Document Type : Review Paper


1 chemical engineering ,university of technology ,Iraq,Baghdad

2 chemical engineering, university of technology, Iraq

3 Department of Industrial and Process Chemistry Higher Institute of Applied Science and Technology of Gabes Tunisia University of Gabes Omar Ibn. ElKhattab St. 6029 Gabes, Tunisia

4 Institute on Membrane Technology National Research Council of Italy (CNR-ITM)

5 Public Authority for Applied Education and Training (PAAET) College of Technological Studies (CTS) Department of Chemical Engineering Technology P.O.BOX 42325, Shuwaikh 70654, Kuwait


The pervaporation process (PV) is one of the membrane separation methods. This process is characterized by low cost, ease of installation, no chemicals added, and work at medium temperatures. The pervaporation process is part of a chain of water treatment processes and has high efficiency in removing pollutants, drying processes, and others. The present review paper would be reviewed the related articles to show the efficiency of the separation of the solution by the pervaporation process by focusing on research that deals with the separation of volatile organic compounds (VOCs) from water such as benzene and toluene. Benzene compound was used to prepare some of the chemicals such as styrene, phenol, cyclohexane, aniline, and polyester resins. Also, it is used in the production of drugs, dyes, insecticides, and plastics, moreover, it is produced from the refineries' operations and mixes with the water used in these operations, where its concentration reaches up to 16 ppm.  While toluene is a common solvent used for paints, glues, and printing ink. Toluene compound is produced from the refineries operations and mixes with the water used in these operations, where its concentration reaches up to 55 ppm, where these percentages for benzene and toluene are considered high and very dangerous to humans and the environment which causes many carcinogenic diseases. Also, researchers would be reviewing that worked on developing various types of membranes by adding different materials to improve membrane performance and increase the desired flux of components and separation factors with different working conditions.

Graphical Abstract


  • Pervaporation process (PV) is one of the membrane separation methods.
  • The pervaporation process is part of a chain of water treatment processes.
  • Various types of membranes were developed by adding different materials to improve membrane performance.
  • Benzene and toluene were removed from the water via the pervaporation process.


Main Subjects

[1] J. Kujawa, S. Cerneaux, and W. Kujawski, ‘Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes’, J. Memb. Sci.  474 (2015)11–19,
[2] U. Hömmerich and R. Rautenbach, ‘Design and optimization of combined pervaporation/distillation processes for the production of MTBE’, J. Memb. Sci. 146 (1998)53–64,
[3] P. Sampranpiboon, R. Jiraratananon, D. Uttapap, X. Feng, and R. Y. M. Huang, ‘Pervaporation separation of ethyl butyrate and isopropanol with polyether block amide (PEBA) membranes’, J. Memb. Sci.173 (2000) 53–59,
[4] W. Yoshida and Y. Cohen, ‘Removal of methyl tert-butyl ether from water by pervaporation using ceramic-supported polymer membranes’, J. Memb. Sci.229 (2004) 27–32,
[5] D. Zadaka-Amir, A. Nasser, S. Nir, and Y. G. Mishael, ‘Removal of methyl tertiary-butyl ether (MTBE) from water by polymer-zeolite composites’, Microporous Mesoporous Mater. 151(2012) 216–222,
[6] K. Zhou, Q. G. Zhang, G. L. Han, A. M. Zhu, and Q. L. Liu, ‘Pervaporation of water-ethanol and methanol-MTBE mixtures using poly (vinyl alcohol)/cellulose acetate blended membranes’, J. Memb. Sci. 448 (2013) 93–101,
[7] I. Levchuk, A. Bhatnagar, and M. Sillanpää, ‘Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water’, Sci. Total Environ. 476–477 (2014) 415–433,
[8] I. Rutkiewicz, W. Kujawski, and J. Namiesnik, ‘Pervaporation of volatile organohalogen compounds through polydimethylsiloxane membrane’, Desalination, 264 (2010)160–164,
[9]  C. Perego, R. Bagatin, M. Tagliabue, and R. Vignola, ‘Zeolites and related mesoporous materials for multi-talented environmental solutions’, Microporous Mesoporous Mater.166 (2013) 37–49,
[10] W. J. S. Xia,X.Dong,Y.Zhu,W.Wei,F.Xiangli, ‘Dehydration of ethylacetate– water mixtures using PVA/ceramic composite pervaporation membrane’, Sep. Purif. Technol. 77 (2011) 53–59,
[11] M. Peng, L. M. Vane, and S. X. Liu, ‘Recent advances in VOCs removal from water by pervaporation’, J. Hazard. Mater. 98 (2003) 69–90,
[12] Y. C. W.Yoshida, ‘Removal of methyltert-butylether from water by pervaporation using ceramic-supported polymer membranes’, J. Memb. Sci. 229 (2004) 27–32,
[13] Q. L. L. K. Zhou, Q.G.Zhang, G.L.Han, A.M.Zhu, ‘Pervaporation of water– ethanol and methanol–MTBE mixtures using poly(vinylalcohol)/cellulose acetate blended membranes’, J. Memb. Sci. 448 (2013) 93–101,
[14]  C. V. F.Doghieri,A.Nardella,G.C.Sarti, ‘Pervaporation of methanol– MTBE mixtures through modified poly(phenyleneoxide) membranes’, J. Memb. Sci.91 (1994)283–291,
[15] C. C. L. Gales,A.Mendes, ‘Removal of acetone,ethylacetate and ethanol vapors from air using ahollow fiber PDMS membrane module’, J. Memb. Sci. 197 (2002) 211–222,
[16]  M. P. W.Kujawski,S.Krajewska,M.Kujawski,L.Gazagnes,A.Larbot, ‘Pervaporation properties of fluoro alkyl silane(FAS)grafted ceramic mem- branese’, Desalination 205 (2007) 75–86,
[17] L. D. A.Urkiaga,N.Bolaño, ‘Removal of micro pollutants in aqueous streams by organophilic pervaporation’, Desalination 149 (2002) 55–60,
[18]  I. Ortiz, A. Urtiaga, R. Ibáñez, P. Gómez, and D. Gorri, ‘Laboratory- and pilot plant-scale study on the dehydration of cyclohexane by pervaporation’, J. Chem. Technol. Biotechnol. 81 (2006) 48–57,
[19] M. Sadrzadeh, M. Rezakazemi, and T. Mohammadi, Fundamentals and Measurement Techniques for Gas Transport in Polymers. Elsevier Inc., Amsterdam, The Netherlands, 2018.
[20] T. M. Mahnaz Shahverdi,Bahareh Baheri,Mashallah Rezakazemi,Elahe Motaee, ‘Pervaporation study of ethylene glycol dehydration through synthesized (PVA–4A)/polypropylene mixed matrix composite membranes’, Polym. Eng. Sci. 53 (2013) 1487–1493,
[21] U. Sander and P. Soukup, ‘Design and operation of a pervaporation plant for ethanol dehydration’, J. Memb. Sci. 36 (1988) 463–475,
[22]  D. R. Seok, S. G. Kang, and S. tak Hwang, ‘Use of pervaporation for separating azeotropic mixtures using two different hollow fiber membranes’, J. Memb. Sci. 33 (1987) 71–81,
[23] Z. Changluo, L. Moe, and X. Wei, ‘Separation of ethanol—water mixtures by pervaporation—membrane separation process’, Desalination 62 (1987) 299–313,
[24]  Z. Changluo, L. Moe, X. Wei, and J. Wenchang, ‘A study on characteristics and enhancement of pervaporation-membrane separation process’, Desalination 71 (1989) 1–18,
[25] C. E. Reineke, J. A. Jagodzinski, and K. R. Denslow, ‘Highly water selective cellulosic polyelectrolyte membranes for the pervaporation of alcohol-water mixtures’, J. Memb. Sci. 32 (1987) 207–221,
[26]  N. P. Jyothi, M. S.Reddy, Kakarla Raghava Soontarapa, K.Naveen, S.Raghu, Anjanapura V.Kulkarni, Raghavendra V.Suhas, D. P.Shetti and T. M. Nadagouda, Mallikarjuna N.Aminabhavi, ‘Membranes for dehydration of alcohols via pervaporation’, J. Environ. Manage. 242 (2019) 415–429,
[27]  A. Liu, Peng Chen, Mengmeng Ma, Yiqiang Hu, Chuan Zhang, Qiugen Zhu and Q. Liu, ‘A hydrophobic pervaporation membrane with hierarchical microporosity for high-efficient dehydration of alcohols’, Chem. Eng. Sci. 206 (2019)  489–498,
[28]  G. Dudek, M. Krasowska, R. Turczyn, A. Strzelewicz, D. Djurado, and S. Pouget, ‘Clustering analysis for pervaporation performance assessment of alginate hybrid membranes in dehydration of ethanol’, Chem. Eng. Res. Des. 144 (2019) 483–493,
[29] R. Castro-Muñoz, ‘Pervaporation: The emerging technique for extracting aroma compounds from food systems’, J. Food Eng. 253 (2019) 27–39,
[30]  Y. K. M. L. P. P.NunesbTai-ShungChung, ‘Recent membrane development for pervaporation processes’, Prog. Polym. Sci. 57 (2016) 1–31,
[31]  A. V. Klinov, R. R. Akberov, A. R. Fazlyev, and M. I. Farakhov, ‘Experimental investigation and modeling through using the solution-diffusion concept of pervaporation dehydration of ethanol and isopropanol by ceramic membranes HybSi’, J. Memb. Sci. 524 (2016) 321–333,
[32] P. S. Kulkarni, C. Brazinha, C. A. M. Afonso, and J. G. Crespo, ‘Selective extraction of natural products with benign solvents and recovery by organophilic pervaporation: Fractionation of D-limonene from orange peels’, Green Chem. 12 (2010) 1990–1994,
[33]  [33]           S. Sahin, ‘Principles of pervaporation for the recovery of aroma compounds and applications in the food and beverage industries’, Sep. Extr. Conc. Process. Food, Beverage Nutraceutical Ind. (2013) 219–243,  Sawston, United Kingdom,
[34]  C. C. Pereira, C. P. Ribeiro, R. Nobrega, and C. P. Borges, ‘Pervaporative recovery of volatile aroma compounds from fruit juices’, J. Memb. Sci. 274 (2006) 1–23,
[35]  A. Overington, M. Wong, J. Harrison, and L. Ferreira, ‘Concentration of dairy flavour compounds using pervaporation’, Int. Dairy J. 18 (2008) 835–848,
[36]  S. Y. Li, R. Srivastava, and R. S. Parnas, ‘Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane’, J. Memb. Sci. 363 (2010) 287–294,
[37]  C. M. Salgado, E. Fernández-Fernández, L. Palacio, F. J. Carmona, A. Hernández, and P. Prádanos, ‘Application of pervaporation and nanofiltration membrane processes for the elaboration of full flavored low alcohol white wines’, Food Bioprod. Process. 101 (2017) 11–21,
[38]  Á. Del Olmo, C. A. Blanco, L. Palacio, P. Prádanos, and A. Hernández, ‘Pervaporation methodology for improving alcohol-free beer quality through aroma recovery’, J. Food Eng. 133 (2014) 1–8,
[39] S. Moulik, V. Bukke, S. C. Sajja, and S. Sridhar, ‘Chitosan-polytetrafluoroethylene composite membranes for separation of methanol and toluene by pervaporation’, Carbohydr. Polym. 193 (2018) 28–38,
[40] F. Hassan Hassan Abdellatif, J. Babin, C. Arnal-Herault, C. Nouvel, J. L. Six, and A. Jonquieres, ‘Bio-based membranes for ethyl tert-butyl ether (ETBE) bio-fuel purification by pervaporation’, J. Memb. Sci. 524 (2017) 449–459,
[41]  B. Smitha, D. Suhanya, S. Sridhar, and M. Ramakrishna, ‘Separation of organic–organic mixtures by pervaporation—a review’, J. Memb. Sci. 241 (2004) 1–21,
[42]  J. Kononova, Svetlana V. Kremnev, Roman V. Suvorova, Elena I. Baklagina, Yulija G. Volchek, Boris Z. Uchytil, Petr Shabsels, Boris M. Romashkova, Kira A.Setnickova, Katerina Reznickova, ‘Pervaporation membranes with poly(γ-benzyl-l-glutamate) selective layers for separation of toluene–n-heptane mixtures’, J. Memb. Sci. 477 (2015) 14–24,
[43] X. He, T. Wang, J. Huang, J. Chen, and J. Li, ‘Fabrication and characterization of superhydrophobic PDMS composite membranes for efficient ethanol recovery via pervaporation’, Sep. Purif. Technol. 241 (2020) 116675,
[44] S. Hamouni, O. Arous, D. Abdessemed, G. Nezzal, and B. Van Der Bruggen, ‘Alcohol and Alkane Organic Extraction Using Pervaporation Process’, Macromol. Symp. (2019) 1–8,
[45] D. Unlu, ‘Concentration of aroma compounds by pervaporation process using polyvinyl chloride membrane’, Flavour Fragr J. 34 (2019) 493–505,
[46]  A. Kujawska, K. Knozowska, J. Kujawa, G. Li, and W. Kujawski, ‘Fabrication of PDMS based membranes with improved separation efficiency in hydrophobic pervaporation’, Separation and Purification Technology 234 (2020) 116092,
[47]  P. Peng and Y. Lan, ‘Modified Silica Incorporating into PDMS Polymeric Membranes for Bioethanol Selection’, Adv. Polym. Technol. 2019 (2019) 1–8,
[48] Y. Wang, Yong Mei, Xiang Ma, Tengfei Xue, Changjing Wu, Meidan Ji, Min Li, ‘Green recovery of hazardous acetonitrile from high-salt chemical wastewater by pervaporation’, J. Clean. Prod. 197 (2018) 742–749,
[49]  H. Ye, X. Yan, X. Zhang, and W. Song, ‘Pervaporation properties of oleyl alcohol ‑ filled polydimethylsiloxane membranes for the recovery of phenol from wastewater’, Iran. Polym. J. 26 (2017) 639–649,
[50]  Y. Wu, H. Tan, D. Li, and Y. Jin, ‘Pervaporation of Aqueous Solution of Acetaldehyde Through ZSM-5 Filled PDMS Composite Membrane’, Chinese J. Chem. Eng. 20 (2012) 625–632,
[51] M. Aliabadi, A. Aroujalian, and A. Raisi, ‘Removal of styrene from petrochemical wastewater using pervaporation process’, DES  284 (2012) 116–121,
[52]  N. D. Hilmioglu, A. E. Yildirim, and S. Tulbentci, ‘A Pervaporation Application for Treating Methyl tert - Butyl Ether ( MTBE ) -Contaminated Water / Wastewater’, Glob. Warm. Green Energy Technol. (2010) 555–563, springer, New York, USA,
[53]  M. Khayet, C. Cojocaru, and G. Zakrzewska-trznadel, ‘Studies on pervaporation separation of acetone , acetonitrile and ethanol from aqueous solutions’, Sep. Purif. Technol. 63 (2008) 303–310,
[54]  R. D. N. T.C. Bowen, H. Kalipcilar, J.L. Falconer, ‘Pervaporation of organic/water mixtures through B-ZSM-5 zeolite membranes on monolith supports’, J. Membr. Sci.,  215 (2003) 235–247,
[55] J. L. F. T.C. Bowen, S. Li, R.D. Noble, ‘Driving force for pervaporation through zeolite membranes’, J. Membr. Sci. 225 (2003) 165–176,
[56]  T. T. Ikegami, H. Yanagishita, D. Kitamoto, H. Negishi, K. Haraya and Sano, ‘Concentration of fermented ethanol by pervaporation using silicalite membranes coated with silicone rubber’, Desalination 149 (2002) 49–54,
[57]  J. Chen, H. Zhang, P. Wei, L. Zhang, and H. Huang, ‘Pervaporation behavior and integrated process for concentrating lignocellulosic ethanol through polydimethylsiloxane (PDMS) membrane’, Bioprocess Biosyst. Eng. 37 (2014) 183–191,
[58]  J. H. Chen, J. Z. Zheng, Q. L. Liu, H. X. Guo, W. Weng, and S. X. Li, ‘Pervaporation dehydration of acetic acid using polyelectrolytes complex (PEC)/11-phosphotungstic acid hydrate (PW11) hybrid membrane (PEC/PW11)’, J. Memb. Sci. 429 (2013) 206–213,
[59]  M. A. Sosa and J. Espinosa, ‘Feasibility analysis of isopropanol recovery by hybrid distillation/ pervaporation process with the aid of conceptual models’, Sep. Purif. Technol. 78 (2011) 237–244,
[60]  Q. W. Yeang, S. H. S. Zein, A. B. Sulong, and S. H. Tan, ‘Comparison of the pervaporation performance of various types of carbon nanotube-based nanocomposites in the dehydration of acetone’, Sep. Purif. Technol. 107 (2013) 252–263,
[61]  W. Zhang, H. Ma, Q. Wang, F. Zhao, and Z. Xiao, ‘Pretreatment technology for suspended solids and oil removal in an ethanol fermentation broth from food waste separated by pervaporation process’, Desalination 293 (2012) 112–117,
[62]  N. M. Farhan, S. S. Ibrahim, L. Leva, W. Yave, and Q. F. Alsalhy, ‘The combination of a new PERVAPTM membrane and molecular sieves enhances the ethanol drying process’, Chem. Eng. Process. - Process Intensif. 174 (2022) 108863,
[63]  T. L. M. Luccio, M. D., Borges, C. P., & Alves, ‘Economic analysis of ethanol and fructose production by selective fermentation coupled to pervaporation: Effect of membrane costs on process economics.’, Desalination  147 (2002) 161–166,
[64]  T. Y. Kaewkannetra, P., Chutinate, N., Moonamart, S., Kamsan, T., & Chiu, ‘Separation of ethanol from ethanolewater mixture and fermented sweet sorghum juice using pervaporation membrane reactor.’, Desalination 271 (2011) 88–91,
[65]  A. A. Babalou, N. Rafia, and K. Ghasemzadeh, ‘Integrated systems involving pervaporation and applications’, Pervaporation, Vap. Permeat. Membr. Distill. Princ. Appl. . Elsevier Ltd., New York, USA, (2015) 65–86,
[66]  Z. Szitkai, Z. Lelkes, E. Rev, and Z. Fonyo, ‘Optimization of hybrid ethanol dehydration systems’, Chem. Eng. Process. 41 (2002) 631–646,
[67]  J. B. Haelssig, J. Thibault, and A. Y. Tremblay, ‘Numerical investigation of Membrane Dephlegmation: A hybrid pervaporation-distillation process for ethanol recovery’, Chem. Eng. Process. Process Intensif. 50 (2011) 1226–1236,
[68]  J. B. Haelssig, A. Y. Tremblay, and J. Thibault, ‘A new hybrid membrane separation process for enhanced ethanol recovery: Process description and numerical studies’, Chem. Eng. Sci. 68 (2012) 492–505,
[69]  V. García, E. Pongrácz, P. S. Phillips, and R. L. Keiski, ‘From waste treatment to resource efficiency in the chemical industry: Recovery of organic solvents from waters containing electrolytes by pervaporation’, J. Clean. Prod. 39 (2013) 146–153,
[70]  S. S. Gaykawad, Y. Zha, P. J. Punt, J. W. van Groenestijn, L. A. M. van der Wielen, and A. J. J. Straathof, ‘Pervaporation of ethanol from lignocellulosic fermentation broth’, Bioresour. Technol. 129 (2013) 469–476,
[71]  N. Rafia, A. Aroujalian, and A. Raisi, ‘Pervaporative aroma compounds recovery from lemon juice using poly(octyl methyl siloxane) membrane’, J. Chem. Technol. Biotechnol. 86 (2011) 534–540,
[72]  G. Camera-Roda and F. Santarelli, ‘Intensification of water detoxification by integrating photocatalysis and pervaporation’, J. Sol. Energy Eng. Trans. ASME 129 (2007) 68–73,
[73]  L. Lin, Y. Zhang, and Y. Kong, ‘Recent advances in sulfur removal from gasoline by pervaporation’, Fuel  88 (2009) 1799–1809,
[74]  H. R. Mortaheb, F. Ghaemmaghami, and B. Mokhtarani, ‘A review on removal of sulfur components from gasoline by pervaporation’, Chem. Eng. Res. Des. 90 (2012) 409–432,
[75]  A. Basile, A. Figoli, and M. Khayet, Pervaporation, vapour permeation and membrane distillation: Principles and applications, Elsevier, New York, USA, 2015.
[76] R. W. Wijmans J.G.;Baker, ‘The solution-diffusion model:Areview’, J. Memb. Sci., v 107 (1995) 1–21,
[77]  S. C. George and S. Thomas, ‘Transport phenomena through polymeric systems’, Prog. Polym. Sci. 26 (2001) 985–1017,
[78]  G. Lipnizki, F., & Tr€agårdh, ‘Modelling of pervaporation: models to analyze and predict the mass transport in pervaporation’, Sep. Purif. Methods  30 (2001) 49–125,
[79] T. Sourirajan, S.;shiyao, B.;Matsuura, ‘An approach to membrane separation by pervaporation. In Proceedings of the Second International Conference on Pervaporation Processes in Chemical Industry’, san Antonio ,Tx,USA, 1987.
[80] T. Sourirajan, S.;shiyao, B.;Matsuura, ‘Reverse Osmosis and UF/Process Principles; National Research Council of Canada’, Ottawa,ON,USA, 4, 1985.
[81] J. P. Garcia Villaluenga and A. Tabe-Mohammadi, ‘A review on the separation of benzene/cyclohexane mixtures by pervaporation processes’, J. Memb. Sci. 169 (2000) 159–174,
[82]  E.G.Handcock(Ed.), ‘Benzene and its industrial Derivatives’, Wiley ,New York, 1975.
[83] J. K. E RAYMOND, D OTHMER, F ED, ‘Encyclopedia of Chemical Technology’, Wiley ,New York, 3 rd Editi, 1978.
[84] S. Malakar and P. Das Saha, ‘Estimation of VOC Emission in Petroleum Refinery ETP and Comparative Analysis with Measured VOC Emission Rate, Int. J. Eng. Sci.4 (2015) 20–29.
[85] H. A. Maddah, ‘Optimal operating conditions in designing photocatalytic reactor for removal of phenol from wastewater’, ARPN J. Eng. Appl. Sci. 11 (2016) 1799–1802.
[86] T. Uragami, Y. Matsuoka, and T. Miyata, ‘Removal of Dilute Benzene in Water through Ionic Liquid/Poly(Vinyl Chloride) Membranes by Pervaporation’, Journal of membrane science & Research 2 (2016) 20-25.
[87] H. Wu, L. Liu, F. Pan, C. Hu, and Z. Jiang, ‘Pervaporative removal of benzene from aqueous solution through supramolecule calixarene filled PDMS composite membranes’, Sep. Purif. Technol. 51(2006) 352–358,
[88]  F. Peng, F. Pan, D. Li, and Z. Jiang, ‘Pervaporation properties of PDMS membranes for removal of benzene from aqueous solution: Experimental and modeling’, Chem. Eng. J. 114 (2005) 123–129,
[89]  T. Uragami, T. Ohshima, and T. Miyata, ‘Removal of benzene from an aqueous solution of dilute benzene by various cross-linked poly(dimethylsiloxane) membranes during pervaporation’, Macromolecules 36 (2003) 9430–9436,
[90]  M. L. Williams, ‘CRC Handbook of Chemistry and Physics, 76th edition’, Occup. Environ. Med.,  53 (1996) 504
[91] S. Matavos-Aramyan, G. Bagheri, and M. H. Jazebizadeh, ‘Pervaporation Separation of Toluene from Aqueous Solutions Using Nano-Based PEBA/NaX Mixed Matrix Membrane’, Silicon 11 (2019) 1725–1730,
[92] S. Salehi Shahrabi, H. R. Mortaheb, J. Barzin, and M. R. Ehsani, ‘Pervaporative performance of a PDMS/blended PES composite membrane for removal of toluene from water’, Desalination 287 (2012) 281–289,
[93] B. Chovau, S.Dobrak, A.Figoli, A.Galiano, F.S.Simone Drioli, E.Sikdar, S. K.Van der Bruggen, ‘Pervaporation performance of unfilled and filled PDMS membranes and novel SBS membranes for the removal of toluene from diluted aqueous solutions’, Chem. Eng. J. 159 (2010) 37–46,
[94] D. Panek and K. Konieczny, ‘Pervaporative separation of toluene from wastewaters by use of filled and unfilled poly(dimethylosiloxane) (PDMS) membranes’, Desalination 241(2007) 197–200,
[95]  D. Panek and K. Konieczny, ‘Applying filled and unfilled polyether-block-amide membranes to separation of toluene from wastewaters by pervaporation’, Desalination 222 (2008) 280–285,
[96]  H. H. Nijhuis, M. H. V. Mulder, and C. A. Smolders, ‘Removal of trace organics from aqueous solutions. Effect of membrane thickness’, journal-of-membrane-science 61 (1991) 99-111.