Document Type : Review Paper


1 Department of Electrical Engineering University of Technology-Iraq Bagdad, Iraq

2 Department of Electrical Engineering University of Technology-Iraq


For a long time, extensive research on microstrip bandpass filters has been documented to meet the standards of modern multiservice wireless communication systems. The multiband bandpass filters (BPF) are required for the receiver front end to function as a single device that caters to many bands at the same time. Planar bandpass filters are particularly promising because of their simplicity of manufacture using printed circuit technology, compactness, and low integration cost. Due to the need for high integration, low cost, and high-speed data transmission, the design and implementation of filters for fifth-generation (5G) mobile communication systems is difficult. This paper presents and discusses a detailed survey of existing research on microstrip single\multiband bandpass filter designs for fifth-generation applications, with a focus on the latest advancements in this research and the difficulties that researchers face. Various designs and techniques were given. A detailed comparison of several design techniques is presented and discussed to offer researchers the benefits and drawbacks of each technique and design that may be of interest to a certain application. Recent microstrip single/multiband BPFs are included in the surveys, which use different design techniques and achieve varying performance for current and future fifth-generation applications.

Graphical Abstract


  • Present various design techniques for present and future 5G applications.
  • Presents and discusses a comparison of alternative design techniques and layouts while focusing on the most important parameters of microstrip BPFs.
  • Deriving the major challenges from these reviews, which included the size, performance, and individuality of microstrip BPFs filters.


Main Subjects

[1] N. Sahayam, A Review on Microstrip Filter for the Application in Communication System, pp. 709–717, 2018.
[2] A. J. Malse and R. Kulshreshtha, A Survey on Narrowband filtering Design using Microstrip filters, Int. J. Eng. trends Technol., 34 (2016) 327–330.
[3] A. Abdel-Rahman, A. R. Ali, S. Amari, and A. S. Omar, Compact bandpass filters using Defected Ground Structure (DGS) coupled resonators, IEEE MTT-S Int. Microw. Symp. Dig., 2005 (2005) 1479–1482. doi:10.1109/MWSYM.2005.1516971.
[4] J. Nieto and R. Sauleau, Miniature coplanar waveguide and microstrip stop-band filters using spiral resonators, Eur. Sp. Agency, (Special Publ. ESA SP, 626 (2006) 2–6. doi: 10.1109/eucap.2006.4585014.
[5] Y. I. A. Al-Yasir et al., Design of multi-standard single/tri/quint-wideband asymmetric stepped-impedance resonator filters with adjustable TZs, IET Microwaves, Antennas Propag., 13 (2019) 1637–1645. doi: 10.1049/iet-map.2018.5863.
[6] J. S. Hong and M. J. Lancaster, Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters, IEEE Trans. Microw. Theory Tech., 44 (1996) 2099–2109.
[7] Y. I. A. Al-Yasir, N. OjaroudiParchin, A. Abdulkhaleq, K. Hameed, M. Al-Sadoon, and R. Abd-Alhameed, Design, Simulation and Implementation of Very Compact Dual-band Microstrip Bandpass Filter for 4G and 5G Applications, SMACD 2019 - 16th Int. Conf. Synth. Model. Anal. Simul. Methods Appl. to Circuit Des. Proc., 2019,41–44. doi:10.1109/SMACD.2019.8795226.
[8] J. Rajendran, Design and Optimization of Band Pass Filter for SoftwareDefined Radio Telescope, Int. J. Inf. Electron. Eng., 2 (2012) 649–651. doi: 10.7763/ijiee.2012.v2.180.
[9] H. N. Shaman, New S-band bandpass filter (BPF) with wideband passband for wireless communication systems, IEEE Microw. Wirel. Components Lett., 22 (2012) 242–244. doi: 10.1109/LMWC.2012.2190269.
[10] M. R. Saad et al., Designing 5GHz microstrip coupled line bandpass filter using LTCC technology, 2008 Int. Conf. Electron. Des. ICED .2008, 6–9.doi: 10.1109/ICED.2008.4786774.
[11] R. K. Maharjan and N. Y. Kim, Microstrip Bandpass Filters Using Window Hairpin Resonator and T-Feeder Coupling Lines, Arab. J. Sci. Eng., 39 (2014) 3989–3997. doi: 10.1007/s13369-014-0997-7.
[12] S. C. Lin, C. H. Wang, Y. W. Chen, and C. H. Chen, Improved combline bandpass filter with multiple transmission zeros, Asia-Pacific Microw. Conf. Proceedings, APMC. 2 ,2007,7–10. doi: 10.1109/APMC.2007.4554864.
[13] Y. M. Chen, S. F. Chang, C. C. Chang, and T. J. Hung, Design of stepped-impedance combline bandpass filters with symmetric insertion-loss response and wide stopband range, IEEE Trans. Microw. Theory Tech., 55 (2007) 2191–2198. doi: 10.1109/TMTT.2007.906482.
[14] D. Psychogiou, R. Gómez-García, and D. Peroulis, RF Wide-Band Bandpass Filter With Dynamic In-Band Multi-Interference Suppression Capability, IEEE Trans. Circuits Syst. II Express Briefs, 65 (2018) 898–902. doi:10.1109/TCSII.2017.2726145.
[15] Q. Cai, Y. Li, X. Zhang, and W. Shen, Wideband MIMO Antenna Array Covering 3.3-7.1 GHz for 5G Metal-Rimmed Smartphone Applications, IEEE Access, 7 (2019)142070–142084. doi: 10.1109/ACCESS.2019.2944681.
[16] S. B. Patel and M. Kansara, Comparative Study of 2G , 3G and 4G, no. September, 2018.
[17] S. B. E. N. Haddi, A Compact Microstrip T-Shaped Resonator Band Pass Filter for 5G Applications, 2020. doi:10.1109/ISCV49265.2020.9204054.
[18] and T. N. Harri Holma, Antti Toskala, 5G Technology: 3GPP New Radio. 2020.
[19] A. O. Watanabe et al., A Review of 5G Front-End Systems Package Integration, no. SEPTEMBER, pp. 1–15, 2020.
[20] M. Caleffi, S. Member, V. Trianni, A. S. Cacciapuoti, and S. Member, Self-Organizing Strategy Design for Heterogeneous Coexistence in the Sub-6 GHz, 1276 (2018) 1–15. doi: 10.1109/TWC.2018.2864734.
[21] N. N. Al-Areqi, N. Seman, and T. A. Rahman, Parallel-coupled line bandpass filter design using different substrates for fifth generation wireless communication applications, 2015 Int. Symp. Antennas Propagation, ISAP 2015. 2015, 2016,1–5.
[22] Y. Al-Yasir, R. A. Abd-Alhameed, J. M. Noras, A. M. Abdulkhaleq, and N. O. Parchin, Design of very compact combline band-pass filter for 5G applications, IET Conf. Publ., 2018, CP746, 2018.doi: 10.1049/cp.2018.1482.
[23] Y. I. A. Al-Yasir et al., Design, simulation and implementation of very compact open-loop trisection BPF for 5G communications, IEEE 5G World Forum, 5GWF 2019 - Conf. Proc. 2019, 189–193. doi: 10.1109/5GWF.2019.8911677.
[24] S. Saleh, W. Ismail, I. S. Zainal Abidin, and M. H. Jamaluddin, 5G Hairpin and Interdigital Bandpass Filters, Int. J. Integr. Eng., 12 (2020) 71–79. doi: 10.30880/ijie.2020.12.06.009.
[25] F. M. Alnahwi, Y. I. A. Al-Yasir, A. A. Abdulhameed, A. S. Abdullah, and R. A. Abd-Alhameed, A low-cost microwave filter with improved passband and stopband characteristics using stub loaded multiple mode resonator for 5g mid-band applications, Electron., 10 (2021) 1–15. doi: 10.3390/electronics10040450.
[26] Q. Abdullah et al., A Compact Size 5G Hairpin Bandpass Filter with Multilayer Coupled Line, Comput. Mater. Contin., 69 (2021) 4025–4042. doi: 10.32604/cmc.2021.018798.
[27] A. Basheer, H. Abdulhussein, H. Al-Saedi, and J. K. Ali, Design of Bandpass Filter for 5G Applications with High-selectivity and Wide Band Rejection, (2022)179–183. doi: 10.1109/micest54286.2022.9790185.
[28] M. Riaz, B. S. Virdee, P. Shukla, K. Ouazzane, M. Onadim, and S. Salekzamankhani, Quasi-elliptic dual-band planar BPF with high-selectivity and high inter-band isolation for 5G communications systems, Microw. Opt. Technol. Lett., 62 (2020) 1509–1515.doi: 10.1002/mop.32197.
[29] W.-L. Hsu, P.-Y. Lyu, and S.-F. Chang, Design of a miniature dual-band bandpass filter with interlocked stepped-impedance resonators for 5G new radio access technology, Int. J. Microw. Wirel. Technol., 12 (2020) 733–737.
[30] W. Zhang, K. Ma, H. Zhang, and H. Fu, Design of a Compact SISL BPF with SEMCP for 5G Sub-6 GHz Bands, IEEE Microw. Wirel. Components Lett., 30 (2020) 1121–1124. doi: 10.1109/LMWC.2020.3030189.
[31] J. Peng, Z. Xu, and J. Zhu, Design of Dual-Band Bandpass Filter Using a Hybrid Feed Scheme, 2020 Cross Strait Radio Sci. Wirel. Technol. Conf. CSRSWTC 2020 - Proc., 2,2020,16–18. doi: 10.1109/CSRSWTC50769.2020.9372615.
[32] H. I. Khani and A. S. Ezzulddin, Design of A Compact Dual-Band BPF for 5G Mobile Communications Using Folded $lambda mathrm{g}/2$ -Line Resonators, 71 (2022) 71–76. doi: 10.1109/micest54286.2022.9790180.
[33] Z. Hou et al., Dual-/Tri-wideband bandpass filter with high selectivity and adjustable passband for 5G mid-band mobile communications, Electron., vol. 9 (2020). doi: 10.3390/electronics9020205.
[34] H. I. Khani, A. S. Ezzulddin, and H. Al-saedi, Design of a Compact and Highly Independent Triple- Band BPF for 5G Applications, 1 (2022) 524–532.
[35] H. I. Khani, A. S. Ezzulddin, and H. Al-saedi, Design of High-Selectivity Compact Quad-Band BPF Using Multi-Coupled Line and Short Stub-SIR Resonators, 122 (2022) 215–228.
[36] L. Gao, X. Y. Zhang, and Q. Xue, Compact tri-band bandpass filter using novel eight-mode resonator for 5G WiFi application,” IEEE Microw. Wirel. Components Lett., 25 (2015) 660–662.
[37] Y. Zhang, L. Gao, and X. Y. Zhang, Compact quad-band bandpass filter for DCS/WLAN/WiMAX/5G Wi-Fi application, IEEE Microw. Wirel. Components Lett., 25 (2015) 645–647.
[38] P. Khundrakpam, M. Pal, P. Sarkar, and R. Ghatak, A dual wideband bandpass filter for WLAN and 5G Wi-Fi applications, Int. Conf. Microelectron. Comput. Commun. MicroCom 2016, 4–7, 2016. doi:10.1109/MicroCom.2016.7522575.
[39] K. J. Lin, Z. F. Li, T. C. Tai, H. W. Wu, and Y. H. Wang, A Compact Triple Passband Bandpass Filter Using Stub Load - Uniform impedance Resonators, Proc. - 2019 Int. Symp. Intell. Signal Process. Commun. Syst. ISPACS. 2019 (2019) 2019–2020. doi: 10.1109/ISPACS48206.2019.8986364.
[40] T. Firmansyah, M. Alaydrus, Y. Wahyu, E. T. Rahardjo, and G. Wibisono, A highly independent multiband bandpass filter using a multi-coupled line stub-sir with folding structure, IEEE Access, 8 (2020) 83009–83026. doi:10.1109/ACCESS.2020.2989370.
[41] W. C. Chang and W. H. Tu, Dual-band bandpass filter for software defined radio and 5G, Int. J. Microw. Wirel. Technol., 12 (2020) 629–634.doi: 10.1017/S175907872000080X.
[42]  S. Tantiviwat, S. Z. Ibrahim, M. S. Razalli, and P. J. Soh, Design of Quad-Band Bandpass Filter Using Dual-Mode SLRs and Coupled-Line for DCS/WLAN/WiMAX and 5G Applications, Micromachines, 13 (2022) 2–9. doi:10.3390/mi13050700.