Document Type : Research Paper

Authors

1 Institute of Northern Technical University, Department of Chemical and Oil Industries, Mosul, Iraq

2 university of Technology, Chemical Engineering Department, Baghdad, Iraq

3 University of Technology, Chemical Engineering Department, Baghdad, Iraq

4 Chemical Eng.Dep. Altrath University , Baghdad

5 Turath University College, Department of Oil & Gas Refining Engineering, Baghdad, Iraq

6 Medical instrumentation Techniques Engineering , Alhikma University College

7 Al-Turath University College, Department of Oil & Gas Refining Engineering, Baghdad, Iraq

8 University of Technology, Mechanical Engineering Department, Baghdad, Iraq

9 Mechanical Engineering and Energy Processes, Southern Illinois University

Abstract

Road transportation in urban areas may be considered a major source of environmental pollution. The purpose of this study is to determine the effectiveness of the oxidation of carbon dioxide gas emitted by an internal combustion engine. This is achieved using an asphaltic pavement coated with Cu/TiO2 nanoparticles by spraying and irradiating with white light under ambient conditions to reduce the air pollution problem (carbon monoxide) caused by vehicles. Using electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy, we determined the physicochemical and morphological characteristics of the photocatalyst. Following the characterization study, the photo-catalytic activity of the asphalt materials was determined. Experimental results showed that CO conversion positively depends on different conditions, including Cu loading, light intensity, and relative humidity. However, the gas flow rate showed a different trend. The optimal operating parameters were determined as follows: Cu loading (3.6% by weight), a flow rate of gas (1 L/min), relative humidity (30%), and light intensity (35 W/m2) to ensure the best photo-oxidation efficiency of 56.4% after three hours of operation. A mathematical correlation related to CO2 removal as a function of different operating conditions was found with a correlation factor of 0.975 and a variance equal to 0.964. Moreover, a kinetic pathway for photo-oxidation of CO at various oxygen concentrations was presented.

Graphical Abstract

Highlights

  • The effectiveness of the oxidation of carbon dioxide gas emitted by an internal combustion engine was studied.
  • The CO conversion positively depends on Cu loading, light intensity, and relative humidity.
  • The best photo-oxidation efficiency of 56.4% was achieved after three hours of operation.

Keywords

Main Subjects

[1] J. A. Poole,  C. S. Barnes, J. G. Demain,  J. A. Bernstein,  M. A. Padukudru,  W. J. Sheehan,  A. E. Nel,  Impact of weather and climate change with indoor and outdoor air quality in asthma: A Work Group Report of the AAAAI Environmental Exposure and Respiratory Health Committee, J. Allergy Clin. Immunol., 143 (2019) 1702-1710.‏ https://doi.org/10.1016/j.jaci.2019.02.018
[2] A. Talaiekhozani,  S. Rezania, K. H. Kim,  R. Sanaye,  A. M. Amani,  Recent advances in photocatalytic removal of organic and inorganic pollutants in air, J. Clean. Prod., 278 (2021) 123895.‏ https://doi.org/10.1016/j.jclepro.2020.123895
[3] M. Salman, X.Long, L. Dauda, C. N. Mensah, S. Muhammad, Different impacts of export and import on carbon emissions across 7 ASEAN countries: A panel quantile regression approach, Sci. Total Environ., 686 (2019) 1019-1029.‏ https://doi.org/10.1016/j.scitotenv.2019.06.019
[4] C.Callaghan , I.Fishtik , R. Datta , M.Carpenter , M. Chmielewski , A. Lugo, (2003). An improved microkinetic model for the water gas shift reaction on copper, Surf. Sci., 541 (2003) 21-30.‏ https://doi.org/10.1016/S0039-6028(03)00953-1
[5] M.M. Khan,   S. A. Ansari,  D. Pradhan,  M. O. Ansari,   D. H. Han, J. Lee ,  M. H. Cho, Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies, J. Mater. Chem.A, 2 (2014) 637-644. ‏ https://doi.org/10.1039/c3ta14052k
[6] Z. Bielan,  A. Sulowska,  S. Dudziak,  K. Siuzdak, J. Ryl,  A. Zielińska-Jurek, Defective TiO2 core-shell magnetic photocatalyst modified with plasmonic nanoparticles for visible light-induced photocatalytic activity, Catalysts, 10 (2020) 672.‏ https://doi.org/10.3390/catal10060672
[7] M. I. Litter,  Heterogeneous photocatalysis: transition metal ions in photocatalytic systems, Appl. Catal. B.Environ., 23 (1999) 89-114.‏ https://doi.org/10.1016/S0926-3373(99)00069-7
[8] X. Zhu,  Q. Zhou,  Y. Xia,  J. Wang, H. Chen,  Q. Xu,  S. Chen,  Preparation and characterization of Cu-doped TiO2 nanomaterials with anatase/rutile/brookite triphasic structure and their photocatalytic activity, J. Mater. Sci. Mater. Electron., 32 (2021) 21511-21524.‏ https://doi.org/10.1007/s10854-021-06660-5
[9] Z. Y. Shanian,  M. F. Abid,  K. A. Sukkar, Photodegradation of mefenamic acid from wastewater in a continuous flow solar falling film reactor, Desalin. Water Treat., 210 (2021) 22-30.‏ https://doi.org/10.5004/dwt.2021.26581
[10] V. Krishnakumar,  S. Boobas,  J. Jayaprakash, M. Rajaboopathi,  B. Han,  M. Louhi-Kultanen, Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light, J. Mater. Sci. Mater. Electron., 27 (2016) 7438-7447.‏ https://doi.org/10.1007/s10854-016-4720-1
[11] A. S. Belousov, E. V. Suleimanov, Application of metal-organic frameworks as an alternative for metal oxide-based photocatalysts for production of industrially important organic chemicals, Green Chem.,23 (2021) 6172-6204.‏ https://doi.org/10.1039/D1GC01690C
[12] S. B. Patil , P. S. Basavarajappa , N. Ganganagappa , M.S. Jyothi , A.V. Raghu , K. R. Reddy, Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification, Int. J. Hydrog. Energy., 44 (2019) 13022-13039.‏ https://doi.org/10.1016/j.ijhydene.2019.03.164
[13] Q. Li,  K. Wang,  S. Zhang,  M. Zhang,  J. Yang,  Z. Jin,  Effect of photocatalytic activity of CO oxidation on Pt/TiO2 by strong interaction between Pt and TiO2 under oxidizing atmosphere, J. Mol. Catal A. Chem ., 258 (2006) 83-88.‏ https://doi.org/10.1016/j.molcata.2006.05.030
[14] D. S. Selishchev,  N. S. Kolobov,  A. V. Bukhtiyarov,  E. Y. Gerasimov, A. I. Gubanov, D. V. Kozlov,Deposition of Pd nanoparticles on TiO2 using a Pd (acac) 2 precursor for photocatalytic oxidation of CO under UV-LED irradiation, Appl. Catal. B: Environ., 235 (2018) 214-224.‏ https://doi.org/10.1016/j.apcatb.2018.04.074
[15] H. B. Tosun,  A. Alver,  E. Baştürk,  Removal of Exhaust Gas with Advanced Solar Photocatalytic Asphalt Applications, KSCE J. Civ.Eng., 26 (2022) 13-24.‏ https://doi.org/10.1007/s12205-021-0654-0
[16] X. Wu,  J. Lang, Z. Sun,  F. Jin, Y. H. Hu, Photocatalytic conversion of carbon monoxide: from pollutant removal to fuel production, Appl. Catal. B: Environ., 295 (2021) 120312. https://doi.org/10.1016/j.apcatb.2021.120312
[17] M. Al-Jemeli, M. A. Mahmoud,  H. S. Majdi,  M. F. Abid,  H. M. Abdullah,  A. A. AbdulRazak, Degradation of Anti-Inflammatory Drugs in Synthetic Wastewater by Solar Photocatalysis, Catalysts, 11 (2021) 1330.‏ https://doi.org/10.3390/catal11111330
[18] R. M. Mohamed,  E. S. Aazam,  Preparation and characterization of platinum doped porous titania nanoparticles for photocatalytic oxidation of carbon monoxide, J. Alloys Compd., 509 (2011) 10132-10138.‏ https://doi.org/10.1016/j.jallcom.2011.08.059
[19] J. Liu,  R. Si,  H. Zheng,  Q. Geng,  W. Dai,  X. Chen, X. Fu, The promoted oxidation of CO induced by the visible-light response of Au nanoparticles over Au/TiO2, Catal. Commun., 26 (2012) 136-139.‏ https://doi.org/10.1016/j.catcom.2012.05.011
[20] Y. Jiao, H. Jiang, F. Chen, RuO2/TiO2/Pt ternary photocatalysts with epitaxial heterojunction and their application in CO oxidation, ACS Catal., 4 (2014) 2249-2257.‏ https://doi.org/10.1021/cs5001174
[21] Y.Zhang, Q. Li, C. Liu, X. Shan, X.Chen, W. Dai, X. Fu,The promoted effect of a metal-organic frameworks (ZIF-8) on Au/TiO2 for CO oxidation at room temperature both in dark and under visible light irradiation, Appl. Catal. B: Environ., https://doi.org/10.1016/j.apcatb.2017.10.027
[22] K. Yang, K. Huang,  L. Lin,  X. Chen,  W. Dai, X. Fu, Superior preferential oxidation of carbon monoxide in hydrogen-rich stream under visible light irradiation over gold loaded hedgehog-shaped titanium dioxide nanospheres: Identification of copper oxide decoration as an efficient promoter, J. Power Sources, 284 (2015) 194-205.‏ https://doi.org/10.1016/j.jpowsour.2015.03.003
[23] K. Yang,  J. Liu,  R. Si,  X. Chen,  W. Dai,  X. Fu,  Comparative study of Au/TiO2 and Au/Al2O3 for oxidizing CO in the presence of H2 under visible light irradiation, J. Catal., 317 (2014) 229-239.‏ https://doi.org/10.1016/j.jcat.2014.06.005
[24] H. Zheng,  H. Yang,  R. Si,  W. Dai, X. Chen, X. Wang,  X. Fu, The promoted effect of UV irradiation on the oxidation of CO in the presence and absence of hydrogen over the TiO2-supported Pt/Co-B bicomponent catalyst, Appl. Catal. B: Environ., 105 (2011) 243-247.‏ https://doi.org/10.1016/j.apcatb.2011.04.027
[25] W. Dai, X. Zheng,  H. Yang,  X. Chen,  X. Wang, P. Liu,  X. Fu,  The promoted effect of UV irradiation on preferential oxidation of CO in an H2-rich stream over Au/TiO2, J. Power Sources, 188 (2009) 507-514.‏ https://doi.org/10.1016/j.jpowsour.2008.12.028
[26] X. Tan, G. Cheng, X. Song,  X. Chen,  W. Dai,  X. Fu, The promoting effect of visible light on the CO+ NO reaction over the Pd/N–TiO 2 catalyst, Catal. Sci. Technol., 9 (2019) 3637-3646.‏ https://doi.org/10.1039/C9CY00466A
[27] K. Huang,  L. Lin,  K. Yang,  W. Dai, X. Chen,  X. Fu,  Promotion effect of ultraviolet light on NO+ CO reaction over Pt/TiO2 and Pt/CeO2–TiO2 catalysts, Appl. Catal. B: Environ., 179 (2015) 395-406.‏ https://doi.org/10.1016/j.apcatb.2015.05.044
[28] Z. Jiang, Y. Ma,  Y. Li, H. Liu,  Highly effective UV–Vis-IR and IR photothermocatalytic CO abatement on Zn doped OMS-2 nanorods, Appl. Surf. Sci., 483 (2019) 827-834.‏ https://doi.org/10.1016/j.apsusc.2019.04.022
[29] Z. Lou,  D. Yuan,  F. Zhang, Y. Wang,  Y. Li,  L. Zhu,  Fe3Si assisted Co3O4 nanorods: A case study of photothermal catalytic CO oxidation under ambient solar irradiation, Nano Energy, 62 (2019) 653-659.‏ https://doi.org/10.1016/j.nanoen.2019.05.080
[30] A. A. AbdulRazak,  Z. M. Shakor, S. Rohani, Optimizing Biebrich Scarlet removal from water by magnetic zeolite 13X using response surface method, J. Environ. Chem. Eng., 6 (2018) 6175-6183.‏ https://doi.org/10.1016/j.jece.2018.09.043
[31] Z. Majid, A. A. AbdulRazak,  W. A. H. Noori, Modification of zeolite by magnetic nanoparticles for organic dye removal, Arab. J. Sci. Eng., 44 (2019) 5457-5474.‏ https://doi.org/10.1007/s13369-019-03788-9
[32] A. M. Alotaibi, B. A. Williamson,  S. Sathasivam,  A. Kafizas, M. Alqahtani,  C. Sotelo-Vazquez,  I. P. Parkin, Enhanced photocatalytic and antibacterial ability of Cu-doped anatase TiO2 thin films: theory and experiment, ACS Appl. Mater. Interfaces, 12 (2020) 15348-15361.‏ https://doi.org/10.1021/acsami.9b22056
[33] M. F. Abid, S. T. Hamiedi,  S. I. Ibrahim,  S. K. Al-Nasri,  Removal of toxic organic compounds from synthetic wastewater by a solar photocatalysis system, Desalin. Water Treat., 105 (2018) 119-125.‏ https://doi.org/10.5004/dwt.2018.22017
[34] M. Fadhil, Hydrodynamic Characteristics Effect of Foam Control in a Three-Phase Fluidized Bed Column, J. Pet. Sci. Eng., 3 (2012) E 158 - E 185.‏ https://doi.org/10.52716/jprs.v3i2.84
[35] JIS TR Z 0018, Photocatalytic Materials—Air Purification Test Procedure; Japanese Standards Association: Tokyo, Japan, 2002.
[36] Hassan, M., Mohammad, L. N., Dylla, H., Cooper III, S. B., Mokhtar, A., & Asadi, S. A breakthrough concept in the preparation of highly-sustainable photocatalytic warm asphalt mixtures, In NSF Engineering Research and Innovation Conference, Atlanta, Georgia, ‏2011
[37] M. F. Abid, M. Ebrahim, O. Nafi,  L. Hussain,  N. Maneual, A. Sameer, Designing and operating a pilot plant for purification of industrial wastewater from toxic organic compounds by utilizing solar energy, Korean J. Chem. Eng., 31 (2014) 1194-1203.‏ https://doi.org/10.1007/s11814-014-0052-0
[38] G. Hüsken, M. Hunger,  H. J. H. Brouwers,  Experimental study of photocatalytic concrete products for air purification, Build. Environ., 44 (2009) 2463-2474.‏ https://doi.org/10.1016/j.buildenv.2009.04.010
[39] M. Hassan, L. N. Mohammad,  S. Asadi, H. Dylla, S. Cooper III, Sustainable photocatalytic asphalt pavements for mitigation of nitrogen oxide and sulfur dioxide vehicle emissions, J. Mater. Civ. Eng., 25 (2013) 365-371.‏ http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000613
[40] Ohama, Y., & Van Gemert, D. Application of titanium dioxide photocatalysis to construction materials: state-of-the-art report of the RILEM Technical Committee 194-TDP , Springer Science & Business Media, ‏2011. https://doi.org/10.1007/978-94-007-1297-3
[41] W. A. Jacoby, D. M. Blake,  R. D. Noble,  C. A. Koval,  Kinetics of the oxidation of trichloroethylene in air via heterogeneous photocatalysis, J. Catal., 157 (1995) 87-96.‏ https://doi.org/10.1006/jcat.1995.1270
[42] T. H. Lim,  S. M. Jeong,  S. D. Kim,  J. Gyenis,  Photocatalytic decomposition of NO by TiO2 particles, J. Photochem. Photobiol. A: Chem., 134 (2000) 209-217.‏ https://doi.org/10.1016/S1010-6030(00)00265-3
[43] J. V. S. de Melo,  G. Trichês,  P. J. P. Gleize,  J. Villena,  Development and evaluation of the efficiency of photocatalytic pavement blocks in the laboratory and after one year in the field, Constr. Build. Mater., 37 (2012) 310-319.‏ https://doi.org/10.1016/j.conbuildmat.2012.07.073
[44] D. V. Raorane,  P. S. Chavan,  S. R. Pednekar, R. S. Chaughule,  Green and rapid synthesis of copper-doped TiO2 nanoparticles with increased photocatalytic activity, Sci. Eng. Pub. Comp. Adv. Chem. Sci., 6 (2017) 13-20.‏  https://doi.org/10.14355/sepacs.2017.06.002
[45] L. S. Yoong, F. K. Chong,  B. K. Dutta,  Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light, Energy, 34 (2009) 1652-1661.‏https://doi.org/10.1016/j.energy.2009.07.024
[46] N. Z. Searle,  R. C. Hirt, Ultraviolet spectral energy distribution of sunlight, J. Opt. Soc. Am., 55 (1965) 1413-1421.‏ https://doi.org/10.1364/JOSA.55.001413