Document Type : Review Paper

Authors

1 Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia

2 Department of Electrical Power Engineering, Universiti Tenaga Nasional (The National Energy Univer-sity), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor

3 Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor

4 Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huaian Jiangsu, 223003 China

5 Faculty of Electrical and Automation Engineering Technology, UC TATI, 24000 Terengganu, Malaysia

Abstract

The smart street-lighting system (SSLS) is a leading candidate in the smart city. By the time of the last 15 cycles, many meaningful improvements have been executed in the SSLS with the impact of the internet of things technologies and universal networking devices. Conventional smart street lighting systems are restricted to wireless sensor networks, mobile devices, and old lighting control systems. This article presents a comprehensive treatment of network designs, namely communication, control, and wireless sensor-based smart street lighting system by deploying based on their existing system architecture, and network topologies including leading with it a host of privileges. In addition, choosing the right lighting class, high-intensity discharge (HID) lights, and retrofitting lighting technologies have all been covered in detail. This paper's objective is to evaluate various control technologies that may support the many applications deployed on networked streetlights. Moreover, issues and recommendations, distinguished in this paper, will pave the route for future smart street lighting systems that promote a reliable and seamless driving experience and are energy-efficient for environmental sustainability. It is far anticipated that LoRa and Sigfox with additional gateways could be the best possible smart street lighting system options as these technologies are facilitated for long distances but with a limited data rate. It is way more suitable for lighting control compared to other protocols to control thousands of streetlights.

Graphical Abstract

Highlights

  • Communication, control, and wireless sensor-based smart street lighting system were investigated.
  • Various control technologies that may support many applications deployed on networked streetlights were evaluated.
  • Issues and recommendations distinguished in this paper will pave the route for future smart street lighting systems. 

Keywords

Main Subjects

[1] A. Toubal, B. Bengherbia, M. Ouldzmirli, and M. Maazouz, Energy efficient street lighting control system using wireless sensor networks, Proceedings of 2016 8th International Conference on Modelling, Identification and Control, ICMIC. 2016 (2017) 919–924.doi: 10.1109/ICMIC.2016.7804246.
[2] F. Sun and J. Yu, Indoor intelligent lighting control method based on distributed multi-agent framework, Optik (Stuttg), 213 (2020) 164816.doi: 10.1016/J.IJLEO.2020.164816.
[3] F. Sanchez-Sutil and A. Cano-Ortega, Smart regulation and efficiency energy system for street lighting with LoRa LPWAN,” Sustain Cities Soc, 70 (2021) 102912. doi: 10.1016/J.SCS.2021.102912.
[4] M. Magno, T. Polonelli, L. Benini, and E. Popovici, A low cost, highly scalable wireless sensor network solution to achieve smart LED light control for green buildings, IEEE Sens J. 15 (2015) 2963–2973.doi:10.1109/JSEN.2014.2383996.
[5] A. Iwayemi, P. Yi, P. Liu, and C. Zhou, A perfect power demonstration system, Innovative Smart Grid Technologies Conference, ISGT. 2010, 2010.doi: 10.1109/ISGT.2010.5434737.
[6] N. Javaid, A. Sharif, A. Mahmood, S. Ahmed, U. Qasim, and Z. A. Khan, Monitoring and controlling power using zigbee communications, Proceedings - 2012 7th International Conference on Broadband, Wireless Computing, Communication and Applications, BWCCA 2012, 608–613. doi: 10.1109/BWCCA.2012.107.
[7] G. Shahzad, H. Yang, A. W. Ahmad, and C. Lee, Energy-Efficient Intelligent Street Lighting System Using Traffic-Adaptive Control, IEEE Sens J. 16 (2016) 5397–5405.doi: 10.1109/JSEN.2016.2557345.
[8] N. Ouerhani, N. Pazos, M. Aeberli, and M. Muller, IoT-based dynamic street light control for smart cities use cases, International Symposium on Networks, Computers and Communications, ISNCC 2016 (2016). doi:10.1109/ISNCC.2016.7746112.
[9] J. H. Sun, J. F. Su, G. S. Zhang, Y. Li, and C. Zhao, An energy-saving control method based on multi-sensor system for solar street lamp, Proceedings - 2010 International Conference on Digital Manufacturing and Automation, ICDMA . 1 (2010) 192–194.doi: 10.1109/ICDMA.2010.210.
[10] R. Razavi, A. Gharipour, M. Fleury, and I. J. Akpan, Occupancy detection of residential buildings using smart meter data: A large-scale study, Energy Build.183 (2019) 195–208.doi: 10.1016/J.ENBUILD.2018.11.025.
[11] R. E. Edwards, E. Lou, A. Bataw, S. N. Kamaruzzaman, and C. Johnson, Sustainability-led design: Feasibility of incorporating whole-life cycle energy assessment into BIM for refurbishment projects, J. Build. Eng. 24 (2019) 100697.doi: 10.1016/J.JOBE.2019.01.027.
[12] M. Karami, G. V. McMorrow, and L. Wang, Continuous monitoring of indoor environmental quality using an Arduino-based data acquisition system, J. Build. Eng. 19 (2018) 412–419.doi:10.1016/J.JOBE.2018.05.014.
[13] H. N. Rafsanjani and A. Ghahramani, Extracting occupants, energy-use patterns from Wi-Fi networks in office buildings, J. Build. Eng. 26 (2019) 100864.doi: 10.1016/J.JOBE.2019.100864.
[14] E. E. Dikel, G. R. Newsham, H. Xue, and J. J. Valdés, Potential energy savings from high-resolution sensor controls for LED lighting, Energy Build, 158 (2018) 43–53. doi: 10.1016/J.ENBUILD.2017.09.048.
[15] P. Mohandas, J. S. A. Dhanaraj, and X. Z. Gao, Artificial Neural Network based Smart and Energy Efficient Street Lighting System: A Case Study for Residential area in Hosur, Sustain Cities Soc, 48 (2019) 101499. doi:10.1016/J.SCS.2019.101499.
[16] N. Kuttybay et al., An Automated Intelligent Solar Tracking Control System with Adaptive Algorithm for Different Weather Conditions, IEEE International Conference on Automatic Control and Intelligent Systems, I2CACIS 2019 – Proceedings.2019,2019 315–319.doi: 10.1109/I2CACIS.2019.8825098.
[17] N. Kuttybay et al., Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions, Energies . 13 (2020) 5226. doi: 10.3390/EN13195226.
[18] A. K. Saymbetov et al., Method for Increasing the Efficiency of a Biaxial Solar Tracker with Exact Solar Orientation, Applied Solar Energy . 54, (2018) 126–130.doi: 10.3103/S0003701X18020111.
[19] F. Sánchez Sutil and A. Cano-Ortega, Smart Public Lighting Control and Measurement System Using LoRa Network, Electronics . 9 (2020) 124.doi: 10.3390/ELECTRONICS9010124.
[20] A. Seyedolhosseini, N. Masoumi, M. Modarressi, and N. Karimian, Daylight adaptive smart indoor lighting control method using artificial neural networks, J. Build. Eng. 29 (2020) 101141. doi:10.1016/J.JOBE.2019.101141.
[21] B. C. Mishra, A. S. Panda, N. K. Rout, and S. K. Mohapatra, A Novel Efficient Design of Intelligent Street Lighting Monitoring System Using ZigBee Network of Devices and Sensors on Embedded Internet Technology, Proceedings - 2015 14th International Conference on Information Technology, ICIT. 2015,2016, 200–205.doi:10.1109/ICIT.2015.37.
[22] F. Leccese, M. Cagnetti, and D. Trinca, A Smart City Application: A Fully Controlled Street Lighting Isle Based on Raspberry-Pi Card, a ZigBee Sensor Network  and WiMAX, Sensors. 14 (2014) 24408-24424. doi:10.3390/S141224408.
[23] D. Sunehra and S. Rajasri, Automatic street light control system using wireless sensor networks, IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, ICPCSI. 2017, 2018, 2915–2919. doi:10.1109/ICPCSI.2017.8392257.
[24] B. Kul, “IoT-GSM-based high-efficiency LED street light control system (IoT-SLCS),” 2017 26th International Scientific Conference Electronics, ET 2017 - Proceedings, 2017,2017, 1–5.doi: 10.1109/ET.2017.8124361.
[25] J. Mathew, R. Rajan, and R. Varghese, IOT BASED STREET LIGHT MONITORING & CONTROL WITH LoRa/LoRaWAN NETWORK, Int. Res. J. Eng. Technol., 2019.
[26] S. Chen, G. Xiong, J. Xu, S. Han, F. Y. Wang, and K. Wang, The Smart Street Lighting System Based on NB-IoT, Proceedings 2018 Chinese Automation Congress, CAC 2018, pp. 1196–1200, Jan. 2019, doi:10.1109/CAC.2018.8623281.
[27] A. Seyedolhosseini, N. Masoumi, M. Modarressi, and N. Karimian, Zone Based Control Methodology of Smart Indoor Lighting Systems Using Feedforward Neural Networks, 9th International Symposium on Telecommunication: With Emphasis on Information and Communication Technology, IST 2018, pp. 201–206, Mar. 2019, doi:10.1109/ISTEL.2018.8661118.
[28] H. N. Rafsanjani and A. Ghahramani, Towards utilizing internet of things (IoT) devices for understanding individual occupants’ energy usage of personal and shared appliances in office buildings, J. Build. Eng. 27 (2020) 100948. doi:10.1016/J.JOBE.2019.100948.
[29] I. Nadji Maachi, A. Mokhtari, and M. E. A. Slimani, The natural lighting for energy saving and visual comfort in collective housing: A case study in the Algerian building context, J. Build. Eng. 24 (2019) 100760. doi:10.1016/J.JOBE.2019.100760.
[30] A. Ożadowicz and J. Grela, Energy saving in the street lighting control system—a new approach based on the EN-15232 standard, Energy Effic.10 (2017) 563–576.doi: 10.1007/S12053-016-9476-1/TABLES/1.
[31] T. W. Kruisselbrink, R. Dangol, and E. J. van Loenen, A comparative study between two algorithms for luminance-based lighting control, Energy Build. 228 (2020) 110429.doi: 10.1016/J.ENBUILD.2020.110429.
[32] I. Chew, V. Kalavally, N. W. Oo, and J. Parkkinen, Design of an energy-saving controller for an intelligent LED lighting system, Energy Build.120 (2016) 1–9. doi: 10.1016/J.ENBUILD.2016.03.041.
[33] S. Tang, V. Kalavally, K. Y. Ng, and J. Parkkinen, Development of a prototype smart home intelligent lighting control architecture using sensors onboard a mobile computing system, Energy Build. 138 (2017) 368–376. doi:10.1016/J.ENBUILD.2016.12.069.
[34] A. Haans and Y. A. W. de Kort, Light distribution in dynamic street lighting: Two experimental studies on its effects on perceived safety, prospect, concealment, and escape, J Environ Psychol. 32 (2012) 342–352. doi:10.1016/J.JENVP.2012.05.006.
[35] J. L. Poza-Lujan, J. J. Sáenz-Peñafiel, J. L. Posadas-Yagüe, J. A. Conejero, and J. C. Cano, Use of receiver operating characteristic curve to evaluate a street lighting control system, IEEE Access, 9 (2021) 144660–144675. doi:10.1109/ACCESS.2021.3121669.
[36] B. Chachuat, B. Srinivasan, and D. Bonvin, Adaptation strategies for real-time optimization, Comput Chem Eng.33 (2009) 1557–1567.doi: 10.1016/J.COMPCHEMENG.2009.04.014.
[37]  “Key Factors to Consider in the Street Lighting Design.” https://www.zgsm-china.com/blog/key-factors-to-consider-in-the-design-of-road-lighting-projects.html (accessed Jun. 24, 2022).
[38]  “SELECTION OF LIGHTING CLASSES a Comparative Analysis”.
[39] B. G. Bakshi and B. Roy, “Development & simulation of dynamic conductance based high intensity discharge lamp model driven by low frequency square wave electronic ballast,” 2016 IEEE 7th Power India International Conference, PIICON 2016, Oct. 2017, doi: 10.1109/POWERI.2016.8077164.
[40] J. M. Alonso, M. A. Dalla Costa, J. Cardesin, J. A. Martin-Ramos, and J. García-García, Small-signal modeling of discharge lamps through step response and its application to low-frequency square-waveform electronic ballasts, Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2006, 2006, 1021–1027. doi: 10.1109/APEC.2006.1620663.
[41] E. D. Enriquez, M. Ponce-Silva, M. Cotorogea, R. Osorio, and J. M. Alonso, HID lamps fed with square waveforms: Dimming and frequency effects on stability, current crest factor, and power factor, IEEE Trans Ind Appl, 46 (2010) 1667–1673. doi: 10.1109/TIA.2010.2051063.
[42] F. J. Azcondo, C. Brañas, R. Casanueva, and S. Bracho, Power-mode-controlled power-factor corrector for electronic ballast, IEEE Transactions on Industrial Electronics, 52 (2005) 56–65. doi:10.1109/TIE.2004.841140.
[43] C. M. Huang, T. J. Liang, R. L. Lin, and J. F. Chen, A novel constant power control circuit for HID electronic ballast, IEEE Trans Power Electron, 22 (2007) 1573–1582. doi: 10.1109/TPEL.2007.904159.
[44] M. Shen, Z. Qian, and F. Z. Peng, Design of a two-stage low-frequency square-wave electronic ballast for HID lamps, IEEE Trans Ind Appl, 39 (2003) 424–430.doi: 10.1109/TIA.2003.808921.
[45] C. Weisbuch, Historical perspective on the physics of artificial lighting, C R Phys, 19 (2018) 89–112. doi:10.1016/J.CRHY.2018.03.001.
[46] A. de Almeida, B. Santos, P. Bertoldi, and M. Quicheron, Solid state lighting review – Potential and challenges in Europe, Renewable and Sustainable Energy Reviews, 34 (2014) 30–48.doi: 10.1016/J.RSER.2014.02.029.
[47] M. Mustaq Khan, Case Study-Based Report on Solid-State Lighting, 2022 Advances in Science and Engineering Technology International Conferences, ASET 2022, 2022, doi: 10.1109/ASET53988.2022.9734891.
[48] J. Molina and L. Sainz, PSpice model of discharge lamps with saturated magnetic ballast and non-square arc voltage, Simul Model Pract Theory, 47 (2014) 210–220.doi: 10.1016/J.SIMPAT.2014.06.008.
[49]  “A study on the appropriate position for an illumination sensor for lighting control based on actual residence environments.” https://www.researchgate.net/publication/282823350_A_study_on_the_appropriate_position_for_an_illumination_sensor_for_lighting_control_based_on_actual_residence_environments (accessed Oct. 30, 2020).
[50] F. Li, D. Chen, X. Song, and Y. Chen, “LEDs: A promising energy-saving light source for road lighting,” in Asia-Pacific Power and Energy Engineering Conference, APPEEC, 2009. doi: 10.1109/APPEEC.2009.4918460.
[51] C. R. B. S. Rodrigues, P. S. Almeida, G. M. Soares, J. M. Jorge, D. P. Pinto, and H. A. C. Braga, An experimental comparison between different technologies arising for public lighting: LED luminaires replacing high pressure sodium lamps, in Proceedings - ISIE 2011: 2011 IEEE International Symposium on Industrial Electronics, 2011, pp. 141–146. doi: 10.1109/ISIE.2011.5984147.
[52] M. Beccali, M. Bonomolo, G. Ciulla, A. Galatioto, and V. Lo Brano, Improvement of energy efficiency and quality of street lighting in South Italy as an action of Sustainable Energy Action Plans. The case study of Comiso (RG), Energy, 92 (2015) 394–408.doi: 10.1016/j.energy.2015.05.003.
[53] M. S. Wu, H. H. Huang, B. J. Huang, C. W. Tang, and C. W. Cheng, Economic feasibility of solar-powered led roadway lighting, Renew Energy, 34 (2009) 1934–1938.doi: 10.1016/j.renene.2008.12.026.
[54] J. Fichtinger, J. M. Ries, E. H. Grosse, and P. Baker, Assessing the environmental impact of integrated inventory and warehouse management, Int J Prod Econ, 170 (2015) 717–729.doi: 10.1016/j.ijpe.2015.06.025.
[55] S. Yoomak, C. Jettanasen, A. Ngaopitakkul, S. Bunjongjit, and M. Leelajindakrairerk, Comparative study of lighting quality and power quality for LED and HPS luminaires in a roadway lighting system, Energy Build, 159 (2018) 542–557. doi: 10.1016/j.enbuild.2017.11.060.
[56] M. F. Pinto, T. R. F. Mendonca, F. Coelho, and H. A. C. Braga, Economic analysis of a controllable device with smart grid features applied to LED street lighting system, in IEEE International Symposium on Industrial Electronics, 2015 (2015) 1184–1189. doi: 10.1109/ISIE.2015.7281640.
[57] A. C. Duman and Ö. Güler, Techno-economic analysis of off-grid photovoltaic LED road lighting systems: A case study for northern, central and southern regions of Turkey, Build Environ,156 (2019) 89–98. doi:10.1016/J.BUILDENV.2019.04.005.
[58] Y. Jiang, S. Li, B. Guan, and G. Zhao, Cost effectiveness of new roadway lighting systems, Journal of Traffic and Transportation Engineering (English Edition), 2 (2015) 158–166.doi: 10.1016/j.jtte.2015.03.004.
[59]  “What is Network Topology? Best Guide to Types & Diagrams - DNSstuff.” https://www.dnsstuff.com/what-is-network-topology (accessed May 14, 2022).
[60] J. R. Cotrim and J. H. Kleinschmidt, LoRaWAN Mesh networks: A review and classification of multihop communication, Sensors (Switzerland), 20 (2020) 1–21. doi: 10.3390/s20154273.
[61] F. J. Bellido-Outeiriño, F. J. Quiles-Latorre, C. D. Moreno-Moreno, J. M. Flores-Arias, I. Moreno-García, and M. Ortiz-López, Streetlight Control System Based on Wireless Communication over DALI Protocol, Sensors , 16 (2016) 597. doi:10.3390/S16050597.
[62] S. Yoomak, C. Jettanasen, A. Ngaopitakkul, S. Bunjongjit, and M. Leelajindakrairerk, Comparative study of lighting quality and power quality for LED and HPS luminaires in a roadway lighting system, Energy Build, 159 (2018) 542–557. doi: 10.1016/J.ENBUILD.2017.11.060.
[63] Y. Jiang, S. Li, B. Guan, and G. Zhao, Cost effectiveness of new roadway lighting systems, Journal of Traffic and Transportation Engineering (English Edition), 2 (2015) 158–166.doi: 10.1016/J.JTTE.2015.03.004.
[64] A. Gutierrez-Escolar, A. Castillo-Martinez, J. M. Gomez-Pulido, J. M. Gutierrez-Martinez, Z. Stapic, and J. A. Medina-Merodio, A Study to Improve the Quality of Street Lighting in Spain, Energies , 8 (2015) 976-994. doi:10.3390/EN8020976.
[65]  “Smart Street Lighting System.” https://www.ijsr.net/get_abstract.php?paper_id=SUB156224 (accessed Feb. 23, 2021).
[66] M. S. Aslam et al., Exploring Multi-Hop LoRa for Green Smart Cities, IEEE Netw, 3 (2020) 225–231. doi:10.1109/MNET.001.1900269.
[67] R. Choi, S. G. Lee, and S. Lee, Reliability Improvement of LoRa with ARQ and Relay Node, Symmetry ,(2020) 552. doi:10.3390/SYM12040552.
[68] M. Diop and C. Pham, Increased flexibility in long-range IoT deployments with transparent and light-weight 2-hop LoRa approach, IFIP Wireless Days, 2019 (2019).doi: 10.1109/WD.2019.8734228.
[69] C.-T. Duong and M.-K. Kim, Reliable Multi-Hop Linear Network Based on LoRa, International Journal of Control and Automation, 11 (2018) 143–154. doi: 10.14257/ijca.2018.11.4.13.
[70] A. Abrardo and A. Pozzebon, A Multi-Hop LoRa Linear Sensor Network for the Monitoring of Underground Environments: The Case of the Medieval Aqueducts in Siena, Italy, Sensors , 19 (2019) 402.doi: 10.3390/S19020402.
[71] J. Dias and A. Grilo, Multi-hop LoRaWAN uplink extension: specification and prototype implementation Journal of Ambient Intelligence and Humanized Computing , 11 (2019) 945–959.doi: 10.1007/S12652-019-01207-3.
[72] M. Haubro, C. Orfanidis, G. Oikonomou, and X. Fafoutis, TSCH‐over‐LoRA : long range and reliable IPv6 multi‐hop networks for the internet of things, Internet Technology Letters, 3 (2020) e165. doi:10.1002/itl2.165.
[73] H. C. Lee and K. H. Ke, Monitoring of Large-Area IoT Sensors Using a LoRa Wireless Mesh Network System: Design and Evaluation, IEEE Trans Instrum Meas, 67 (2018) 2177–2187.doi: 10.1109/TIM.2018.2814082.
[74] C. H. Liao, G. Zhu, D. Kuwabara, M. Suzuki, and H. Morikawa, Multi-Hop LoRa Networks Enabled by Concurrent Transmission, IEEE Access, 5 (2017) 21430–21446.doi: 10.1109/ACCESS.2017.2755858.
[75] D. L. Mai and M. K. Kim, Multi-Hop LoRa Network Protocol with Minimized Latency, Energies (Basel), 13 (2020) 1368. doi: 10.3390/en13061368.
[76] G. Zhu, C. H. Liao, T. Sakdejayont, I. W. Lai, Y. Narusue, and H. Morikawa, Improving the Capacity of a Mesh LoRa Network by Spreading-Factor-Based Network Clustering, IEEE Access, 7 (2019) 21584–21596. doi:10.1109/ACCESS.2019.2898239.
[77] A. Cano-Ortega and F. Sánchez-Sutil, Performance Optimization LoRa Network by Artificial Bee Colony Algorithm to Determination of the Load Profiles in Dwellings, Energies, 13 (2020) 517.doi:10.3390/EN13030517.
[78] K. H. Phung, H. Tran, Q. Nguyen, T. T. Huong, and T. L. Nguyen, Analysis and assessment of LoRaWAN, Proceedings - 2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications and Computing, SIGTELCOM2018 (2018) 241–246.doi: 10.1109/SIGTELCOM.2018.8325799.
[79] T. Bouguera, J. F. Diouris, J. J. Chaillout, R. Jaouadi, and G. Andrieux, Energy Consumption Model for Sensor Nodes Based on LoRa and LoRaWAN, Sensors , 18 (2018) 2104.doi:10.3390/S18072104.
[80] T. Polonelli, D. Brunelli, A. Marzocchi, and L. Benini, Slotted ALOHA on LoRaWAN-Design, Analysis, and Deployment, Sensors, 19 (2019) 838. doi: 10.3390/S19040838.
[81] Y. Qu, Y. Yang, and Y. Li, Centralized Control System for Smart Street Lights Based on STM32 and LoRa, J Phys Conf Ser, 2216, 2022, 012045.doi: 10.1088/1742-6596/2216/1/012045.
[82] N. T. Tung, L. Minh Phuong, N. M. Huy, N. Hoai Phong, T. Le Dinh Huy, and N. Dinh Tuyen, Development and Implementation of Smart Street Lighting System based on Lora Technology, in Proceedings - 2019 International Symposium on Electrical and Electronics Engineering, ISEE 2019, 2019, 328–333. doi:10.1109/ISEE2.2019.8921028.
[83] Z. Kaleem, I. Ahmad, and C. Lee, Smart and Energy Efficient LED Street Light Control System Using ZigBee Network, Proceedings - 12th International Conference on Frontiers of Information Technology, FIT 2014 ,2015,361–365. doi:10.1109/FIT.2014.74.
[84] F. Leccese, Remote-control system of high efficiency and intelligent street lighting using a zig bee network of devices and sensors, IEEE Transactions on Power Delivery, 28 (2013) 21–28.doi:10.1109/TPWRD.2012.2212215.
[85] S. Il Hong, C. G. In, H. S. Ryu, J. C. Park, D. H. Yoon, and C. H. Lin, A development of LED-IT-sensor integration streetlight management system on ad-hoc, IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2011, 1331–1335.doi: 10.1109/TENCON.2011.6129024.
[86]  A. A. Siddiqui, A. W. Ahmad, H. K.Yang and C. Lee, ZigBee based energy efficient outdoor lighting control system. 2012 14th International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea (South), 2012,916-919.
[87] A. Lavric, V. Popa, and I. Finis, “The design of a street lighting monitoring and control system,” EPE 2012 - Proceedings of the 2012 International Conference and Exposition on Electrical and Power Engineering, 2012, 314–317. doi:10.1109/ICEPE.2012.6463912.
[88] C. Li, J. Wu, and X. He, “Realization of a general LED lighting system based on a novel power line communication technology, Conferene Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2010, 2300–2304. doi: 10.1109/APEC.2010.5433557.
[89] R. Caponetto, G. Dongola, L. Fortuna, N. Riscica, and D. Zufacchi, “Power consumption reduction in a remote controlled street lighting system,” SPEEDAM 2008 - International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2008,428–433.doi: 10.1109/SPEEDHAM.2008.4581293.
[90] F. Domingo-Pérez, A. Gil-De-Castro, J. M. Flores-Arias, F. J. Bellido-Outeiriño, and A. Moreno-Muñoz, Lighting control system based on DALI and wireless sensor networks, in 2012 IEEE PES Innovative Smart Grid Technologies, ISGT 2012, 2012. doi: 10.1109/ISGT.2012.6175666.
[91] T. J. Liang, J. F. Huang, and P. K. Yadav, “Design and implementation of dimmable LED control circuit with DALI protocol,” PECON 2016 - 2016 IEEE 6th International Conference on Power and Energy, Conference Proceeding, 2017, 121–126. doi: 10.1109/PECON.2016.7951545.
[92]  “Road lighting control systems - overview and case study — Aalto University’s research portal.” https://research.aalto.fi/en/publications/road-lighting-control-systems-overview-and-case-study (accessed Jul. 01, 2022).
[93] S. C. Wang, Y. H. Liu, Y. L. Chen, and J. Y. Chen, “Development of DALI-based electronic ballast with energy saving control for ultraviolet lamps,” IEEE International Conference on Industrial Informatics (INDIN), 2010, 214–219. doi:10.1109/INDIN.2010.5549427.
[94] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios, IEEE Wirel Commun, 23 (2016) 60–67.doi:10.1109/MWC.2016.7721743.
[95] A. Gehlot et al., Internet of Things and Long-Range-Based Smart Lampposts for Illuminating Smart Cities, Sustainability ,13 (2021) 6398.doi: 10.3390/SU13116398.
[96] V. Miz and V. Hahanov, Smart traffic light in terms of the cognitive road traffic management system (CTMS) based on the Internet of Things, Proceedings of IEEE East-West Design and Test Symposium, EWDTS 2014, 2014. doi:10.1109/EWDTS.2014.7027102.
[97] S. Y. Wang, Y. H. Cheng, and J. H. Tarng, Improving the Localization Accuracy for Sigfox Low-Power Wide Area Networks, Proc IEEE Symp Comput Commun, 2019 (2019).doi: 10.1109/ISCC47284.2019.8969734.
[98] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, Overview of Cellular LPWAN Technologies for IoT Deployment: Sigfox, LoRaWAN, and NB-IoT, 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018 (2018) 197–202.doi: 10.1109/PERCOMW.2018.8480255.
[99] A. Lavric, A. I. Petrariu, and V. Popa, Long Range SigFox Communication Protocol Scalability Analysis under Large-Scale, High-Density Conditions, IEEE Access, 7 (2019) 35816–35825.doi: 10.1109/ACCESS.2019.2903157.
[100] H. Mroue, A. Nasser, S. Hamrioui, B. Parrein, E. Motta-Cruz, and G. Rouyer, MAC layer-based evaluation of IoT technologies: LoRa, SigFox and NB-IoT, 2018 IEEE Middle East and North Africa Communications Conference, MENACOMM 2018, 2018, 1–5.doi: 10.1109/MENACOMM.2018.8371016.
[101]  “Symphony Link vs LoRaWAN-Difference between Symphony Link and LoRaWAN.” https://www.rfwireless-world.com/Terminology/Symphony-Link-vs-LoRaWAN.html (accessed Feb. 24, 2021).
[102]  “LTE-M vs LoRa: Who Will Win The IoT Race? | Lanner.” https://www.lanner-america.com/blog/lte-m-vs-lora-will-win-iot-race/ (accessed May 16, 2022).
[103]  “IEEE Xplore Full-Text PDF:” https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8656979 (accessed Feb. 24, 2021).
[104] R. Elberg and E. Woods, “Smart Street Lighting as a Smart City Platform Applications and Connectivity Best Practices,” 2017.
[105] E. Bingol, M. Kuzlu, and M. Pipattanasompom, A LoRa-based Smart Streetlighting System for Smart Cities, in 7th International Istanbul Smart Grids and Cities Congress and Fair, ICSG 2019 - Proceedings, Apr. 2019, 66–70. doi:10.1109/SGCF.2019.8782413.
[106] M. S. A. Muthanna, M. M. A. Muthanna, A. Khakimov, and A. Muthanna, Development of intelligent street lighting services model based on LoRa technology, in Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus,2018,2018, 90–93. doi:10.1109/EIConRus.2018.8317037.
[107] Y. Sarr, B. Gueye, and C. Sarr, Performance analysis of a smart street lighting application using LoRa wan, in Proceedings - 2019 International Conference on Advanced Communication Technologies and Networking, CommNet 2019, 2019. doi: 10.1109/COMMNET.2019.8742356.
[108] P. Siagian and E. Fernando, LoRaWAN Intelligent Outdoor Smart Street Lighting, in 2020 IEEE International Conference on Communication, Networks and Satellite, Comnetsat 2020 – Proceedings.. 2020, 198–203. doi:10.1109/Comnetsat50391.2020.9328994.
[109] L. Lian and L. Li, “Wireless dimming system for LED Street lamp based on ZigBee and GPRS,” in 2012 3rd International Conference on System Science, Engineering Design and Manufacturing Informatization, ICSEM 2012, 2012, vol. 2,2012, 100–102. doi: 10.1109/ICSSEM.2012.6340818.
[110]  “ZigBee based energy efficient outdoor lighting control system - IEEE Conference Publication.” https://ieeexplore.ieee.org/document/6174766 (accessed Feb. 26, 2021).
[111] Y. S. Chang, Y. H. Chen, and S. K. Zhou, “A smart lighting system for greenhouses based on Narrowband-IoT communication,” in Proceedings of Technical Papers - International Microsystems, Packaging, Assembly, and Circuits Technology Conference, IMPACT, vol. 2018,2019, 275–278. doi: 10.1109/IMPACT.2018.8625804.
[112]  “Intelligent Street Light System Based on NB-IoT and Energy-saving Algorithm - IEEE Conference Publication.” https://ieeexplore.ieee.org/document/8448306 (accessed Feb. 26, 2021).
[113] K. Ramachandran, R. Kokku, H. Zhang, and M. Gruteser, “Symphony: Synchronous two-phase rate and power control in 802.11 WLANs,” IEEE/ACM Transactions on Networking, 18 (2010) 1289–1302.doi:10.1109/TNET.2010.2040036.
[114] P. Du Toit, C. Kruger, G. P. Hancke, and T. D. Ramotsoela, Smart street lights using power line communication, in 2017 IEEE AFRICON: Science, Technology and Innovation for Africa, AFRICON 2017, 2017, 1581–1586. doi:10.1109/AFRCON.2017.8095718.
[115] A. Sittoni, D. Brunelli, D. Macii, P. Tosato, and D. Petri, “Street lighting in smart cities: A simulation tool for the design of systems based on narrowband PLC,” in 2015 IEEE 1st International Smart Cities Conference, ISC2 2015, 2015. doi:10.1109/ISC2.2015.7366195.
[116] S. Smys, A. Basar, P. Mohammad Bin, and H. Wang, Artificial Neural Network Based Power Management for Smart Street Lighting Systems, Journal of Artificial Intelligence and Capsule Networks, 2020. doi: 10.36548/jaicn.2020.1.005.
[117] P. Mohandas, J. S. A. Dhanaraj, and X. Z. Gao, Artificial Neural Network based Smart and Energy Efficient Street Lighting System: A Case Study for Residential area in Hosur, Sustain Cities Soc, 48 (2019) 101499. doi:10.1016/j.scs.2019.101499.
[118] M. Burgos-Payán, F. J. Correa-Moreno, and J. M. Riquelme-Santos, Improving the energy efficiency of street lighting. A case in the South of Spain, 9th International Conference on the European Energy Market, EEM 12, 2012, doi:10.1109/EEM.2012.6254664.
[119] C. Paoli, C. Voyant, M. Muselli, and M. L. Nivet, Forecasting of preprocessed daily solar radiation time series using neural networks, Solar Energy, 84 (2010) 2146–2160.doi: 10.1016/J.SOLENER.2010.08.011.
[120] I. Wojnicki, S. Ernst, L. Kotulski, and A. Sȩdziwy, “Advanced street lighting control,” Expert Syst Appl, 41 (2014) 999–1005. doi: 10.1016/J.ESWA.2013.07.044.
[121] A. Del Corte-Valiente, J. L. Castillo-Sequera, A. Castillo-Martinez, J. M. Gómez-Pulido, and J. M. Gutierrez-Martinez, An Artificial Neural Network for Analyzing Overall Uniformity in Outdoor Lighting Systems, Energies, 10 (2017) 175. doi: 10.3390/EN10020175.
[122] H. R. Ghosh, N. C. Bhowmik, and M. Hussain, Determining seasonal optimum tilt angles, solar radiations on variously oriented, single and double axis tracking surfaces at Dhaka, Renew Energy, 35 (2010) 1292–1297. doi:10.1016/J.RENENE.2009.11.041.
[123] O. Perpiñan, E. Lorenzo, M. A. Castro, and R. Eyras, Energy payback time of grid connected PV systems: Comparison between tracking and fixed systems, Progress in Photovoltaics: Research and Applications, 17 (2009) 137–147. doi:10.1002/PIP.871.
[124] M. Bernardi, N. Ferralis, J. H. Wan, R. Villalon, and J. C. Grossman, Solar energy generation in three dimensions, Energy Environ Sci, 5 (2012) 6880–6884.doi: 10.1039/C2EE21170J.
[125] B. J. Huang, W. L. Ding, and Y. C. Huang, Long-term field test of solar PV power generation using one-axis 3-position sun tracker, Solar Energy, 85 (2011) 1935–1944.doi: 10.1016/J.SOLENER.2011.05.001.
[126] S. Seme and G. Štumberger, A novel prediction algorithm for solar angles using solar radiation and Differential Evolution for dual-axis sun tracking purposes, Solar Energy, 85 (2011) 2757–2770.doi:10.1016/J.SOLENER.2011.08.031.
[127] A. Rhif, A position control review for a photovoltaic system: Dual axis Sun Tracker, IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 28 (2011) 479–485.doi:10.4103/0256-4602.90755.
[128] Y. Ma, G. Li, and R. Tang, Optical performance of vertical axis three azimuth angles tracked solar panels, Appl Energy, 88 (2011) 1784–1791. doi: 10.1016/J.APENERGY.2010.12.018.
[129] C. Y. Lin and P. Y. Chen, Precision tracking control of a biaxial piezo stage using repetitive control and double-feedforward compensation, Mechatronics, 21 (2011) 239–249.doi:10.1016/J.MECHATRONICS.2010.11.002.
[130] T. Maatallah, S. El Alimi, and S. Ben Nassrallah, “Performance modeling and investigation of fixed, single and dual-axis tracking photovoltaic panel in Monastir city, Tunisia,” Renewable and Sustainable Energy Reviews, 15 (2011) 4053–4066.doi: 10.1016/J.RSER.2011.07.037.
[131] R. Eke and A. Senturk, Performance comparison of a double-axis sun tracking versus fixed PV system, Solar Energy, 86 (2012) 2665–2672. doi: 10.1016/J.SOLENER.2012.06.006.
[132] C. Lertsatitthanakorn, M. Rungsiyopas, A. Therdyothin, and S. Soponronnarit, Performance Study of a Double-Pass Thermoelectric Solar Air Collector with Flat-Plate Reflectors, J. Electron. Mater. 41 (2011) 999–1003. doi:10.1007/S11664-011-1838-Z.
[133] L. Alexandru and P. Valentin, Hardware design of a street lighting control system with vehicle and malfunction detection, 2013 - 8th International Symposium on Advanced Topics in Electrical Engineering, ATEE 2013, 2013. doi:10.1109/ATEE.2013.6563532.
[134] R. Pantoni and D. Brandão, A confirmation-based geocast routing algorithm for street lighting systems, Computers & Electrical Engineering, 37 (2011) 1147–1159. doi: 10.1016/J.COMPELECENG.2011.06.004.
[135] Y. M. Yusoff, R. Rosli, M. U. Karnaluddin, and M. Samad, Towards smart street lighting system in Malaysia, in IEEE Symposium on Wireless Technology and Applications, ISWTA, (2013) 301–305. doi: 10.1109/ISWTA.2013.6688792.
[136] A. M. Mustafa, O. M. Abubakr, A. H. Derbala, E. Ahmed, and B. Mokhtar, Towards a smart highway lighting system based on road occupancy: Model design and simulation, Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, vol. 179 (2017) 22–31.doi: 10.1007/978-3-319-49622-1_4/COVER/.
[137]  “WSN for intelligent street lighting system | IEEE Conference Publication | IEEE Xplore.” https://ieeexplore.ieee.org/abstract/document/5553384 (accessed Jul. 01, 2022).
[138] F. Sanchez-Sutil and A. Cano-Ortega, Smart regulation and efficiency energy system for street lighting with LoRa LPWAN, Sustain Cities Soc, 70 (2021) 102912. doi: 10.1016/J.SCS.2021.102912.
[139] R. Prasad, Energy Efficient Smart Street Lighting System in Nagpur Smart City using IoT-A Case Study, Jul. (2020) 100–103. doi: 10.1109/fmec49853.2020.9144848.
[140] F. S. El-Faouri, M. Sharaiha, D. Bargouth, and A. Faza, A smart street lighting system using solar energy, in IEEE PES Innovative Smart Grid Technologies Conference Europe, Jul. 2016. doi: 10.1109/ISGTEurope.2016.7856255.
[141] D. T. Delaney, G. M. P. O’Hare, and A. G. Ruzzelli, Evaluation of energy-efficiency in lighting systems using sensor networks, in BUILDSYS 2009 - Proceedings of the 1st ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Held in Conjunction with ACM SenSys 2009, 2009, 61–66. doi: 10.1145/1810279.1810293.
[142] E. E. Richman, A. L. Dittmer, and J. M. Keller, Field analysis of occupancy sensor operation: Parameters affecting lighting energy savings, J. Illum. Eng. Soc. 25 (1996) 83–92.doi:10.1080/00994480.1996.10748136.
[143] D. B. Floyd, D. S. Parker, and J. R. Sherwin, “Measured Field Performance and Energy Savings of Occupancy Sensors: Three Case Studies,” Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa, FL 32922-5703., Aug. 1996.
[144] D. Maniccia, B. Rutledge, M. S. Rea, and W. Morrow, Occupant use of manual lighting controls in private offices, J. Illum. Eng. Soc.28 (1999) 42–56.doi: 10.1080/00994480.1999.10748274.
[145] G. Y. Yun, H. Kim, and J. T. Kim, Effects of occupancy and lighting use patterns on lighting energy consumption, in Energy Build. 46 (2012)152–158. doi: 10.1016/j.enbuild.2011.10.034.
[146] J. D. Jennings, F. M. Rubinstein, D. DiBartolomeo, and S. L. Blanc, Comparison of control options in private offices in an advanced lighting controls testbed, J. Illum. Eng. Soc.             29 (2000) 39–60.doi: 10.1080/00994480.2000.10748316.
[147] A. D. Galasiu, G. R. Newsham, C. Suvagau, and D. M. Sander, Energy saving lighting control systems for open-plan offices: A field study, LEUKOS - Journal of Illuminating Engineering Society of North America, 4 (2007) 7–29. doi: 10.1582/LEUKOS.2007.04.01.001.
[148] T. M. Chung and J. Burnett, On the prediction of lighting energy savings achieved by occupancy sensors, Energy Engineering: J. Assoc. Energy Eng. 98 (2001) 6–23.doi:10.1080/01998590109509317.
[149] H. S. Lim, J. Ngarambe, J. T. Kim, and G. Kim, The Reality of Light Pollution: A Field Survey for the Determination of Lighting Environmental Management Zones in South Korea, Sustainability , 10 (2018) 374.doi: 10.3390/SU10020374.
[150] “Wayback Machine.” https://web.archive.org/web/20140913040117/http://www.nofs.navy.mil/about_NOFS/staff/cbl/Flagstaff.LC.2011.pdf (accessed Aug. 16, 2021).
[151]  “Wayback Machine.” https://web.archive.org/web/20120515210409/http://www.sanjoseca.gov/clerk/cp_manual/CPM_4_3.pdf (accessed Aug. 16, 2021).
[152]  “Why Astronomy Needs Low-Pressure Sodium Lighting”, doi: 10.1017/S0074180900163867.
[153] C. B. Luginbuhl, P. A. Boley, and D. R. Davis, The impact of light source spectral power distribution on sky glow, J Quant Spectrosc Radiat Transf, 139 (2014) 21–26.doi: 10.1016/J.JQSRT.2013.12.004.
[154] M. Aubé, J. Roby, and M. Kocifaj, Evaluating Potential Spectral Impacts of Various Artificial Lights on Melatonin Suppression, Photosynthesis, and Star Visibility, PLoS One, 8 (2013) 67798.doi:10.1371/JOURNAL.PONE.0067798.
[155] S. M. Pawson and M. K.-F. Bader, LED lighting increases the ecological impact of light pollution irrespective of color temperature, Ecol. Appl. 24 (2014) 1561–1568. doi: 10.1890/14-0468.1.
[156] O. O. Ordaz-García, M. Ortiz-López, F. J. Quiles-Latorre, J. G. Arceo-Olague, R. Solís-Robles, and F. J. Bellido-Outeiriño, DALI Bridge FPGA-Based Implementation in a Wireless Sensor Node for IoT Street Lighting Applications, Electronics , 9 (2020) 1803.doi: 10.3390/ELECTRONICS9111803.
[157] A. T. Murray and X. Feng, Public street lighting service standard assessment and achievement, Socioecon Plann Sci, 53 (2016) 14–22.doi: 10.1016/j.seps.2015.12.001.
[158] P. R. Boyce, S. Fotios, and M. Richards, Road lighting and energy saving, Light. Res. Technol.41 (2009) 245–260. doi:10.1177/1477153509338887.
[159] M. Y. Mukta, M. A. Rahman, A. T. Asyhari, and M. Z. Alam Bhuiyan, IoT for energy efficient green highway lighting systems: Challenges and issues, J. Network Comput. Appl.        158 (2020) 102575. doi:10.1016/j.jnca.2020.102575.
[160] R. B.Mohammed Abdelrahman et al., “A Comparison between IEEE 802.11a, b, g, n and ac Standards, 17 (2015) 26–29. doi: 10.9790/0661-17532629.
[161] E. Pietrosemoli, “Wireless standards for IoT: WiFi, BLE, SigFox, NB-IoT and LoRa”.
[162] A. F. Molisch et al., “IEEE 802.15.4a channel model-final report.”
[163]  “Bluetooth Basics - learn.sparkfun.com.” https://learn.sparkfun.com/tutorials/bluetooth-basics/all (accessed May 16, 2022).
[164] X. Fafoutis et al., BLE or IEEE 802.15.4: Which Home IoT Communication Solution is more Energy-Efficient?, EAI Endorsed Transactions on Internet of Things, 2 (2016) 151713.doi: 10.4108/eai.1-12-2016.151713.
[165] M. D. Aime, G. Calandriello, and A. Lioy, Dependability in wireless networks: Can we rely on WiFi?, IEEE Secur Priv, 5 (2007) 23–29. doi: 10.1109/MSP.2007.4.
[166]  “Symphony Link - Internet of Things Wireless LPWA.” https://www.link-labs.com/symphony (accessed Feb. 25, 2021).
[167]  “Symphony Module LL-RXR-27 Model Numbers.”
[168] L. Bao et al., Coverage analysis on NB-IoT and LOra in power wireless private network, in Procedia Comput. Sci. 131 (2018) 1032–1038. doi: 10.1016/j.procs.2018.04.252.
[169] S. Tabbane, “Session 5: NB-IoT Networks ITU Asia-Pacific Centre of Excellence Training On "Traffic engineering and advanced wireless network On ‘Traffic engineering and advanced wireless network planning.’”