Document Type : Review Paper

Authors

Materials Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

Abstract

Zr2AC MAX phases are ternary carbide family with layered structures combining of the outstanding characteristics of metals and ceramics. This review study provides an overview of Zr2AC MAX phase formation mechanisms, applications, and the correlation between Zr2AC MAX phase formation mechanisms and performance in applications such solar coatings, oxidation resistance, high temperature applications, and nuclear applications. Zr2InC MAX phase has low friction and wear materials that can be used for variety applications for significant technology such as electrical spinning connections and rotating bearings. More examples, the Zr2SnC MAX phase uses for self-healing of cracks and oxidation resistance. The Zr2PbC MAX phases are elastic and electrically anisotropic in nature and appropriate for high temperature applications, optoelectronic devices, and coating materials. Studying the optical characteristics of the Zr2SeC has shown its potential for application as a shielding material in order to decrease the heating of solar. The Zr2SC is suitable for use in high-temperature technologies, such as thermal barrier coating material TBC.  The Zr2AlC phase is the most attractive among all non-synthesizable ternary MAX phases, particularly for the nuclear industry. There are a lot of challenges during fabrication of the MAX phase, including synthesis temperature, the MAX phase purity, and the secondary phase (impurities). In harsh external conditions, the defect density has a substantial impact on the MAX phase's stability and thus, the methods of defect formation and migration have a considerable impact on the phases' radiation resistance and self-healing capabilities. 

Graphical Abstract

Highlights

  • The bulk Zr2AC ceramic MAX phase can be produced by hot isostatic pressing sintering, hot press sintering, and pressureless sintering.
  • At the higher temperatures, the MAX phase decomposes into MC and intermetallic compounds.
  • The most interesting Zr2AC MAX phase in nuclear applications.
  • Providing insight, the potential research prospects for this Zr2AC MAX phases in numerous fields. 

Keywords

Main Subjects

[1] S. G. Vadchenko, D. Y. Kovalev, and M. A. Luginina, Ignition and phase formation in the Zr–Al–C system, Combustion, Explosion and Shock Waves. 53 (2017) 171–175. doi: 10.1134/S0010508217020071
[2] T. A. Alrebdi, M. B. Kanoun, and S. Goumri-Said, Physical properties investigations of ternary-layered carbides m2pbc (M = ti, zr and hf): First-principles calculations, Crystals.11( 2021) 1445. doi: 10.3390/cryst11121445
[3] A. Azzouz-Rached, M. A. Hadi, H. Rached, T. Hadji, D. Rached, and A. Bouhemadou, Pressure effects on the structural, elastic, magnetic and thermodynamic properties of Mn2AlC and Mn2SiC MAX phases, J. Alloys Compd.  885( 2021) 160998. doi: 10.1016/j.jallcom.2021.160998
[4] A. Azzouz-Rached, H. Rached, M. H. Babu, T. Hadji, and D. Rached, Prediction of double transition metal (Cr1−xZrx)2AlC MAX phases as thermal barrier coatings: Insight from density functional theory, Int. J. Quantum Chem. 121(202) 11–13. doi: 10.1002/qua.26770.
[5] I. Ouadha, H. Rached, A. Azzouz-Rached, A. Reggad, and D. Rached, Study of the structural, mechanical and thermodynamic properties of the new MAX phase  compounds  (Zr1-xTix)3AlC2 , Comput. Condensed Matter. 23 ( 2020) e00468. doi: 10.1016/j.cocom.2020.e00468
[6] A. Azzouz-Rached, M. M. Haque Babu, H. Rached, T. Hadji, and D. Rached, Prediction of a new Sn-based MAX phases for nuclear industry applications: DFT calculations, Mater. Today Communications .27 (2021)102233. doi:10.1016/j.mtcomm.2021.102233
[7] M. A. Hadi, Superconducting phases in a remarkable class of metallic ceramics, J. Phys. Chem. Solids. 138 (2020)109275. doi: 10.1016/j.jpcs.2019.109275
[8] M. Sokol, V. Natu, S. Kota, and M. W. Barsoum, On the Chemical Diversity of the MAX Phases, Trends Chem. 1 (2019) 210–223. doi:10.1016/j.trechm.2019.02.016
[9] M. A. Ali and S. H. Naqib, Recently synthesized (Ti1-: X Mo x )2AlC (0 ≤ x ≤ 0.20) solid solutions: Deciphering the structural, electronic, mechanical and thermodynamic properties via ab initio simulations, RSC Advances. 10 (2020) 31535–31546. doi: 10.1039/d0ra06435a
[10] A. A. Belkacem , H. Rached, M. Caid, Y. Rached, D. Rached, Nada T. Mahmoud, and N. Benkhettou., The stability analysis and efficiency of the new MAX-phase compounds M3GaC2 (M: Ti or Zr): A first-principles assessment, Res.Phys. 38 (2022)105621. doi: 10.1016/j.rinp.2022.105621
[11] Y. Rached, A.A. Ait Belkacem, D. Rached, H. Rached, M. Caid, M. Merabet, S. Benalia, L. Djoudi, I.E. Rabah, and M. Rabah , The Stability and Electronic and Thermal Transport Properties of New Tl-Based MAX-Phase Compound Ta2TlX (X: C or N), Phys. Status Solidi B  Basic Research. (2022) 2200195.  doi: 10.1002/pssb.202200195
[12] M. A. Ali and M. W. Qureshi, Newly synthesized MAX phase Zr2SeC: DFT insights into physical properties towards possible applications,  RSC Advances. 11 (2021) 16892–16905. doi: 10.1039/d1ra02345d
[13] M. A. Ali, M. M. Hossain, M. M. Uddin, A. K. M. A. Islam, D. Jana, and S. H. Naqib, DFT insights into new B-containing 212 MAX phases: Hf2AB2 (A = In, Sn), J. Alloys Compd. 860 (2021)1–30. doi:10.1016/j.jallcom.2020.158408
[14] Z. Lin, D. Barbara, P. Taberna, and K. L. Van Aken, Capacitance of Ti 3 C 2 T x MXene in Ionic Liquid Electrolyte. J. Power Sources.326 (2016) 575-579.
[15] Y. Wang , C. Ma, W. Ma, W. Fan, Y. Sun, H. Yin, X. Shi, X. Liu and Y. Ding, , Enhanced low-temperature Li-ion storage in MXene titanium carbide by surface oxygen termination, 2D Mater. 6 ( 2019) 045025 . doi:10.1088/2053-1583/ab30f9
[16] A. M. H. Abdulkadhim, R . afify, Corrosion Behavior of V 2 AlC and Cr 2 AlC Materials in Acidic Media,. 33 (2015)845–854.
[17] A. Abdulkadhim, T. Takahashi, D. Music, F. Munnik, and J. M. Schneider, MAX phase formation by intercalation upon annealing of TiCx/Al (0.4 ≤ x ≤ 1) bilayer thin films, Acta Materialia. 59 (2011) 6168–6175. doi:10.1016/j.actamat.2011.06.029
[18] M. A. N. A., A.A.Atiyah , A. M. H. Abdulkadhim, Investigation of Solid State Reaction in the Ternary Ti-Al-C, Cr-Al-C and V-Al-C Systems A., Engneering and Technology journal . 35(2017)764–771. doi: 10.1016/0040-6031(85)85934-7
[19] S. Aryal, R. Sakidja, M. W. Barsoum, and W. Y. Ching, A genomic approach to the stability, elastic, and electronic properties of the MAX phases, Phys. Status Solidi (B) Basic Research,. 251 (2014)1480–1497. doi:10.1002/pssb.201451226
[20] M. A. Rayhan, M. A. Ali, S. H. Naqib, and A. K. M. A. Islam, First-principles Study of Vickers Hardness and Thermodynamic Properties of Ti3SnC2 Polymorphs, J. Sci. Res. 7(2015)53–64. doi: 10.3329/jsr.v7i3.23182
[21] M. Griseri, B.Tunca, S.Huang, M.Dahlqvist, J.Rosén, J. Lu, P.O.Persson, L.Popescu, J.Vleugels, K. Lambrinou, Ta-based 413 and 211 MAX phase solid solutions with Hf and Nb, J. Eur. Ceram. Soc. 40(2020) 1829–1838. doi:10.1016/j.jeurceramsoc.2019.12.052
[22] M. A. Ali, M. S. Ali, and M. M. Uddin, Structural, elastic, electronic and optical properties of metastable MAX phase Ti5SiC4 compound, Indian J. Pure Appl. Phys. 54 (2016)386–390.
[23] G. Ying , C.Hu , L. Liu , C. Sun , D.Wen , J. Zhang, Y. Zheng , M.Wang , C. Zhang , X.Wang , C.Wang , Mechanical properties of phase-pure bulk Ta4AlC3 prepared by spark plasma sintering and subsequent heat treatment, Processing and Application of Ceramics,. 15 (2021)211–218. doi: 10.2298/PAC2103211Y
[24] N. Miao, J. Wang, , Y. Gong, , J. Wu, H. Niu, S. Wang , K. Li , A.R. Oganov , T. Tada, H. Hosono , Computational prediction of boron-based MAX phases and MXene derivatives, Chem. Mater.  32 (2020)16947–6957. doi:10.1021/acs.chemmater.0c02139
[25] M. A. Ali, M. M. Hossain, A. K. M. A. Islam, and S. H. Naqib, Recently predicted ternary boride Hf3PB4: Insights into the physical properties of this hardest possible boride MAX phase,  J. Alloys Compd. 857 (2021) 158264.
[26] M. W. Qureshi, M. A. Ali, and X. Ma, Screen the thermomechanical and optical properties of the new ductile 314 MAX phase boride Zr3CdB4: A DFT insight, J. Alloys Compd. 877 (2021)160248. doi:10.1016/j.jallcom.2021.160248
[27] Y. CHu, C.C. Lai , Q.Tao , J. Lu , J.Halim , L.Sun , J. Zhang , J.Yang , B.Anasori , J.Wang , Sakka, Mo 2 Ga 2 C: a new ternary nanolaminated carbide, Chem. Commun.  51(2015) 6560-6563. doi: 10.1039/c5cc00980d
[28] A.Zhou , 2012. Methods of MAX-phase synthesis and densification–II. In Advances in science and technology of Mn+ 1AXn phases, pp. 21-46. Woodhead Publishing.
[29] M. Radovic and M. W. Barsoum, MAX phases: Bridging the gap between metals and ceramics,  Am. Ceram. Soc. Bull.  92 (2013) 20–27.
[30] H. B. Zhang, Y. C. Zhou, Y. W. Bao, and M. S. Li, Improving the oxidation resistance of Ti3SiC2 by forming a Ti3Si0.9Al0.1C2 solid solution, Acta Materialia.52 (2004)3631–3637. doi: 10.1016/j.actamat.2004.04.015
[31] F. L. Meng, Y. C. Zhou, and J. Y. Wang, Strengthening of Ti2AlC by substituting Ti with V, Scripta Mater. 53 (2005)1369–1372 . doi:10.1016/j.scriptamat.2005.08.030
[32] Y. L. Du, Z. M. Sun, H. Hashimoto, and M. W. Barsoum, Theoretical investigations on the elastic and thermodynamic properties of Ti2AlC0.5N0.5 solid solution, Phys. Lett. A: General, Atomic and Solid State Physics. 374 (2009)78–82 . doi: 10.1016/j.physleta.2009.10.023
[33] W. Yu , V. Mauchamp , T. Cabioc’h, D. Magne , L. Gence , L. Piraux , V. Gauthier-Brunet, S. Dubois, Solid solution effects in the Ti2Al(CxNy) MAX phases: Synthesis, microstructure, electronic structure and transport properties, Acta Materialia. 80 (2014) 421–434. doi: 10.1016/j.actamat.2014.07.064
[34] Z. Liu, L. Zheng, L. Sun, Y. Qian, J. Wang, and M. Li, (Cr2/3Ti1/3)3AlC2 and (Cr5/8Ti3/8)4AlC3: New MAX-phase compounds in Ti-Cr-Al-C system, J. Am. Ceram. Soc. 97(2014) 67–69. doi:10.1111/jace.12731
[35] Z. Liu , E. Wu , J. Wang , Y. Qian , H. Xiang , X. Li , Q. Jin , G. Sun , X. Chen, J. Wang, M. Li, Crystal structure and formation mechanism of (Cr2/3Ti 1/3)3AlC2 MAX phase, Acta Materialia . 73 (2014)186–193. doi:10.1016/j.actamat.2014.04.006
[36] M. W. Barsoum, MAX phases: Properties of machinable ternary carbides and nitrides. wiley, 2013.
[37] J. Gonzalez-Julian, Processing of MAX phases: From synthesis to applications, J. Am. Ceram. Soc. 104(2021) 659-690. doi: 10.1111/jace.17544
[38] S. T. Ahams, A. Shaari, R. Ahmed, M. C. Idris, N. F. A. Pattah, and U. Teknologi, Ab-initio Calculations of the Structural and Electronic Properties of Zr 2 AC, 1(2020) 41–46.
[39] T. Lapauw, K. Lambrinou , T. Cabioc’h , J. Halim , J. Lu , A. Pesach , O. Rivin , O. Ozeri , E.N. Caspi , L. Hultman, P. Eklund, Synthesis of the new MAX phase Zr2AlC, J. Eur. Ceram. Soc. 36 (2016)1847–1853. doi:10.1016/j.jeurceramsoc.2016.02.044
[40] B. Tunca, T. Lapauw , R. Delville , D.R. Neuville , L. Hennet , D.Thiaudière , T.Ouisse , J. Hadermann , J. Vleugels, K. Lambrinou, Synthesis and Characterization  of  Double Solid Solution (Zr,Ti)2(Al,Sn)C MAX Phase Ceramics, Inorg. Chem.  58 (2019) 6669-6683. doi:10.1021/acs.inorgchem.9b00065
[41] D. T. Cuskelly, Synthesis of Materials for Energy Applications Focusing on MAX Phases. PhD diss., University of Newcastle, Australia, 2016.
[42] B.Manoun , S.K.Saxena , H.P. Liermann , R.P.Gulve , E. Hoffman , M.W.Barsoum , G.Hug, C.S. Zha , Compression of Zr 2 InC to 52 GPa.  Appl. Phys. Lett. 85 (2004)1514-1516.
[43] E. N. Hoffman, M. W. Barsoum, W. Wang, R. D. Doherty, A. Zavaliangos, On the spontaneous growth of soft metallic whiskers, Proceedings of the Annual Holm Conference on Electrical Contacts. (2005)121–126. doi:10.1109/HOLM.2005.1518232
[44] S. Gupta, E. N. Hoffman, and M. W. Barsoum, Synthesis and oxidation of Ti2InC, Zr2InC, (Ti0.5,Zr0.5)2InC and (Ti0.5,Hf0.5)2InC in air, J. Alloys Compd. 426(2006)168–175. doi:10.1016/j.jallcom.2006.02.049
[45] M. W. Barsoum, G. Yaroschuk, and S. Tyagi, Fabrication and characterization of M2SnC (M = Ti, Zr, Hf and Nb), Scripta Mater. 37 (1997)1583–1591. doi: 10.1016/S1359-6462(97)00288-1
[46] T. El-Raghy, S. Chakraborty, and M. W. Barsoum, Synthesis and characterization of Hf2PbC, Zr2PbC and M2SnC (M = Ti, Hf, Nb or Zr), J. Eur. Ceram. Soc. 20 (2000)2619–2625. doi:10.1016/S0955-2219(00)00127-8
[47] J. Haemers, R. Gusmão, and Z. Sofer, Synthesis Protocols of the Most Common Layered Carbide and Nitride MAX Phases, Small Methods. 4 (2020)1–32. doi: 10.1002/smtd.201900780
[48] D. Horlait, S. Grasso, A. Chroneos, and W. E. Lee, Attempts to synthesise quaternary MAX phases (Zr,m)2ALC and Zr2(AL,A)C as a way to approach Zr2ALC, Mater. Res. Lett.  4 (2016)137–144. doi:10.1080/21663831.2016.1143053
[49] M. A. Ali, M.M. Hossain , M.A.Hossain , M.T.Nasir , M.M. Uddin , M.Z. Hasan , A.K.M.A.Islam  , S.H. Naqib, Recently synthesized (Zr1-xTix)2AlC (0 ≤ x ≤ 1) solid solutions: Theoretical study of the effects of M mixing on physical properties, J. Alloys Compd. 743 (2018) 146-154. doi:10.1016/j.jallcom.2018.01.396
[50] M. A. Ali, M. M. Hossain, N. Jahan, A. K. M. A. Islam, and S. H. Naqib, Newly synthesized Zr2AlC, Zr2(Al0.58Bi0.42)C, Zr2(Al0.2Sn0.8)C, and Zr2(Al0.3Sb0.7)C MAX phases: A DFT based first-principles study, Comput. Mater. Sci. 131 (2017)139–145. doi: 10.1016/j.commatsci.2017.01.048
[51] M. Opeka, J. Zaykoski, I. Talmy, and S. Causey, Synthesis and characterization of Zr2SC ceramics, Mater. Sci. Eng., A. 528 (2011)1994–2001. doi:10.1016/j.msea.2010.10.084
[52] R. Tomoshige, K. Ishida, and H. Inokawa,  Effect of Added Molybdenum on Material Properties of Zr2SC MAX Phase Produced by Self-Propagating High Temperature Synthesis. Mater. Res. Proceedings.  13 (2019) 79–84. doi:10.21741/9781644900338-14
[53] X. Wang, K.Chen , E.Wu , Y. Zhang , H. Ding , N. Qiu , Y. Song , S.Du , Z. Chai, Q. Huang, Synthesis and thermal expansion of chalcogenide MAX phase Hf2SeC, J. Eur. Ceram. Soc. 42 (2022) 2084–2088. doi:10.1016/j.jeurceramsoc.2021.12.062
[54] H. H. Qarra, K. M. Knowles, M. E. Vickers, S. Akhmadaliev, and K. Lambrinou, Heavy ion irradiation damage in Zr2AlC MAX phase, J. Nucl. Mater. 523 (2019) 1–9. doi: 10.1016/j.jnucmat.2019.05.034
[55] J. Fu, T. F. Zhang, Q. Xia , S. H. Lim, Z. Wan, T. W. Lee, K. H. Kim, Oxidation and corrosion behavior of nanolaminated MAX-phase TilC film synthesized by high-power impulse magnetron sputtering and annealing, Journal of Nanomaterials, (2015). doi: 10.1155/2015/213128
[56] D. Horlait, S. C. Middleburgh, A. Chroneos, and W. E. Lee,Synthesis and DFT investigation of new bismuth-containing MAX phases, Scientific Reports. 6 (2016) 1–9. 2016, doi: 10.1038/srep18829
[57] K. L. Murty and I. Charit, Structural materials for Gen-IV nuclear reactors: Challenges and opportunities, J. Nucl. Mater.  383  (2008) 189–195. doi:10.1016/j.jnucmat.2008.08.044
[58] T. Lapauw, B.Tunca , J. Joris , A.Jianu , R. Fetzer , A.Weisenburger , J.Vleugels, K. Lambrinou, Interaction of Mn+1AXn phases with oxygen-poor, static and fast-flowing liquid lead-bismuth eutectic, J. Nucl. Mater. 520 ( 2019) doi:10.1016/j.jnucmat.2019.04.010
[59] J. Van den Bosch, R. W. Bosch, D. Sapundjiev, and A. Almazouzi, Liquid metal embrittlement susceptibility of ferritic-martensitic steel in liquid lead alloys, J. Nucl. Mater. 376(2008)322–329. doi: 10.1016/j.jnucmat.2008.02.008
[60] B. Tunca, T. Lapauw, C. Callaert, J. Hadermann, and R. Delville, Compatibility of Zr 2 AlC MAX phase-based ceramics with oxygen-poor , static liquid lead-bismuth eutectic, Corrosion Science .171 (2020) 108704.
[61] J. L. Smialek, Oxidation of Al2O3 scale-forming MAX phases in turbine environments. Metall. Mater. Trans. A. 49(2018) 782–792. doi:10.1007/s11661-017-4346-9
[62] D. J. Tallman, B. Anasori, and M. W. Barsoum, A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in Air, Mater. Res.   Lett. 1 (2013) 115–125. doi: 10.1080/21663831.2013.806364
[63] A. S. Farle, C. Kwakernaak, S. van der Zwaag, and W. G. Sloof, A conceptual study into the potential of Mn+1AXn-phase ceramics for self-healing of crack damage, J. Am. Ceram. Soc. 35 (2015)37–45. doi:10.1016/j.jeurceramsoc.2014.08.046
[64] A. K. M. A. Islam, Remarkable class of materials: Band structures and optical properties of non-superconducting and superconducting MAX phases, J. Phys.: Conf. Ser. 1718 , 2021,012002 . doi: 10.1088/1742-6596/1718/1/012002
[65] B. Anasori & Û. G.Gogotsi . 2D metal carbides and nitrides (MXenes)  , Berlin: Springer, 2019.
[66] M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials,  Adv. Mater. 26 (2014)992–1005.doi:10.1002/adma.201304138
[67] Z. J. Yang, L. Tang, A. M. Guo, X. L. Cheng, Z. H. Zhu, and X. D. Yang, Origin of c-axis ultraincompressibility of Zr2InC above 70 GPa via first-principles, J. Appl. Phys.  114(2013)1–11. doi: 10.1063/1.4819174
[68] A. Bouhemadou, Calculated structural and elastic properties of M 2 InC (M= Sc, Ti, V, Zr, Nb, Hf, Ta). Mod. Phys. Lett. B.22 (2008) 2063-2076. doi:org/10.1142/S0217984908016807
[69] T. A. Alrebdi, M. B. Kanoun, and S. Goumri-Said, Physical properties investigations of ternary-layered carbides m2pbc (M = ti, zr and hf): First-principles calculations, Crystals. 11 (2021) 2063-2076. doi:10.3390/cryst11121445