Document Type : Research Paper

Authors

1 Centre de Développement des Technologies Avancées

2 Centre de Développement des Technologies Avancées, CDTA

Abstract

This paper demonstrates three SAW configurations' electrical and mechanical behaviors: a one-port resonator, a two-port resonator, and a delay line that works as temperature sensors of around 440 MHz characteristic frequencies. We investigate the sensitivity of the sensors for temperatures up to 200 °C. A linear behavior of the frequency shift versus temperature is observed; the resulting sensitivity of the sensors is evaluated at 22.74 ppm/°C for the one-port resonator, 23.17 for the two-port resonator, and 3.83 ns/°C for the delay line structure. The electromechanical coupling coefficient (k2) is 0.492 % for the delay line, 0.489 % for the one-port resonator, and 0.55% for the two-port resonator. The quality factor QFactor calculated from Y11 electrical input admittance is 2858 for the one-port resonator, 2977 for the delay line, and 2903 for the two-port resonator. The optimized piezoelectric layer thickness value, for the one port resonator, is hAlN=1.5µm.

Graphical Abstract

Highlights

 

  •  Study of three types of Surface Acoustic Wave (SAW) temperature sensors by FEM simulations.
  •   A theoretical model is developed for temperature change detection when the sensors are subjected to temperature variation.
  •   The developed model is associated with FEM models used to design a one-port and a two-port SAW resonator added to a delay line sensor.
  • A stack of three layers forms the sensors: Si, AlN, and Al.  

Keywords

Main Subjects

[1] R. Serhane, F. Hadj Larbi, A. Smatti. FEM Modeling of Sensitive Layer Swelling Effect on Microbalance Gas Sensor Based on TFBAR Resonator. J. Mater. Sci. Appl. 1 (2015) 161–167.
[2] E. Blampain, O. Elmazria, T. Aubert, B. Assouar, O. Legrani. Surface Acoustic Wave sensor based on AlN/Sapphire structure for high temperature and high frequency applications. Presented at IEEE SENSORS conference, (2011) 610-613. http//:  doi: 10.1109/ICSENS.2011.6126984.
[3] A. S. Shvetsov, S A. Sakharov, and O Elmazria. High Temperature SAW Resonator Sensors: Electrode Design Specifics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. TUFFC. (2017) 08447.
[4] J. Kuhn, F. Möller,SAW resonator temperature sensor, Sens.Actuators, A. 30 (1992) 73–75.https://doi.org/10.1016/0924-4247(92)80199-D
[5] N. Ramakrishnana, A. K. Namdeob, H. B. Nemadeb, R. P. Palathinkalb, Simplified Model for FEM Simulation of SAW Delay Line Sensor. Procedia Eng. 41 (2012) 1022–1027. https://doi.org/10.1016/j.proeng.2012.07.278.
[6] M. M. Elsherbini, M. F. Elkordy, A. M. Gomaa. Towards a Simple Model for SAW Delayline Using CAD. American J. Circuits, Syst. Signal Process. 1 (2015) 86–92.
[7] L. Shu, B. Peng, Z. Yang, R.Wang, S. Deng, X. Liu, High-Temperature SAW Wireless Strain Sensor with Langasite. Sensors. 15 (2015) 28531-28542. https://doi.org/10.3390/s151128531
[8] B. V. Lahidjani, H. Badri. A SAW Delay Line Sensor Combined with Micro-hotplate for Bio-chemical Applications. Sens. Transducers.J. 125 (2011) 247–255.
[9] B. François, C. Droit, G. Martin, J-M. Friedt, S. Ballandras. High temperature interrogation unit for wireless SAW-based temperature sensors. Procedia Eng. 25 (2011) 1273–1276. https://doi.org/10.1016/j.proeng.2011.12.314
[10] P. Nicolay, les capteurs à ondes élastiques de surface: applications pour la mesure des basses pressions et des hautes températures, Ph.D. dissertation. Université Henry Poincaré. France. 2007.
[11] G. Bruckner, J. Bardong. Wireless Readout of Multiple SAW Temperature Sensors. Sensors. 19 (2019) 3077. https://doi.org/10.3390/s19143077.
[12] T. Aubert, Contribution à l’élaboration de capteurs sans-fil opérant à très haute température (500-1000º) à base de dispositifs à ondes élastiques de surface: choix des matériaux constitutifs, Ph.D. dissertation., univ-lorraine. France,2018.
[13] O. Elmazria, T.Aubert. Wireless SAW sensor for high temperature applications: Material point of view. Presented at The International Society for Optical Engineering. Available: Proceedings of SPIE. (2011). http//: doi:10.1117/12.889165
[14] M. A. Odintzov, N. I. Sushentzov, L. Kudryavtzev. AlN films for SAW sensors. Sens. Actuators, A. 28 (1991) 203–206. https://doi.org/10.1016/0924-4247(91)85008-C.
[15] X. Ye, Q. Wang, L. Fang, X. Wang, B. Liang. Comparative Study of SAW Temperature Sensor Based on Different Piezoelectric Materials and Crystal Cuts for Passive Wireless Measurement. Presented at IEEE SENSORS Conference. (2010) 585-588. http//:doi: 10.1109/ICSENS.2010.5690462.
[16] N. Belkhelfa, R. Serhane. Temporal study of one-port and two-port SAW delay lines for temperature sensing. Presented at International Conference on Information systems and Advanced Technologies (IEEE-ICISAT). (2021) 1-5. http//:  doi: 10.1109/ICISAT54145.2021.9678459
[17] Z. Zhousheng, R. Guoxing, M. Aiqing, Z. Iu, L. Feng. Design of Passive Wireless resonance type SAW Temperature Sensor. Presented at International Conference on Power System Technology (POWERCON). (2014) 1451-1456. http//: doi: 10.1109/POWERCON.2014.6993739.  
[18] Y. Dai , S. Li , Q. Sun , Q. Peng , C. Gui , Y. Zhou , S. Liu. Properties of AlN film grown on Si (111). J. Cryst. Growth. 435 (2016) 76–83. https://doi.org/10.1016/j.jcrysgro.2015.11.016
[19] W. Dong, X. Ji, J. Huang, T. Zhou, T. Li, Y. Fan, K. Xu. Sensitivity enhanced temperature sensor: one-port 2D surface phononic crystal resonator based on AlN/sapphire. Semicond. Sci. Technol. 34 (2019) 055005–055014. http//: 10.1088/1361-6641/ab0a82
[20] Comsol. (2012). MEMS Module User’s Guide, Version 4.3a, Part No. CM020801. Available e-mail: HUMANIST@NYVM.ORG Available: https://cdn.comsol.com/doc/4.3/COMSOL_ReleaseNotes.pdf. accessed Jan. 17, 2018
[21] G. Bu, D. Ciplys, M. Shur, L.J. Schowalter, S. Schujman, R. Gaska. On the use of atmospheric plasmas as electromagnetic reflectors. Electron. Lett. 39 (2003) 876–880.
[22] M. B. Schulz, B. J. Matsinger, M. G. Hollan. Temperature Dependence of Surface Acoustic Wave Velocity on α Quartz. J. Appl. Phys. 41 (1970) 2755. https://doi.org/10.1063/1.1659311
[23] J. H. Kuypers, C M. Lin, G. Vigevani, A P. Pisano. Intrinsic Temperature Compensation of Aluminum Nitride Lamb Wave Resonators. Presented at IEEE International Frequency Control Symposium, (2008) 240-249. http//: doi: 10.1109/FREQ.2008.4622998.
[24] D.K. Pandey, R.R. Yadav. Temperature dependent ultrasonic properties of aluminum nitride. Appl. Acoust. 70 (2009) 412–415. https://doi.org/10.1016/j.apacoust.2008.05.011
[25] A B. Randles, J M. Tsai, P Kropelnicki, H Cai. Temperature Compensated AlN Based SAW., J. Autom. Control.Eng. 2 (2014) 191- 194. https://doi: 10.12720/joace.2.2.191-194
[26] N. Belkhelfa, R. Serhane. Silicon SAW parameters extraction and optimization using finite elements analysis. Presented at International Conference on Advanced Electrical Engineering. Available: ICAEE proceedings. (2019) 1-5. http//: doi: 10.1109/ICAEE47123.2019.9014723.