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H I G H L I G H T S   A B S T R A C T  
• The real-time sensing performance of the 

new intelligent cooperative spectrum 
sensing based on the denoised mixed feature 
method paired with K-Medoids is verified.  

• Two RTL-SDR hardware receivers, a host 
laptop computer, and a USRP-SDR 
hardware transmitter are used. 

• The theoretical and practical sensing 
performance validity of the developed 
scheme is confirmed based on the SDR 
platform. 

 In this paper, the software and hardware of a software-defined radio (SDR) 
platform are used to implement and verify the blind real-time sensing act of 
intelligent collaborative spectrum sensing based on a new theoretical formula for 
constructing denoised mixed features named MSKU3 and paired with an 
unsupervised machine learning K-Medoids algorithm. Two low-cost RTL-SDR 
dongle hardware receivers are used as two cooperative unlicensed secondary 
users to capture the radio frequency of a licensed primary user channel. A host 
personal computer is used as a fusion center to run GNU-Radio software signal 
processing blocks to implement the developed method, and a single Universal 
Software Radio Peripheral (USRP) N210 hardware transmitter based on FPGA is 
used to take up unoccupied desired radio frequency bandwidth. Two scenarios of 
signal-to-noise ratio levels have been adopted to verify and test the sensing 
performance of the developed system. The first one occurs when unlicensed 
secondary users have equal signal-to-noise ratio values. The second occurs when 
unlicensed secondary users have different signal-to-noise ratio values since each 
secondary user has their location. The experimental results of detecting action in 
terms of the probability of detection for the proposed method show that the 
theoretical and practical results are very close to each other. 
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1. Introduction  
The enormous increase in the number of mobile devices, combined with the stationary handling of frequency bands, has 

resulted in a lack of accessible available bandwidth [1]. According to the findings of a study conducted by the Federal 
Communication Commission (FCC), the percentage of licensing spectrum that is being continuously utilized by the licensed 
Primary User (PU) is lower than thirty percent [2]. According to FCC reports, there are bandwidth vacancies, particularly in 
the TV band, sometimes known as TV white space (TVWS) [3]. Cognitive Radio (CR) is a telecommunication technique 
employed to address the issue of bandwidth shortages [4]. To exploit the bandwidth usage, in CR, an unlicensed Secondary 
User (SU) utilizes the licensed bandwidth of PU [5]. To avoid interference with PU bandwidth, Spectrum Sensing (SS) is a 
crucial task in CR networks that keep an eye on the licensing frequency band to identify the status of the PU and distinguish 
the locations of bandwidth holes [6].  

In the academic literature, there are a variety of traditional narrowband SS feature detection algorithms that have been 
proposed. These algorithms are used to determine the state (occupied or unoccupied) of a PU in a certain frequency band. 
Some examples of these techniques include: energy detection (ED) [7], Cyclostationary Features (CFs) Detection [8], 
eigenvalue of the covariance matrix (CM) of random matrix theory (RMT)-based detection methods [9–11], and information 
geometry theory (IGT)-based methods [12]. Consequently, previous classical SS techniques are unable to adapt to the dynamic 
nature of the actual channel because they rely on a fixed detection threshold [13]. Lately, many Cooperative Spectrum Sensing 
(CSS) schemes based on machine learning (ML) and deep learning (DL) approaches combined with classical features methods 
of RMT have been proposed. They extract energy features (EFs) of RMT for sensing samples of SU, which are based on 
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second-order moments, to train ML algorithms [14–17]. Unfortunately, all of the ML and DL-based CSS approaches that are 
based on EFs are more vulnerable to noise variations and perform poorly at low signal-to-noise ratios (SNR) [18–20]. As a 
result, previous CSS schemes had numerous issues, such as a high degree of overlapping between ML groups, improper 
categorization of desired features, and weak detecting performance [21]. 

In recent work published in [22,23], we provide a new blind intelligent CSS built on new denoised mixed features (DMFs) 
techniques and combined with unsupervised ML algorithms. We prove that the unsupervised ML-based CSS schemes that use 
denoised features (DFs) generated by high-order moments such as the Jarque-Bera (JB) formula or Skewness (Sk) and access 
Kurtosis (Ku-3) have less computational complexity and are more immune to noise fluctuation at low SNR. In [22], we 
established four novel denoised features (DFs) methods using the Jarque-Bera (JB) formula to improve the clustering of 
unsupervised ML algorithms (K-Means) and the sensing performance of CSS schemes. Similarly, in [23], we developed two 
new DMF methods using third and fourth moments such as Sk and Ku-3, respectively, to boost the classification process of 
unsupervised ML algorithms (K-Medoids) and enhance the detection performance of CSS schemes in terms of Probability of 
Detection (Pd).  

To verify and implement the real-time detecting operation of the CSS scheme based on developed DMF methods, we use 
the Software Defined Radio (SDR) platform and select the maximum values of Sk and Ku-3 of the DMF vectors (MSKU3) 
[23] method as characteristic features for receiving sensed samples of SU. SDR has served as the cornerstone for the 
development of the SS methods. It is feasible to incorporate the SS techniques into communication equipment that is also 
adaptable and user-defined. SDR is a technique that implements communication capabilities with software operating on 
adaptable hardware [24,25]. In the literature, different studies have provided real-functioning implementations of SS methods 
using SDR. In the literature [26], one of the most widely used pieces of SDR hardware is the Universal Software Radio 
Peripheral (USRP), which is used to implement energy feature-based SS. The researchers of these publications evaluated the 
practical sensing performance of an EFs realization based on USRP hardware for their theoretical performance and discussed 
their findings. The paper [27,28]described the real-time realization of the SS method based on the covariance matrix of RMT 
employing USRP SDR hardware. In [29], a real-time adaptive SS method using EFs and CFs was realized by applying the 
USRP hardware platform and the GNU-Radio software throughout Rayleigh fading. Some of the studies on the development 
of SS make use of costly SDRs like USRP. However, some of the more recent work makes use of ultra-low-cost SDRs like 
RTL-SDR hardware. In the literature [30]. The author utilized SDR platforms such as RTL-SDR and GNU-Radio software-
based IoT to implement real-time SS exploiting EFs. The literature [31] implements real-time sensing performance of the SS 
method based on EFs employing RTL-SDR as the receiver. In this work, we use GNU-Radio as a software toolkit to 
implement the actual-time detecting performance of the MSKU3 method-based CSS scheme [23], carrying on hardware made 
up of an RTL-SDR receiver and a USRP transmitter. In GNU-Radio Companion, a signal capture application is created, and 
samples collected are evaluated afterward to assess sensing accuracy. We explore the practical actual-time sensing act of a 
spectral domain of the MSKU3 method-based CSS scheme and compare it with its theoretical sensing performance. Based on 
our review of the relevant literature, we can confidently say that this is the first time the frequency domain MSKU3 method-
based CSS scheme has been implemented and analyzed using SDR. 

Our novel contributions presented in this article are the following: Contributions [29,32]. 

 Theoretical and practical real-time sensing performance analysis of a new denoised mixed-feature MSKU3 
method-based CSS scheme in a real-channel environment have been performed. 

 The characteristics of implementing an MSKU3 method-based CSS scheme using RTL-SDR hardware, 
GNU-Radio software, and USR hardware is described in detail. 

 The practical detecting capability of the MSKU3 approach is validated using two scenarios: first, the two 
cooperative RTL-SDR receivers collect detected signals with the same SNR; second, each RTL-SDR 
receiver gathers up the signals with a different SNR since it is located in a separate location. 

The other sections of the paper are ordered as follows. The theory behind MSKU3 method-based cooperative spectrum 
sensing is described in Section 2. Section 3 provides details on the software model and hardware setup. The test results and 
associated analysis are provided in Section 4. The conclusion is given in Section 5. 

2. Cooperative Spectrum Sensing Framework 
In the CSS scheme of CR, there are two hypotheses, as shown in Equation (1), that could be used to describe the signal 

that SU has captured [33] : 

 
 ℋ0: xi(j) = wi(j)                    

  ℋ1: xi(j) = hi(j)s(j) + wi(j)  (1) 

Where i and j represent the indices of the number of SU and received samples in the CSS scheme, respectively. The null 
hypothesis, H0, is a channel with additive white Gaussian noise (AWGN) wi(j) signal, and no PU s(j) signal. The alternative 
hypothesis, H1, is a channel with noise wi(j)∼ 𝒩𝒩(0,𝜎𝜎𝑤𝑤2) signal plus PU s(j)∼ 𝒩𝒩(0,𝜎𝜎𝑠𝑠2) signal. Here, hi(j) is the channel gain 
between the PU signal and ith SUi, which is proposed here as hi(j) = 1 under no fading channel condition. Consequently, the 
complex samples of captured xi(j) signal which are detected by each SU, X= [ x1, x2,…, xM] T, can be described by the following 
Equation (2) [33]: 
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Where ∈ ℂ𝑴𝑴×𝑵𝑵 , and T stands to a transposition operator. 
Two commonly used parameters to assess the detecting performance of CSS schemes are Pd and the probability of false 

alarm (Pf). PD is the possibility of choosing which frequency to active when a signal is already being sent out by the PU as 
written in Equation (3) [34]. 

 Pd = P[ℋ1 ∣∣ ℋ1 ]   (3) 

PF is the possibility of deciding the frequency to be active when in actuality it is not, as written in Equation (4) [34]. 

         Pf = P[ℋ1 ∣∣ ℋ0 ] (4)  

According to the IEEE 802.22 standard, PD should be equal to or greater than 0.9 and PF should be equal to or less than 0.1 
as small as possible at SNR equal to -20dB so that underused wireless channels can be avoided [35]. 

2.1 Denoised Mixed Feature method – based Cooperative Spectrum Sensing 
The theoretical analysis of a novel DMFs method-based CSS scheme is introduced in [23]. As shown in Figure 1 a new 

CSS scheme based on the DMF method MSKU3 consists of one PU signal on/off  licensed channel, several SUs, and one 
fusion center (FC) unit. 

 
Figure 1: The MSKU3 method and KMD algorithm-based CSS scheme [23] 

All SUs in the developed scheme is responsible for sensing the status of the PU signal if it is active or idle on the licensed 
channel. Then, collecting an adequate number of sensed samples of PU signal by each SUi to construct the xi(j)=[ xi(1), 
xi(2),…, xi(N)] vector.   After that, in the "Pre-Features Extraction" section, the formula of 3rd and 4th high-order moments Sk 
and Ku-3, respectively, are employed to calculate the statistics of the collected vector xi(j) for each SU according to the 
following Equation (5) and Equation (6) [36] :  

  Sk(x𝑖𝑖) = E�(xi−E[xi])3�

E[(xi−E[xi])2]
3
2

         =
1
N∑ �xij−xi�

3N
j=1

�1N∑ �xij−xi�
2N

j=1 �
3
2
 (5) 

 Ku(x𝑖𝑖) − 3 = E[(xi−E[xi])4]
E[(xi−E[xi])2]2 − 3 =

1
N∑ �xij−xi�

4N
j=1

�1N∑ �xij−xi�
2N

j=1 �
2 − 3  (6) 

Ku (xi)-3 of each SUi node are combined by a new formula as written in Equation (7) to generate a new DMFi for each SUi 
[23]. 
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The  R(x𝑖𝑖 − 3)      = �[Sk(x𝑖𝑖)2 + (Ku(x𝑖𝑖) − 3)2]   (7) 

Here, R( x𝑖𝑖 − 3) represents the DMFi of ith SUi which is transmitted into the FC unit to construct the DMF-vector as 
expressed in Equation (8) [23] : 

 R(x𝑖𝑖 − 3)   = [R(x1 − 3)  , R(x2 − 3)  , … , R(x𝑀𝑀 − 3) ]T (8) 

In the FC unit, the following newly developed formula, Equation (9), is applied to Equation (8) to obtain the maximum 
statistical value of the DMF-vector [23] : 

 FMSKU3 = 1
M

 𝑚𝑚𝑚𝑚𝑥𝑥
1≤𝑖𝑖≤𝑀𝑀

R(xi − 3) (9) 

Here, the capital symbol F is an abbreviation of the word "Feature" and the subscript MSKU3 refers to the type of 
denoising mixed feature method that is used. According to the new DMF method, a training set of feature vector F�, F� =
�FMSKU31 , FMSKU32 , … , FMSKU3𝑙𝑙 � are employed to teach the unsupervised ML KMD approach to establish a classifier based on 
(H0, H1) conditions of PU signal.  

3. The SDR Hardware and Software Requirements 
In this part, the real-time perception performance of a new intelligent CSS based on a novel MSKU3 method is confirmed, 

and the key parts that are used to test the real-time sensing performance of the developed scheme are described. 

3.1 The SDR Hardware Specifications 
The important SDR hardware parts that are chosen and used to design and test the real-time sensing performance of the 

proposed scheme (MSKU3-based CSS) are shown in Figure 2. They are coming with several pieces of hardware, such as the 
RTL-SDR USB dongle, the Universal Software Radio Peripheral (USRP®) from Ettus Research, and a laptop personal 
computer (PC) running the GNU-Radio Companion (GRC) software. 

 
(a): RTL-SDR USB dongle 

 
(b): Laptop personal computer 

 
(c): USRP-SDR 

Figure 2: The essential adopted SDR hardware components for MSKU3-based CSS, (a): RTL-SDR USB dongle,(b): Laptop  
                personal computer, (c): USRP-SDR 

3.1.1 RTL-SDR hardware 
As can be seen in Figure2 (a), the omni-directional antenna that is included with the RTL-SDR USB dongle functions as a 

wireless receiver. This receiver makes use of the Realtek RTL 2832U chip, which has a radio frequency (RF) range of 24 MHz 
to 1,766 MHz, a bandwidth of 3.2 MHz, and an analog-to-digital converter (ADC) resolution of 8 bits. The RTL-SDR 
hardware is capable of receiving FM radio, UHF band signals, ISM signals, GSM, 3G, and LTE mobile radio, GPS, and 
satellite signals, as well as any information that the designer can (lawfully) send. 

3.1.2 Universal Software Radio Peripheral hardware 
On the other hand, as can be seen in Figure2 (c), Ettus Research's USRP® hardware family consists of configurable FPGA 

with transmit and receive (Tx and Rx) SDR capabilities.  One of the members of the USRP® family is the USRP® N210. The 
USRP N210 is capable of processing signals with both a large bandwidth and a wide dynamic range frequency. The USRP 
N210 is made with a Xilinx Spartan® 3A-DSP 3400 FPGA, 100 MS/s dual ADC, 400 MS/s dual DAC, 6GHz bandwidth, and 
a Gigabit Ethernet connection to make it easier for information to go to and from the PC.  

3.1.3 Personal computer 
Furthermore, as shown in Figure 2 (b), a PC, which is equipped with an Intel Core i5-8250U, 16GB of RAM, and 1TB of 

hard drive space, is used to run GRC software to program the SDR boards to act as a specific type of radio and to store and 
display information. 
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3.2  The SDR Software Requirements    
Besides that, the GRC serves as a framework for developing the software blocks of receivers and transmitters of the 

developed scheme. In addition to make it possible to develop new function blocks, GRC makes it feasible to handle 
discontinuous signals by mixing a variety of functional blocks [37]. Figure 3 displays a snapshot of the experimental 
equipment. 

 
Figure 3: The snapshot of the real experimental setup implementation of MSKU3-based CSS 

3.3   Experimental Setup 
On the receiving side, one of two RTL-SDR receivers is allocated to each SU and connected to the PC through a USB port 

in order to accomplish the sensing performance of the developed method. In our experiment, RTL-SDRs work together to 
sample and digitize PU’s RF signals that are sent between 25 MHz and 1.75 [37,38] Here, the PC acts as a ring link between 
the transmitter side and the receiver side and works as an FC unit. The PC is using a virtual machine (VMware® Workstation 
16 Pro) to run GRC software version 3.8.1.0 based on the operating system (Ubuntu 20.04 LTS). The GRC is software that 
provides input/output blocks and enables the implementation of the DSP blocks and SDR algorithms of the proposed method, 
which is presented in experiment [39]. On the transmitting side, a single USRP N210-SDR transmitter is connected to a PC via 
Gigabit Ethernet. It is used to take up an empty PU RF channel as decided by the FC unit. 

Figure 4 shows the experimental setup of the GNU radio block diagram software for the entire developed scheme, which 
includes the transmitting side, the new denoised mixed feature method, and the receiving side. Each RTL-SDR Source GNU 
Radio block provides the python software codes to interface between GRC and RTL-SDR hardware.  The GNU Radio RTL-
SDR Source block software is used to set up important tuning parameters like carrier frequency fc and sample rate fs 
(bandwidth) so that the antenna and RTL-SDR dongle can pick up the desired PU RF signals from the actual channel. The fc is 
set to any frequency in the coverage range of the RTL-SDR antenna by the "Ch0" parameter, and the "Sample Rate" parameter 
sets the fs to 2 MHz.The multiplexer block controls the connection of two RTL-SDR hardware sources between the training 
and sensing stages. Once the training process is done, the sensing stage is activated to accomplish sensing operation, and vice 
versa. The training and sensing blocks are equivalent. They contain the essential Python codes to perform all the theoretical 
equations of the developed scheme. Following the KMD algorithm, the optimal classifier block based on two optimum 
medians of PU conditions is constructed (H0, H1). The role of the classifier block is to enable or disable the USRP-SDR 
hardware transmitter according to the PU RF channel. If a PU RF signal is present (H1), the classifier disables transmission of 
USRP-SDR hardware. If there is no PU RF signal (H0), the classifier lets the USRP-SDR transmitter use an empty channel. On 
the receiver side, the USRP-SDR Sink block provides the FPGA software codes to interface between GRC and the USRP 
N210 -SDR hardware transmitter. The USRP N210 -SDR hardware transmitter employed to occupy an unoccupied PU RF 
channel. 
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Figure 4: The GNU-Radio block diagram of MSKU3-based CSS scheme 

4. Results and Discussion 
In this part, the practical sensing performance of the developed method-based CSS system in a real-channel environment is 

confirmed. In addition, a comparison between the practical and theoretical measurements of the developed method (MSKU3)-
based CSS scheme with different SNR conditions has been performed. 

4.1 Performance Evaluation of The MSKU3-Based CSS Scheme in The Real Channel 
To further verify the effectiveness of the real-time sensing performance of the newly developed DMF method (MSKU3)-

based CSS scheme in a more challenging wireless communication environment, the indoor real-channel environment has been 
selected. The indoor channel measurements are performed within the lab room on the middle floor of the communication 
research center in the Ministry of Science and Technology in Baghdad, Iraq (latitude 33° 16' 49" North, longitude 44° 23' 15" 
East, altitude 15 m), as depicted in Figure 5. 

 
Figure 5: The indoor measurement has taken place inside the Ministry of Science and Technology 

The chosen site room is a challenge for our developed framework because it has walls, floors, and other surfaces that 
reflect electromagnetic waveforms. These surfaces introduce the complex patterns of a wireless indoor environment, such as 
RF interference, degradation, fluctuation, and variation against the RF of the PU signals [40]. The real-time activities of the 
occupied and unoccupied (holes) portions of the RF bandwidth of the PU from 25 MHz to 1.766 GHz are recorded by the 
spectrum analyzer device Tek RSA6100A as shown in Figure 6. Then, during sensing operation, the tuning frequency fc of 
both RTL-SDR receivers is set to any frequency between 24 MHz and 1,766 MHz, which is the RF range that the RTL-SDR 
device bandwidth can cover, and the sample rate fs is set to 2 MHz, while the USRP N210-SDR hardware transmitter utilizes 
the frequency fc of the unoccupied channel (hole) to broadcast a test signal, as illustrated in Figure 7.  
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Figure 6: The real RF bandwidth of the PU from 25 MHz to 1.766 GHz, recorded by the spectrum analyzer Tek RSA6100A 

 
Figure 7: The detection and utilization of the unoccupied RF channel (hole) using a test signal 

The real recorded measurements of RF ranging from 25 MHz to 1.6777 GHz for the indoor site channel when the noise 
floor is about -80 dBm are presented in Table 1. It contains the probability of detection (Pd) of the sensed frequency fc for each 
active PU signal and hole. 

Then, based on the results of Pd in Table 1, the average probability of detecting the MSKU3-based CSS scheme in an 
indoor channel is 0.96 dBm. As a result, the practical measurements support the theoretical aspect of the developed method 
and confirm its sensing capability in an actual environment. 

Table 1: The Pd of the MSKU3 method with various sensed frequencies in the indoor channel 

Sensed frequency 
 (MHz) 

Probability of detection 
(Pd) 

SNR (dBm) Status Utilization 

63.27 0.95 -58.23 Occupied No 
99.565 0.97 -47.95 Occupied No 
150.14 0.95 -57.76 Occupied No 
200.12 0.99 -44.70 Unoccupied Yes 
435.145 0.94 -71.44 Occupied No 
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4.2 Comparison of The Theoretical and Practical Measurements of The MSKU3 Method 
This part compares the practical and theoretical measurements and the extent of their affinity for the developed MSKU3 

method-based CSS scheme in a real environment. Figure 8 and Table 2 show the all theoretical and practical experimental 
findings of the receiver operation characteristics (ROC) curves for the MSKU3-based CSS method in parameters of Pd and Pf 
when using RTL-SDR receivers at various SNR values. As can be seen from Figure 8 (a) and the second column of Table 2, 
when the practical components are adjusted to N = 1000 samples, M = 2 SUs, Pf = 0.1, and at SNR = [-16dB, -16dB], there is a 
convergence between the theoretical and practical performances of CSS based on the MSKU3 method in terms of Pd, which is 
equal to 0.965 and 0.930, respectively. Also, in Figure 8(b) and the third column of Table 2, when N = 1000 samples, M = 2 
SUs, Pf = 0.1, and at SNR = [-20dB, -20dB], the theoretical and practical performances of CSS based on the MSKU3 method 
are converged in terms of Pd and equal to 0.942 and 0.900, respectively. Furthermore, Figure 8(c) and the four columns of 
Table 2 confirm the convergence between the theoretical and practical performances of CSS based on the MSKU3 method for 
the same settings and at SNR = [-16 dB, -20 dB], where Pd is equal to 0.911 and 0.850, respectively. Finally, Figure 8 (d) and 
the five columns of Table 2 prove the convergence between the theoretical and practical performances of CSS based on the 
MSKU3 method for the same settings and at SNR = [-20 dB, -24 dB], where Pd is equal to 0.900 and 0.845, respectively. Even 
though the method that is developed is tailored to the noise channel, experimental and theoretical results match up. This is 
because of the idea of learning, which is achieved by using the unsupervised ML KMD.This indicates that the practical results 
that have been obtained under uncertain noise conditions and in real channel environments prove the validity of the theoretical 
methods that have been proposed for the CSS system. 

 
(a): M=2, SNR= [-16, -16] 

 
(b): M=2, SNR= [-20, -20] 

 
(c): M=2, SNR= [-16, -20] 

 
(d): M=2, SNR= [-20, -24] 

Figure 8: Theoretical and practical results of CSS based on the MSKU3 method at different SNRs 
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Table 2: The Pd of the MSKU3 method with various SNR settings 

Parameters  SNR = [-
16dB, -
16dB], 
𝐏𝐏𝐟𝐟 = 𝟎𝟎.𝟏𝟏 

SNR = [-20dB, 
-20dB], 𝐏𝐏𝐟𝐟 =
𝟎𝟎.𝟏𝟏 

SNR = [-16dB, -
20dB], 𝐏𝐏𝐟𝐟 = 𝟎𝟎.𝟏𝟏 

SNR = [-20dB, 
-24dB], 𝐏𝐏𝐟𝐟 =
𝟎𝟎.𝟏𝟏 

MSKU3 Method 

Theoretical 0.965 0.942 0.911 0.900 
Practical 0.930 0.900 0.850 0.845 

4.3 Comparison of The Developed Method With Some Other Methods 
As shown in Table 3, the key difference between our developed work [23] and other works [26,27,29] is that we use high-

order moments (Sk and Ku-3) to build the DMF method and the unsupervised ML algorithm (KMD) for the trained classifier, 
whereas other works use features based on second-order moments such as CF, EF, and EF of RMT to derive a fixed threshold. 
Except work [31], which employed supervised ML algorithms such as Artificial Neural Networks (ANN), Support Vector 
Machines (SVM), decision trees (TREE), and K-Nearest Neighbors (KNN). On the other hand, in comparison to supervised 
ML algorithms, the unsupervised ML algorithm does not need previous knowledge about the actual PU channel. This would 
reduce the complexity of the proposed method and enhance the blind detection capability of the developed system [23]. In 
addition, deriving the threshold from the second-order moment is fixed, has a lot of computational complexity, and makes it 
hard to adapt to how the real channel of the PU signal changes over time [26,27,29]. Therefore, our proposed method has more 
benefits when it uses an unsupervised ML algorithm. For example, it avoids the computational complexity of fixed-threshold 
derivation and instead builds the classifier through the clustering process [23]. Moreover, the classifier construction is more 
prone to noise uncertainty, especially at low SNR, when using EF and RMT; on the contrary, when we use the classifier built 
on high-order moments (Sk and Ku-3), the proposed classifier is more immune to noise uncertainty. 

Table 3: Comparison of the developed method with some other works 

References [1] [26] [27] [29] [31] 
Proposed  
Work [23] 
Developing the 
DMF method 
(MSKU3) based 
on the high-
order moment, 
Sk, and access 
Ku. 

Using a CF 
detector based 
on a second-
order moment 

Using an 
adaptive 
threshold energy 
detector based 
on second-order 
moments 

Using the EF of 
RMT based on 
second-order 
moments 

Using adaptive 
SS for CF and 
EF detectors 
based on a 
second-order 
moment 

Using an EF 
detector based 
on second-order 
moments 

KMD algorithm  No ML  No ML  No ML  No ML  Yes ML  
GNU radio  GNU-Radio GNU-Radio unknown GNU-Radio MATLAB  
RTL-SDR, PC, 
USRP N210 

USRP N210, PC USRP X310, PC USRP RIO, PC USRP, PC Arduino, PC  
RTL-SDR  

Lower 
complexity 

High complexity High complexity High complexity High complexity Lower 
complexity 

5. Conclusion 
In this study, the hardware and software of the SDR platform have been used to verify the real-time sensing performance 

of a new MSKU3 method-based CSS scheme. Various SDR hardware and software are used to implement the developed 
system, such as RTL-SDR hardware as a receiver, GNU-Radio software to implement digital signal processing blocks of the 
proposed method, and USRP N210 hardware as a transmitter. The experimental results of sensing performance in terms of the 
probability of detection based on the SDR platform show the effectiveness of the proposed method in the current environment. 
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