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H I G H L I G H T S   A B S T R A C T  
• A nonlinear dynamic concept of an electric 

vehicle was developed by fusing kinetic and 
electrical components.  

• A proportional Integral derivative (PID) 
controller to stay the vehicle on the course 
was created. 

• Particle Swarm Optimization (PSO) and 
Multi-Verse Optimization (MVO) 
algorithms are used to obtain optimal 
parameters for this controller.  

• The proposed controllers were tested with 
linear and nonlinear trajectories to represent 
the speed of electric vehicles. 

 The automotive industry is moving toward more environmentally friendly 
automobiles with greater range and performance than traditional vehicles as the 
effects of global warming worsen. Because of the positive impact, electric 
vehicles can have on reducing harmful emissions from the transportation sector, 
scientists have grown increasingly interested in the possibility of analyzing and 
simulating electric vehicles. In this study, we develop a non-linear dynamic 
concept of an electric vehicle by fusing kinetic and electrical components. Then 
we create a proportional Integral derivative (PID) controller to help it stay on 
course. To obtain optimal parameters for this controller by minimizing the error 
between the desired and actual output, Particle Swarm Optimization (PSO), and 
Multi-Verse Optimization (MVO) algorithm are used. The proposed controllers 
tested with linear and nonlinear trajectories to represent the electric vehicle's 
speed. The computation findings show that the proposed controller works 
perfectly, keeping up with the electric vehicle's speed quickly and precisely. In 
particular, the MVO-based proportional-integral-derivative (PID) controller is 
superior to the proportional-integral-derivative (PID) -based PSO method in 
terms of no steady-state error and smallest overshoot (0.05% with MVO while 
0.25% with PSO) prevention for electric vehicle (EV) speed despite the better 
results of settling time and rising time obtained in PSO (0.767 And 0.211 s) 
respectively while these values were (0.807 and 0.215 s), respectively, in MVO.  
All works are performed in MATLAB (R2020a)/Simulink environment. 

A R T I C L E  I N F O  

Handling editor: Ivan A. Hashim 

Keywords:  
Electrical vehicle; PID Controller; Optimization 
Methods; Particle Swarm Optimization (PSO); 
Multi-Verse Optimization (MVO). 

1.  Introduction 
Fuel-engine vehicles with internal composition engines (ICE) are not currently the preferred vehicles; environmental 

protection awareness has led researchers to search for a cleaner way to transport passengers and reduce pollution Vehicle 
technologies can effectively reduce fuel use and air pollution [1]. 

Electric vehicle creates additional opportunities by improving the quality of life, reducing energy spending, and decreasing 
reliance on foreign oil. The market of Electric vehicles is growing in a big way globally. The demand for this type represents 
both a challenge and an opportunity to capitalize on new vehicle technology and, in the process, reap substantial economic 
development [2]. 

However, the widespread use of electric vehicles faces hindrances due to factors like the limited battery capacity, which 
cruises between 150km and 200km [3]. Many restrictions are introduced in the travel behavior of electric vehicle drivers due to 
the driving range limit, because of insufficient coverage of charging station infrastructure in the near future. 

The advancement in electric vehicles will lead to some profound changes, including technology, manufacturing systems, 
distribution and aftermarket service, and support. The manufacturing of Electric vehicles is less complex than that of ICE 
vehicles due to fewer moving components [4]. 
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What makes EVs explicitly powerful are the transmission and differential gears of the electric motors. A battery is a source 
of direct current (DC) power [4]. A DC motor benefits from two main advantages. Primarily, due to its simplicity, it is a robust 
and cheap technology. Moreover, it provides maximum start-up torque. Like any other system, the electric vehicle must be 
supplied by power, commanded by the user, controlled to obtain the best performance, and have an actuator to operate [5, 6]. 

Previously, many kinds of research have been published on the controllers for electric vehicles. In 2015, Xian J. Jin and 
others presented a gain-scheduled controller for the independent drive of four-wheel electric vehicle lateral stability [7]. In 
2017, Ali Pakniyat and others proposed a hybrid framework for electric vehicle control and analysis [8]. In 2018, Nitin K. 
Saxena and others designed a PI (proportional-integral) based controller for managing electric vehicle battery output voltage 
[9]. In 2018, Zhengyuan Wang and others proposed a gain-scheduled LQR (Linear Quadratic Regulator) to control the electric 
vehicle's yaw moment [10].  In 2019,  Jemma J. Makrygiorgou and others presented the design of a power controller for the 
battery operation and the motor of an electric vehicle. The authors used a PI controller for the speed control of the vehicle 
motor (external loop) and a cascaded PI/P scheme to control the DC voltage/battery and current maintenance, respectively 
[11]. In 2020 Chih H. Chiu and others designed a fuzzy Type-2 controller for the control of SWV (Single-Wheel Electric 
Vehicle) [1]. In 2021, K. A. Nitesh et al. presented initial reviews on the different battery packs for Electric Vehicles 
(EV)/Hybrid EV (HEV), and later, a battery management system was proposed where the State-of-Charge (SoC) is estimated 
accurately for different battery packs [12]. An optimal improved PID controller is suggested in this paper for a non-linear 
dynamic model of the electric vehicle. This controller consists of an optimal PID controller with Two Optimization Methods 
(PSO and MVO). We will explain this controller's details in this paper's sections. Our subsequent paper is structured as 
follows: Modeling for electric vehicles is discussed in Section 2. In Section 3, we discuss the PID control system that has been 
developed. Section 4 details optimization methodologies. The section devoted to presenting the results obtained in Section 5. A 
conclusion is provided in Section 6.  

2. Mathematical Model of Electric Vehicles 

2.1 The Kinetics of EV 
An electric vehicle is depicted in Figure 1 as it is in equilibrium with regard to all of the forces operating upon it when it is 

in motion. These forces include the traction force and the road load. Trying to roll the reaction of the tires, the force of 
gravitational influence, the force of aerodynamic drag, and the force required to climb hills are all components of the road load. 
When all of these considerations are considered, the framework of the vehicle dynamics that govern the kinetics of the 
automobile as a whole can be characterized as [3, 13–16]. 

 
Figure 1: The fundamental layout of a compact electric vehicle [17] 

 𝐹𝐹 = µ𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚 + 1
2
𝜌𝜌𝜌𝜌𝐶𝐶𝑑𝑑𝑣𝑣2 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜑𝜑) + 𝑚𝑚𝑑𝑑𝑚𝑚

𝑑𝑑𝑑𝑑
 (1) 

Where the velocity of the EV is denoted by v, the head portion of the car or truck is represented by A, the electric vehicle 
mass corresponds to m, the rolling resistance coefficient is denoted by µ𝑟𝑟𝑟𝑟, while g represents the acceleration gravity, the 
density of the air is denoted as 𝜌𝜌, moreover, 𝜑𝜑 represents the angle at which machine climbs a slope, in other words, 𝜑𝜑 stands 
for the climbing angle, and 𝐶𝐶𝑑𝑑  is the coefficient of the drag operation, as listed in Table 1.  
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Table 1: System parameters as introduced in Equation 1 

Symbol Description 
V Velocity 
A Area 
m EV-mass 
µ𝑟𝑟𝑟𝑟 Rolling resistance 
g Acceleration 
𝜌𝜌 Density 
𝜑𝜑 Climbing angle  
𝐶𝐶𝑑𝑑 Coefficient of drag 

 

However, Equation 1 can be divided into four parts. That is, the first one is the force of the rolling resistance, µ𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚, the 
next part stands for the drag-force of the aerodynamic system, 1

2
𝜌𝜌𝜌𝜌𝐶𝐶𝑑𝑑𝑣𝑣2, the third part, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜑𝜑), represents the force of the 

climbing, while the acceleration part is the last one in Equation 1, 𝑚𝑚𝑑𝑑𝑚𝑚
𝑑𝑑𝑑𝑑

 . 
The consequent force (F) will result in a torque, counterproductive to the driving motor, as illustrated by the following 

formula [2]. 

 𝑇𝑇𝐿𝐿 = 𝐹𝐹 �𝑟𝑟
𝐺𝐺
� (2) 

The gearing ratio is represented by G, while r stands for the radius of the EV tires. Moreover, the torque that will be 
produced by the EV-driving motor is 𝑇𝑇𝐿𝐿 .  

2.2 Modeling of The Electric Motor  
The suggested EV system is driven by a DC motor, and the dynamics of the DC motor device are coupled to those of the 

EV scheme through a transmission unit. The non-linear concept of the DC motor can be demonstrated using the equations 
below [17]: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= � 1
𝐿𝐿𝑎𝑎+𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

� × �𝑉𝑉 − �𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑓𝑓�. 𝑚𝑚 − 𝐿𝐿𝑎𝑎𝑓𝑓 . 𝑚𝑚.𝜔𝜔�    

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �1
𝐽𝐽
� × �𝐿𝐿𝑎𝑎𝑓𝑓. 𝑚𝑚2 − 𝐵𝐵𝜔𝜔 − 𝑇𝑇𝐿𝐿� (3) 

Where i is the current of the armature, v is the motor rotation speed, 𝐿𝐿𝑎𝑎 denotes the inductance of the armature, 𝑅𝑅𝑎𝑎 stands 
for the resistance due to the armature, while the resistance of the field winding is denoted by 𝑅𝑅𝑓𝑓, 𝐿𝐿𝑓𝑓𝑑𝑑𝑓𝑓𝑓𝑓𝑑𝑑  represents the 
inductance of the field winding, the viscous coefficient is given as B, accordingly, the motor, which includes the transmission 
and the tires, has an inertia of J, further, the external torque corresponds to 𝑇𝑇𝐿𝐿 , the input of voltage value to the system is 
denoted as V, thus, Saturation causes a non-linear impact on the presumed mutual inductance 𝐿𝐿𝑎𝑎𝑓𝑓 between the field winding 
and the armature winding. Next, the relationship that exists between the angular speed of the motor and the driving velocity of 
the vehicle will be discussed. This relationship is denoted by the letter v, which can be calculated as, 

 𝑣𝑣 = �𝑟𝑟
𝐺𝐺
�𝜔𝜔 (4) 

Where the angular angle is represented by 𝜔𝜔. 

2.3 Modeling of EV 
By Combining the kinetic and electrical models, the following equation demonstrates literally the entire non-linear 

dynamic description of the EV:  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= � 1
𝐿𝐿𝑎𝑎+𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

� × �𝑉𝑉 − �𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑓𝑓�. 𝑚𝑚 − 𝐿𝐿𝑎𝑎𝑓𝑓 . 𝑚𝑚.𝜔𝜔�  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= � 1
𝐽𝐽+𝑚𝑚(𝑟𝑟/𝐺𝐺)2

� × �𝐿𝐿𝑎𝑎𝑓𝑓 . 𝑚𝑚2 − 𝐵𝐵𝜔𝜔 − �𝑟𝑟
𝐺𝐺
� × (µ𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚 + 1

2
𝜌𝜌𝜌𝜌𝐶𝐶𝑑𝑑𝑣𝑣2 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜑𝜑))� (5) 

The control system for such structures should be developed using suitable non-linear control approaches. The wide range 
of process parameters causes some parameters to change, and making precise design a hard mission. For instance, the armature 
resistance of the motor is subject to change as the operating temperature varies. This highlights the significance of the 
controller's resilience. The parameters and coefficients of the EV used in this research are explained in Table 2. Without a 
controller, the speed response of the system (described by Equation 5) has suffered from high settling time (over 10 seconds) 
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and high steady-state error (over 35%), the speed response of the EV system is shown in Figure 2, Based on the above, high 
performance and the robust controller is needed. 

Table 2: Non-linear EV system coefficients [17] 

Symbol(s) Quantities Unit Symbol(s) Quantities Unit 
𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑓𝑓 0.2 Ohm A 1.8 𝑚𝑚2 
𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑓𝑓𝑑𝑑𝑓𝑓𝑓𝑓𝑑𝑑 6.008 mH 𝜌𝜌 1.25 𝐾𝐾𝑚𝑚/𝑚𝑚3 
r 0.25 m 𝐶𝐶𝑑𝑑 0.3  
J 0.05 𝑚𝑚/𝑐𝑐𝑚𝑚2 𝜑𝜑 0  
𝐿𝐿𝑎𝑎𝑓𝑓 1.776 mH µ𝑟𝑟𝑟𝑟 0.015  
V 0-48 V G 11  
I 78 A B 0.0002 N*m/(rad/s) 
m 500 Kg    

 

 
Figure 2: The response EV model without controller 

3. PID Controller 
The PID-controller is a common example of an older style of controller. Input voltage r(t) is compared to output speed 

y(t) to get the monitoring error e(t). The PID controller will then take e(t) as input. In the time domain, the equation for the 
control signal looks like this: 

 U(𝑡𝑡) = 𝐾𝐾𝑃𝑃𝑒𝑒(𝑡𝑡) + 𝐾𝐾𝑑𝑑 ∫ 𝑒𝑒(𝑡𝑡)𝑑𝑑
0 𝑑𝑑𝑡𝑡 + 𝐾𝐾𝑑𝑑

𝑑𝑑𝑓𝑓(𝑑𝑑)
𝑑𝑑𝑑𝑑

  (6) 

Following the application of the Laplace transform to both sides of the equation presented earlier and the subsequent 
reordering of the resultant expression, the function generator of the PID controller may be expressed as follows: 

 𝑢𝑢(𝑠𝑠)
𝑓𝑓(𝑠𝑠) = 𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑓𝑓

𝑠𝑠
+ 𝐾𝐾𝑑𝑑𝑚𝑚 (7) 

Where the proportional gain is 𝐾𝐾𝑝𝑝, and the integral gain is represented by 𝐾𝐾𝑑𝑑 while 𝐾𝐾𝑑𝑑 stands for the derivative gain [18]. 
PSO and MVO are two of the numerous ways that may be utilized to adjust the controller's settings; however, we will only be 
utilizing PSO and MVO for the sake of this particular study. 

4. Optimization Algorithms 
Population-based optimization algorithms, also known as metaheuristic optimization algorithms, are a type of stochastic 

algorithm that is used in resolving optimization problems. These techniques make use of several agents, or solutions, in order 
to travel across the search space. This section provides examples of two of these strategies, namely the PSO and MVO 
algorithm families. 
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4.1 Particle Swarm Optimization 
It is one of the population-based algorithms that use population of particles, each of them translates an elect random 

decision. It was invented by Eberhart and Kennedy in 1995. The benefits of population-based methods can be able to optimize 
variable problems in a continuous or discrete form. They are free of derivative information. They have able to find solution in a 
large boundary of the objective function areas at the same time. They can be used in parallel computations. Also, they can 
eliminate the local minimum trapping and they can give many suitable parameters for multimodal issues. In PSO, a swarm of 
particles is first generated by assigning a completely arbitrary position and speed to each individual particle in the group. These 
particles are placed in the entire exploration space of a number of different functions or compounds. These particles are 
responsible for determining the cost function, and the personal best of each particle is stored in the Pbest variable, while the 
global best of the entire swarm is stored in the Gbest variable. By using Equation (8) and Equation (9), these particles will be 
moved to new locations in the subsequent iteration. The individual best and the globally best locations are sent to each particle, 
and from there, the particles gradually move closer and closer to the global best locations. This process is repeated until all of 
the swarm's particles will eventually meet at the same spot, either until the maximum number of iterations has been reached, at 
which point the best individual best particle will have been determined through the application of the computation of the 
fitness function [19]. PSO may be understood by referring to the two expressions that describe how the speed and location of 
each particle are updated [20]: 

 𝑣𝑣𝑑𝑑+1 = 𝑤𝑤 ∗ 𝑣𝑣𝑑𝑑 + 𝑐𝑐1𝑟𝑟1(𝑝𝑝𝑝𝑝𝑒𝑒𝑚𝑚𝑡𝑡 − 𝑥𝑥𝑑𝑑) + 𝑐𝑐2𝑟𝑟2(𝐺𝐺𝑝𝑝𝑒𝑒𝑚𝑚𝑡𝑡 − 𝑥𝑥𝑑𝑑) (8) 

 𝑥𝑥𝑑𝑑+1 = 𝑥𝑥𝑑𝑑 + 𝑣𝑣𝑑𝑑+1  (9) 

Where 𝑐𝑐1 and 𝑐𝑐2 describe the individual and group learning rates, respectively, and 𝑟𝑟1 and 𝑟𝑟2 are utilized as randomized 
values in the range [0-1]. The values of the variables  𝑐𝑐1 and 𝑐𝑐2 show the relative relevance of the particle's best position in 
comparison to the best place of its neighbor. w is the inertia weight factor that is used to improve the search stability; pbest and 
Gbest describe the personal and global best particle places, respectively, in the swarm; and w is the inertia weight factor. The 
velocity of the particles are slowed down using w in order to improve the level of precision and accuracy with which they can 
locate the ideal solution. When trying to increase the global search activity of the swarm, a bigger value of w is used, whereas 
when trying to increase the local search activity, a lower value of w is used [21].The flowchart for the PSO is given in Figure 
3. 

 
Figure 3: Flowchart of the PSO algorithm 
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4.2 Multi-Verse Optimization Algorithm 
A group of scientists came up with the multi-verse theory, and the multi-verse view of the universe (MVO) is based on this 

idea. It is generally accepted that there was more than one big bang, and the fact that there are several universes that arose from 
each of these events indicates that there must have been more than one big bang. In addition to this, in accordance with the 
theory that posits the origin of the cosmos. The premise that underpins this theory is that the universe in question is its 
antithesis. According to this model, the universes in question may either interact with one another or even crash with one to 
another [22]. The multi-verse optimization technique is founded on three key notions from the field of cosmology: wormholes, 
black holes, and white holes [23]. According to the findings of physicists, the white hole, which is synonymous with the term 
"big bang", is the primary factor in the beginning of the universe. It came into existence after the collision of two different 
universes in parallel. Because of their incredibly strong gravitational pull, black holes grab all, even light beams. Black holes 
are the opposite of white holes, which are also known as singularities. Wormholes are like time and space highways in which 
items are able to move instantaneously between two distinct points of a universe or even between two separate worlds. 
Wormholes may also be used to connect two different locations in the same universe. MVO essentially converges on the 
objective by transmitting and acquiring entities (factors) across universes, which causes the goal to converge (solutions). This 
transmitting and receiving mechanism is reliant on the inflationary pressures of the universes, also known as their fitness 
values, which are computed through a sequence of iterations. When a universe has a high inflation rate, it has a high 
probability of containing white holes and has a tendency to send objects in the direction of other universes. If the rate of 
inflation in a universe is low, then that universe very certainly contains a black hole and is more likely to take in foreign items. 
This procedure, which is referred to as the exploration stage of the procedure, is modeled algebraic equation: 

  𝑈𝑈 = �
𝑥𝑥11 𝑥𝑥12   ⋯ 𝑥𝑥1

𝑝𝑝

⋮ ⋮      ⋮ ⋮
𝑥𝑥𝑛𝑛1 𝑥𝑥𝑛𝑛2    ⋯ 𝑥𝑥𝑛𝑛

𝑝𝑝
       

�,   𝑥𝑥𝑑𝑑
𝑗𝑗 = �

𝑥𝑥𝑘𝑘
𝑗𝑗 ,      𝑟𝑟1 < 𝑁𝑁𝑁𝑁(𝑈𝑈𝑑𝑑),
𝑥𝑥𝑑𝑑
𝑗𝑗,       𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑚𝑚𝑚𝑚𝑒𝑒,

  (10) 

Where 𝑈𝑈𝑑𝑑 represents the i-th universe, p represents the number of characteristics, n corresponds to the number of universes, 
𝑥𝑥𝑑𝑑
𝑗𝑗 represents the j-th attribute of the i-th universe, r1 is a random number in the range [0, 1], 𝑁𝑁𝑁𝑁(𝑈𝑈𝑑𝑑) represents the normalized 

inflation rate of the i-th universe, and 𝑥𝑥𝑘𝑘
𝑗𝑗 represents the j-th attribute of the selection process consisting of a roulette wheel was 

used to choose the k-th universe. 
During the exploitation stage of the process, it is supposed that every universe makes use of wormholes in order to 

transport things through space in a random pattern, irrespective of the inflation rate. Wormholes are also utilized to execute 
localized modifications within every universe by creating a link to the solution space that has been established so far. This is 
done by connecting to the solution space. The workings of this system can be summarized as one mathematical expression:  

 𝑥𝑥𝑑𝑑
𝑗𝑗 =

⎩
⎪
⎨

⎪
⎧
�
𝑋𝑋𝑗𝑗 + 𝑇𝑇𝑇𝑇𝑅𝑅 × ��𝑢𝑢𝑝𝑝𝑗𝑗 − 𝑙𝑙𝑝𝑝𝑗𝑗� × 𝑟𝑟4 + 𝑙𝑙𝑝𝑝𝑗𝑗� 𝑟𝑟3 < 0.5

𝑋𝑋𝑗𝑗 − 𝑇𝑇𝑇𝑇𝑅𝑅 × ��𝑢𝑢𝑝𝑝𝑗𝑗 − 𝑙𝑙𝑝𝑝𝑗𝑗� × 𝑟𝑟4 + 𝑙𝑙𝑝𝑝𝑗𝑗� 𝑟𝑟3 ≥ 0.5
 ,     𝑟𝑟2 < 𝑊𝑊𝑊𝑊𝑊𝑊,

𝑥𝑥𝑑𝑑
𝑗𝑗,                                                                                            𝑟𝑟2 ≥ 𝑊𝑊𝑊𝑊𝑊𝑊,

  (11) 

Where 𝑋𝑋𝑗𝑗 is the j-th parameter of the best universe produced so far, r2, r3, and r4 are uniformly distributed random values 
in [0, 1], while 𝑢𝑢𝑝𝑝𝑗𝑗 and 𝑙𝑙𝑝𝑝𝑗𝑗 are being utilized to establish the minimum and maximum values of the j-th factor. The WEP and 
TDR parameters are going to be discussed further down in this article. The likelihood that a wormhole actually exists 
somewhere in the cosmos is denoted by the acronym WEP. To put more of an emphasis on exploitation, the technique linearly 
raises this parameter as the number of repeats increases. The following is the formula used to compute WEP: 

 𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑙𝑙 × �𝑚𝑚𝑎𝑎𝑚𝑚−𝑚𝑚𝑑𝑑𝑛𝑛
𝐿𝐿

� (12) 

Where the minimum (min) is set at 0.2 and the maximum (max) at 1. Maximum iteration value (L) is displayed with the 
current iteration step (𝑙𝑙). TDR, or the Touring Distance Rate, is another factor. It's what you need when you're sending things 
throughout a wormhole to the most ideal world discovered so far. Eq. (13) provides the formula for TDR: 

 𝑇𝑇𝑇𝑇𝑅𝑅 = 1 − 𝑓𝑓(1 𝑝𝑝)⁄

𝐿𝐿(1 𝑝𝑝)⁄   (13) 

whereas p is an indicator of the exploitation precision and the primary key for it is set to 6 [23].  The flowchart for the 
MVO is given in Figure 4. 
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Figure 4: Flowchart of the MVO algorithm 

5. Discussion of Results and Simulation 
The proposed controller is simulated in MATLAB 2020a. A PC with core i7 processor at 2.40 GHz with 8 GB of RAM is 

utilized, and the operating system is Windows 10. In this paper PSO and MVO algorithms are used to tune the parameters of 
the PID controllers to reach the optimal response with minimum tracking error. The application of PSO and MVO algorithms 
needs to define the cost function. In this research, ITSE (Integral Time-weighted Squared Error) cost function is used, ITSE is 
described by the following Equation: 

 𝐹𝐹𝑚𝑚𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚 =  𝑁𝑁𝑇𝑇𝐼𝐼𝑊𝑊 = ∫ 𝑡𝑡 ∗ 𝑊𝑊𝑟𝑟𝑜𝑜𝑟𝑟(𝑡𝑡)2𝑑𝑑
0   (14) 

Here, Error represents the discrepancy between the target and the actual velocity of the EV. Figure 5 shows the Simulink 
diagram of the proportional-integral-derivative (PID) controller applied to the EV model.  

 
Figure 5: Non-linear exemplary of the EVs speed control simulation with PID controller 
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The parameters of the PSO and MVO are given in Table 3, the proposed controllers are tested by both linear (step), and 
nonlinear (sine wave) disturbances. 

Table 3: The parameters of PSO and MVO algorithms 

Parameters Selected values of PSO Selected values of MVO 
No. of iterations (𝑁𝑁𝑑𝑑) 50 50 
No. of search agents/universes (n) 10 5 
No. of variables (Dim) 3 3 
Lower bound (lb) [10  5  0.1] [10  5  0.1] 
Upper bound (ub) [40  15  10] [40  15  10] 

The optimum parameters of the PID controller by using PSO and MVO algorithms are given in Table 4.  

Table 4: The optimal parameters of the PID Controller 

PID Controller 
parameters 

                  Values 

PSO MVO 
𝐾𝐾𝑝𝑝 31.8552    40.000 
𝐾𝐾𝑑𝑑 15.0000     15.000 
𝐾𝐾𝑑𝑑 2.6052 3.46787 

5.1 Simulation Results of the Linear Trajectory 
PSO-PID and MVO-PID controllers for EV systems have been evaluated by using a fixed input signal to analyze the step 

response of the entire system. Figure 6 displays the results of the step input test. A comparison between the two types of PID 
controllers is shown in Table 5. These results show that the PID controller with MVO improved speed response (small settling 
time ts), zero error steady state and minimum or no oscillation (maximum peak 𝑀𝑀𝑃𝑃< 5%), compared with PSO–PID that has 
higher oscillation (maximum overshot  𝑀𝑀𝑃𝑃 > 25%). 

 
Figure 6: Speed control response with PID controllers and PSO and MVO optimization 

Table 5: Comparison between the performances of PSO-PID and MVO-PID controllers 

Speed 
controller 

Maximum 
overshoot 𝑴𝑴𝑷𝑷 
(%) 

Delay time 
𝒕𝒕𝒅𝒅(sec) 

Peak time 
𝒕𝒕𝒑𝒑(sec) 

settling time 
𝒕𝒕𝑺𝑺 (sec.) 

rising time 
𝒕𝒕𝒓𝒓 (sec.) 

steady state 
error 

PSO-PID 0.25 0.11 0.441 0.767 0.211 Approaches to 
zero  

MVO-PID 0.05 0.11 0.528 0.807 0.215 Approaches to 
zero 
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5.2 Simulation Results of the Non-linear Trajectory 
The results of this test are displayed in Figure 7. The results show that the proposed two controllers are accurate and have 

fast responses in tracking the speed of the vehicle to the desired speed. In other words, the speed deviation between the actual 
and the desired is negligible with no increase in the steady-state error than the step input test. The obtained results for linear 
and nonlinear paths illustrate that the proposed PID controllers is efficient in controlling the electric vehicle. 

 
Figure 7: Speed control response with PID controllers and PSO and MVO optimization 

6. Conclusion 
The objective of this paper is to develop a Proportional-Integral-Derivative (PID) controller as a speed controller for an 

electric vehicle. Two methods were used to optimize the parameters of the PID, which are particle swarm optimization and 
multi-verse optimization. The nonlinear trajectory test demonstrates that MVO-PID controller attained lower error as compared 
to the PSO-PID controller. The simulation results of the linear trajectory test show that the MVO-PID controller has less 
overshoot than PSO-PID. Settling time and rising time obtained by PSO-PID controller are 0.767s and 0.211s, respectively, 
while by MVO–PID controller are 0.807s and 0.215s, respectively. Thus, the results illustrate that the two control systems, 
proposed in this work, are efficient in controlling the electric vehicle, it can be considered that MVO-PID is the better of the 
two controllers. The work can be further developed in the future by using anther motors for the electric vehicle system instead 
of DC motors such as induction motor, brushless DC motors , etc. as well as it can be applied using FPGA technology or any 
other technology. 
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