Document Type : Research Paper

Authors

1 Department of Physics, College of Education Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq

2 Directorate of Education of First Karkh, Ministry of Education, Baghdad, Iraq

Abstract

The free electron laser is considered one of these important and advanced inventions because it provides a laser beam within various wavelengths of the electromagnetic spectrum. In any laser system device, several parameters must be available on which the efficiency and performance of the laser system are dependent. The Pierce parameter is one of the important parameters in measuring the performance quality of the free electron laser. In this paper, the simulation results were obtained using the MATLAB program to show the important effect of the Pierce parameter on the performance of the free electron laser system. The simulation results showed that the values of the Pierce parameter ranged between (0.01 - 0.03) for the laser beam with long wavelengths, while it ranged between (0.001-0.0001) for the short wavelengths. The results showed an increase in the efficiency values of the free electron laser system with increasing the values of the Pierce parameter, which represents the ratio between the saturation power and the power of the electron; therefore, it can be used as a specific threshold to measure the efficiency of the laser system. Additionally, the simulation of the Pierce parameter has a direct relation to the small signal gain per unit length.

Graphical Abstract

Highlights

  • The effect of the Pierce parameter on the performance of the free electron laser system was shown using MATLAB simulation.
  • Pierce parameter values ranged between (0.01 - 0.03) for the laser beam with long wavelengths.
  • The Pierce parameter represents the ratio between the saturation power and electrons power.

Keywords

Main Subjects

[1] Varro, S. Free Electron Lasers: BoD–Books on Demand Rijeka, Croatia, 2012
[2] S. V. Benson, D. Douglas, G. R.  Neil, M. D. Shinn, The Jefferson Lab free electron laser program,                J. Phys. Conf. Ser. , 299 , 2011,  012014. https://doi.org/10.1088/1742-6596/299/1/012014
[3] H. A. Kamil,  T. A. K. Al-Aish, Determine the hazard level and biological effects for visible laser pointers, In: AIP Conference Proceedings, AIP Publishing LLC, Athens, Greece, 2437, 2022, 020016.https://doi.org/10.1063/5.0092595
[4] J. M. Madey, Stimulated emission of bremsstrahlung in a periodic magnetic field, J. Appl. Phys., 42 (1971) 1906-1913. https://doi.org/10.1063/1.1660466
[5] T. A. K. Al-Aish,  R. L. Jawad, H. A. Kamil, Design and simulation a high-energy free electron laser HEFEL, In: AIP Conference Proceedings, AIP Publishing LLC, Beirut, Lebanon, 2123, 2019, 020068.https://doi.org/10.1063/1.5116995
[6] T. A. K. Al-Aish, Analysis and study of the effect of atmospheric turbulence on laser weapon in Iraq, Baghdad Sci. J., 14 (2017) 426-437. https://doi.org/10.21123/bsj.2017.14.2.0427
[7] J. B. Murphy, C. Pellegrini, Generation of high-intensity coherent radiation in the soft-x-ray and vacuum-ultraviolet region, J. Opt. Soc. Am. B, 2 (1985) 259-264. https://doi.org/10.1364/JOSAB.2.000259
[8] Seggebrock, T. Conceptual design of a laser-plasma accelerator driven free-electron laser demonstration experiment. PhD Thesis, Munich University, Munich, Germany, 2015. https://doi.org/10.5282/edoc.18431
[9] Steiniger, K. High-Yield Optical Undulators Scalable to Optical Free-Electron Laser Operation by Traveling-Wave Thomson-Scattering. PhD Thesis, Dresden University of Technology, Dresden, Germany 2018.
[10] J. H.Tan, Y. F. Li, B. J. Zhu, C. Q. Zhu,  J. G.Wang, D. Z. Li, L. M. Chen, (Short-period high-strength helical undulator by laser-driven bifilar capacitor coil, Opt. Express, 27 (2019) 29676-29684. https://doi.org/10.1364/OE.27.029676
[11] Bergman, U., Yachandra, V. K. and Yano, J. X-Ray Free Electron Lasers: Applications in Materials, Chemistry and Biology, : Royal Society of Chemistry, Cambridge, UK, 2017. https://doi.org/10.1039/9781782624097
[12] Hannon, F. E. A High Average-Current Electron Source for the Jefferson Laboratory Free Electron Laser. PhD Thesis, Lancaster University, Lancaster, United Kingdom, 2008.
[13] C. Feng, H. X. Deng, Review of fully coherent free-electron lasers, Nucl. Sci. Tech., 29 (2018) 1-15. https://doi.org/10.1007/s41365-018-0490-1
[14] Mansfield, R. P. High Energy Solid State and Free Electron Laser Systems in Tactical Aviation. PhD Thesis, Naval Postgraduate School, California, USA, 2005.
[15] R. S. Romaniuk, POLFEL-free electron laser in Poland, Photonics Lett. Poland, 1 (2009) 103-105. https://doi.org/10.4302/plp.2009.3.01
[16] T.A.K. Al-Aish, H.A. Kamil, Ultra-short pulses generation of free electron laser, Sci. J. King Faisal Univ. basic appl. sci., 23 (2022)  28– 32. https://doi.org/10.37575/b/sci/220045
[17] T.A.K. Al-Aish, H.A.  Kamil, Design and establishment of an implementation to simulate and analyzethe tertiary undulator of the FEL, Sci. J. King Faisal Univ. basic appl. sci., 23 (2022) 39–42. https://doi.org/10.37575/b/sci/220036
[18] R. Bonifacio, C.  Pellegrini, L. M. Narducci, Collective instabilities and high‐gain regime free electron laser, In: AIP conference proceedings, AIP Publishing LLC, Upton, NY, USA, 118, 1984, 236. https://doi.org/10.1063/1.34640
[19] J. Pflueger, Undulator technology. In: Proceedings of the CAS–CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs, CERN Yellow Reports: School Proceedings, Hamburg, Germany, 31–10/06/2018. https://doi.org/10.23730/CYRSP-2018-001.55
[20] W. B. Colson, Theory of a free electron laser,          Phys. Lett. A, 59 (1976) 187-190. https://doi.org/10.1016/0375-9601(76)90561-2
[21] Z. Huang, K. J. Kim, Review of x-ray free-electron laser theory, Phys. Rev. ST Accel. Beams, 10 (2007) 034801. https://doi.org/10.1103/PhysRevSTAB.10.034801
[22] G. Dattoli, E. Di Palma, S.Licciardi, E. Sabia, Free Electron Laser High Gain Equation and Harmonic Generation, Appl. Sci., 11 (2020) 85. https://doi.org/10.3390/app11010085
[23] Kim, K. J., Huang, Z. and Lindberg, R. Synchrotron Radiation and Free-Electron Lasers: Cambridge university press, Cambridge, UK, 2017.
[24] Jaeschke, E. J., Khan, S., Schneider, J. R. and  Hastings, J. B. (Eds.). Synchrotron Light Sources and Free-Electron Lasers, Accelerator Physics, Instrumentation and Science Applications. : Springer International Publishing, Berlin/Heidelberg, Germany, 2016. https://doi.org/10.1007/978-3-030-23201-6
[25] P. Parvin, S. Z. Mortazavi, M. N. Korabaslo, Possibility for mode-locked operation of a femtosecond UV storage ring free-electron laser using a low-loss Fabry–Perot resonator, Opt. Laser Technol., 44 (2012) 2161-2167. https://doi.org/10.1016/j.optlastec.2012.03.008
[26] Dattoli, G.  Renieri, A. Torre, A. Lectures on The Free Electron Laser Theory and Related Topics: World Scientific, London, UK 1993. 
[27] A. Penzkofer, Passive Q-switching and mode-locking for the generation of nanosecond to femtosecond pulses, Appl. Phys. B, 46 (1988) 43-60. https://doi.org/10.1007/BF00698653
[28] Davis, C. C. Lasers and electro-optics: Fundamentals and Engineering: Cambridge New York, USA University Press. 1996