the negative order from span-depth ratio of 4 to 5, with a 
positive reduction in the span - depth ratio of 10 till 20, and a constant negative value of 0.019 for a span - depth ratio of 50 till 
CPT. The same plot showed that there was a positive reduction in the shear stresses at x-z plane (τxz) for the span-depth ratio of 
4 to 5, with a rise in the negative sense in span-depth ratio of 10 till 20 and a positive reduction of the values of the shear 
stresses. For span-depth ratio between 4 and 5, the values of the shear stresses in the y-z plane (τyz) increased negatively with 
the same occurrence at a span - depth ratio of 10 till 20 and had a constant negative value of 0.0036 for span-depth ratio of 50 
and beyond.  

In a nutshell, it can be deduced that there are categorically three rectangular plates. Plates whose deflection and transverse 
shear stress vary greatly from zero are considered as thick plates while thin plates can be categorized as plates whose vertical 
shear stress and deflection do not differ largely from zero; their values being almost the same as CPT values. Plates that lie in 
between the thick and thin plates are considered as moderately-thick plates. This attestation can be applied to depict the 
boundary between thin and thick plate. From this study, it can be inferred that thick plate is one whose span-depth ratio value 
is 4 up to 15. 

 
Figure 10: Shear stresses versus span-depth ratio of the plate at length-breadth ratio of 1.0 

 
Figure 11: Shear stresses versus span-depth ratio of the plate at length-breadth ratio of 1.5 

 
Figure 12: Shear stresses versus span-depth ratio of the plate at length-breadth ratio of 2.0 
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The result of the comparative evaluation tabulated in Table 4 and Figure 13 clearly showed the contrariety of this model 
and those of previous scholars. To validate the derived relationships in the deflection analysis, an assessment of the percentage 
difference was adopted and recorded in the table. As the span-depth ratio increased, it was observed that the non-dimensional 
values of deflection for both present and previous studies decreased. Table 4 and Figure 13 revealed that the study of Gwarah 
[47] varied about 6.8% from the present work while that of Onyeka and Okeke [46] about 9.6% from the present work. The 
reason for these variations is that both authors [46,47] applied refined plate theory which ofcourse uses 2-D analogy in the 
analysis. Significantly, both previous studies did not apply the amalgam of 3-D elasticity plate theory which proves to be 
responsible for the variation and inexact. This confirms the reliability of this model and the approach considered herein as it 
gives accurate and exact solutions. Plate is a typical 3-D element and should be analyzed as such. Thus, the present model is 
worth adopting for safe, cost-effective and accurate analysis of thick plates of any boundary condition. The overall percentage 
variation is 8.05%. This implies that the present study is equivalent to those of Onyeka and Okeke [46] and Gwarah [47] at 
90.7% and 93.2% respectively. With this confidence level, the approach presented in this study may be espoused for adequate 
investigation of thick plates. 

Table 4: Comparative central deflection analysis of square plate between present studies and past studies at different  
        span-depth ratio 

𝛽𝛽 = a/t Present Work 
[P.W] (mm) 

Onyeka and Okeke 
[46] (mm) 

Gwarah [47] 
(mm) 

Percentage 
difference between 
[P.W] & [46] 

Percentage 
difference 
between [P.W] & 
[45] 

4 0.004084 0.004465 0.003713 9.3291 9.0842 
5 0.003407 0.003726 0.003147 9.3631 7.6313 
10 0.002544 0.002786 0.002381 9.5126 6.4072 
15 0.002389 0.002570 0.002238 7.5764 6.3206 
20 0.002335 0.002559 0.002188 9.5931 6.2955 
50 0.002277 0.002496 0.002134 9.6179 6.2802 
100 0.002269 0.002487 0.002126 9.6078 6.3023 
CPT 0.002266 0.002482 0.002123 9.5322 6.3107 

Average Percentage difference 9.27 6.83 
Total Percentage difference 8.05% 

 
Figure 13: Comparative variation of deflection and span-depth ratios of present study and previous studies 

4. Conclusions 
The 3-D elasticity theory has been used to investigate the moments, displacements, and stresses of thick rectangular plates 

with the following conclusions drawn from it: 

 The result obtained in this work which are compared with those of previous works revealed that 2-D 
refined plate theories are quite coarse for thick plate analysis. RPTs under-estimates and over predicts 
stresses, displacements and bending loads within the engineering allowable error of 8.05% for thick plate 
analysis. 

 The model produced in this study can be employed to analyze plates at varying thicknesses. 
 The 3D elasticity solution gave a more accurate and reliable solution compared refined plate theories and 

are recommended for the analysis of thick plate under the initial condition. 
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Nomenclature 

𝑘𝑘 non-dimensional parameters of z-axis 
𝑑𝑑 non-dimensional parameters of x-axis 
𝑑𝑑 non-dimensional parameters of y-axis 
𝑘𝑘 thickness of the plate, 
𝑝𝑝 in-plane displacement along x-axis (mm) 
𝑞𝑞 in-plane displacement along y-axis (mm) 
ℎ coefficient of shear deformation along x-axis of the plate 
𝑔𝑔 coefficient of shear deformation along y-axis of the plate 
𝜀𝜀𝑥𝑥 normal strain along x-axis 
𝜀𝜀𝑦𝑦 normal strain along y-axis 
𝜀𝜀𝑧𝑧 normal strain along z-axis 
𝛾𝛾𝑥𝑥𝑦𝑦 shear strain in the plane parallel to the x-y plane 
 𝛾𝛾𝑥𝑥𝑧𝑧 shear strain in the plane parallel to the x-z plane 
𝛾𝛾𝑦𝑦𝑧𝑧 shear strain in the plane parallel to the y-z plane 
𝜏𝜏𝑥𝑥𝑦𝑦 shear stress in the plane parallel to the x-y plane 
𝜏𝜏𝑥𝑥𝑧𝑧 shear stress in the plane parallel to the x-z plane 
𝜏𝜏𝑦𝑦𝑧𝑧 shear stress in the plane parallel to the y-z plane 
E modulus of elasticity 
µ Poisson’s ratio 
∄ Potential energy of the plate 
∈ Strain energy of the plate 
∋ External work done on the plate 
∁ Plate’s shape function 
𝑤𝑤 Uniformly distributed load 
∪ Deflection function of the plate 
∩ Coefficient of deflection 
∅𝑥𝑥 Coefficient of shear deformation along x-axis 
∅𝑦𝑦 Coefficient of shear deformation along y-axis 
𝛽𝛽 Span-thickness ratio 
𝛼𝛼 Aspect ratio 
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