Document Type : Research Paper

Authors

1 Mechanical Engineering Dept, College of Engineering, Sulaimani Polytechnic University, Sulaimani, Kurdistan Region, Iraq

2 Mechanical Engineering Dept, College of Engineering, University of Tehran, Tehran, Iran.

Abstract

The oxidation of aluminum machined chips makes successful recycling via the traditional re-melting technique difficult. A viable solution to this problem is to utilize solid-state recycling to transform aluminum machined chips directly into semi-finished goods, eliminating the costs of the re-melting process and minimizing CO2 emissions. In the present study, Al-6061 alloy chips have been recycled using hot extrusion followed by severe plastic deformation at ambient temperature to examine the material's mechanical properties and microstructures. The current study investigates the effects of equal channel angular pressing samples after (1, 2, and 4) cycles using a die with  90° and  20° angles, a strain of 1 was applied each pass for a maximum of four cycles at room temperature, through different routes (BC, C) on the mechanical properties of recycled specimens before and after the process. Observations showed a significant improvement in the characteristics of recycled chips exposed to hot extrusion followed by the ECAP technique. Maximum ultimate tensile strength (265, and 238 MPa) maximum yield strength (149, and 136 MPa), and elongation to failure (46 and 41%) for both routes were obtained. Moreover, each pass increases yield strength ultimate tensile strength, and micro-hardness while increasing elongation to failure. The mechanical characteristics of ECAPed specimens were higher than the extruded specimen. The mechanical properties and microstructures of solid-state recycled Al-6061 alloy chip samples were significantly influenced by the number of passes and route types.

Graphical Abstract

Highlights

  • Severe plastic deformation was utilized to improve mechanical properties, microstructure, and microhardness.
  • Improvements in tensile strength and yield strength are reported for the ECAPed Al-6061 alloys.
  • Ductility decreased from 27% to 13% after one pass.
  • The micro-hardness increased from 47.55 HV to 79.36 HV, an increase of about 67% after four pass. 

Keywords

Main Subjects

[1] J. Gronostajski, H. Marciniak, A. J. J. o. m. p. t. Matuszak, New methods of aluminum and aluminium-alloy chips recycling, J. Mater. Process. Technol.,106 (2000) 34-39. https://doi.org/10.1016/S0924-0136(00)00634-8
[2] Z. Sherafat, M. Paydar, R. J. J. o. A. Ebrahimi, Compounds, Fabrication of Al7075/Al, two-phase material, by recycling Al7075 alloy chips using powder metallurgy route, J. Alloys Compd., 487 (2009) 395-399. https://doi.org/10.1016/j.jallcom.2009.07.146
[3] A. Tekkaya, M. Schikorra, D. Becker, D. Biermann, N. Hammer, K. J. J. o. m. p. t. Pantke, Hot profile extrusion of AA-6060 aluminum chips, J. Mater. Process. Technol., 209 (2009) 3343-3350.https://doi.org/10.1016/j.jmatprotec.2008.07.047
[4] J. Cui, A. Kvithyld, H. J. M. Roven, Degreasing of aluminium turnings and implications for solid-state recycling, The Minerals, Metals, and Materials Society, 2010.
[5] J. Gronostajski ,A. J. J. o. M. P. T. Matuszak, The recycling of metals by plastic deformation: an example of recycling of aluminium and its alloys chips, J. Mater. Process. Technol., 92-93 (1999) 35-41. https://doi.org/10.1016/S0924-0136(99)00166-1
[6] J. Fogagnolo, E. Ruiz-Navas, M. Simón, M. J. J. o. M. P. T. Martinez, Recycling of aluminium alloy and aluminium matrix composite chips by pressing and hot extrusion, J. Mater. Process. Technol., 143 (2003) 792-795. https://doi.org/10.1016/S0924-0136(03)00380-7
[7] M. Haase , A. E. J. P. E. Tekkaya, Recycling of aluminum chips by hot extrusion with subsequent cold extrusion,   Procedia Eng., 81 (2014) 652-657.https://doi.org/10.1016/j.proeng.2014.10.055
[8] J. Gronostajski, H. Marciniak, A. J. J. o. m. p. t. Matuszak, Production of composites on the base of AlCu4 alloy chips, J. Mater. Process. Technol.,  60 (1996) 719-722. https://doi.org/10.1016/0924-0136(96)02410-7
[9] J. Gronostajski, J. Kaczmar, H. Marciniak, A. J. J. o. M. P. T. Matuszak, Direct recycling of aluminium chips into extruded products, J. Mater. Process. Technol.,  64 (1997) 149-156. https://doi.org/10.1016/S0924-0136(96)02563-0
[10] A. Azushima et al., Severe plastic deformation (SPD) processes for metals, CIRP Annals, 57 (2008) 716-735. https://doi.org/10.1016/j.cirp.2008.09.005
[11] T. Aida, N. Takatsuji, K. Matsuki, S. Kamado, Y. J. K. J. o. J. I. o. L. M. Kojima, Homogeneous consolidation process by ECAP for AZ31 cutting chips, 54 (2004) 532-537.
[12] M. Haase, N. B. Khalifa, A. Tekkaya, W. J. M. S. Misiolek, E. A, Improving mechanical properties of chip-based aluminum extrudates by integrated extrusion and equal channel angular pressing (iECAP), Mater. Sci. Eng. A , 539 (2012) 194-204. https://doi.org/10.1016/j.msea.2012.01.081
[13] S. Al-Alimi et al., Hot extrusion followed by a hot ecap consolidation combined technique in the production of boron carbide (B4C) reinforced With aluminium chips (AA6061) composite, Mater. Technol., 55 (2021) 347–354. https://doi.org/10.17222/mit.2020.177
[14] M. Harničárová et al., Structural and Mechanical Changes of AlMgSi0. 5 Alloy during Extrusion by ECAP Method, Materials, 15 (2022) 2020.https://doi.org/10.3390/ma15062020
[15] A. Gupta et al., Influence of ECAP processing temperature and number of passes on hardness and microstructure of Al-6063, Adv. Mater. Process. Technol.,  8 (2022) 1635-1646. https://doi.org/10.1080/2374068X.2021.1953917
[16] A. Selmy, M. Abd El Aal, A. El-Gohry, M. J. E. J. f. E. S. Taha, Solid-state recycling of aluminum alloy (AA-6061) chips via hot extrusion followed by equal channel angular pressing (ECAP), Egypt. Int. J. Eng. Sci. Technol., 21 (2016) 33-42.
[17] S. Kadiyan , B. J. M. R. E. Dehiya, Evaluating the influence of various routes on micro-structure and mechanical properties of AA-6063 after equal channel angular pressing, Mater. Res. Express, 6 (2019) 0865f9. https://dx.doi.org/10.1088/2053-1591/ab2618
[18] M. Ciemiorek, M. Lewandowska, L. J. M. Olejnik, Design, Microstructure, tensile properties and formability of ultrafine-grained Al–Mn square plates processed by Incremental ECAP, Mater. Des., 196 (2020) 109125. https://doi.org/10.1016/j.matdes.2020.109125
[19] G. Shuai, Z. Li, D. Zhang, Y. Tong, L. J. V. Li, The mechanical property and electrical conductivity evolution of Al–Fe alloy between room temperature and elevated temperature ECAP, Vacuum, 183 (2021) 109813. https://doi.org/10.1016/j.vacuum.2020.109813
[20] Sklenicka, V. 2012. Equal-channel angular pressing and creep in ultrafine-grained aluminium and its alloys, pp. 3-45. https://doi.org/10.5772/51242
[21] H. Zhang et al., Tensile behavior and dynamic failure of aluminum 6092/B4C composites, Mater. Sci. Eng. A, 433 (2006) 70-82. https://doi.org/10.1016/j.msea.2006.06.055
[22] M. I. Abd El Aal, M. A. Taha, A. Selmy, A. El-Gohry, H. J. M. R. E. Kim, Solid state recycling of aluminium AA6061 alloy chips by hot extrusion, Mater. Res. Express, 6 (2018) 036525. https://doi.org/10.1088/2053-1591/aaf6e7
[23] P. J. I. S. R. N. Mukhopadhyay, Alloy designation, processing, and use of AA6XXX series aluminium alloys, Int. Sch. Res. Nrt., 2012 (2012)15. https://doi.org/10.5402/2012/165082
[24] T. Ramachandran, Advances in Aluminium Processing and Its Automotive Application, in Workshop Lecture Notes, 2006.
[25] V. Güley et al., Effect of die design on the welding quality during solid state recycling of AA6060 chips by hot extrusion, Mater. Sci. Eng. A, 574 (2013) 163-175. https://doi.org/10.1016/j.msea.2013.03.010
[26] K. Kim, D.-Y. Yang, J. W. J. M. S. Yoon, E. A, Microstructural evolution and its effect on mechanical properties of commercially pure aluminum deformed by ECAE (Equal Channel Angular Extrusion) via routes A and C, Mater. Sci. Eng. A, 527 (2010) 7927-7930. https://doi.org/10.1016/j.msea.2010.08.084
[27] R. Z. Valiev ,T. G. J. P. i. m. s. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51 (2006) 881-981. https://doi.org/10.1016/j.pmatsci.2006.02.003
[28] A. Vinogradov, S. Yasuoka, S. Hashimoto, On the effect of deformation mode on fatigue: simple shear vs. pure shear, in Materials Science Forum, Mater. Sci. Forum, 584-586 (2008) 797-802. https://doi.org/10.4028/www.scientific.net/MSF.584-586.797
[29] A. Sahai, K. H. Raj, N. J. P. e. Gupta, Mechanical behaviour and surface profile analysis of Al6061 alloy processed by equal channel angular extrusion, 173 (2017). 956-963. https://doi.org/10.1016/j.proeng.2016.12.155
[30] K. Oh-Ishi, Z. Horita, M. Furukawa, M. Nemoto, T. G. J. M. M. T. A. Langdon, Optimizing the rotation conditions for grain refinement in equal-channel angular pressing, Communications, 29 (1998) 2011-2013.
[31] M. Shaeri, M. Salehi, S. Seyyedein, M. Abutalebi, J. K. J. M. Park, Design, Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment, Mater. Des., 57 (2014) 250-257. https://doi.org/10.1016/j.matdes.2014.01.008
[32] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T. G. J. M. S. Langdon, E. A, The shearing characteristics associated with equal-channel angular pressing, Mater. Sci. Eng. A, 257 (1998) 328-332. https://doi.org/10.1016/S0921-5093(98)00750-3
[33] A. J. W. C. A. I. Standard, E8/E8M—16a Standard Test Methods for Tension Testing of Metallic Materials, 2016.
[34] O. Abioye et al., Influence of equal channel angular extrusion on the tensile behavior of Aluminum 6063 alloy,   Procedia Manuf., 35 (2019) 1337-1343. https://doi.org/10.1016/j.promfg.2019.05.020
[35] R. Valiev, M. Y. Murashkin, A. Ganeev, N. J. T. P. o. M. Enikeev, Metallography, Superstrength of nanostructured metals and alloys produced by severe plastic deformation, Phys. Metals Metallogr., 113 (2012) 1193-1201. https://doi.org/10.1134/S0031918X12130042
[36] K. Ma et al., Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, Acta Mater., 62 (2014) 141-155. https://doi.org/10.1016/j.actamat.2013.09.042
[37] J. Chen et al., Dynamic Recrystallization Behaviors and the Texture Evolution in Mg–9Al–1Zn Alloy Produced by ECAP at Different Temperatures, Met. Mater. Int., 28 (2022) 2677-2690. https://doi.org/10.1007/s12540-021-01158-5
[38] M. El-Shenawy et al., Effect of ECAP on the Plastic Strain Homogeneity, Microstructural Evolution, Crystallographic Texture and Mechanical Properties of AA2xxx Aluminum Alloy, Metals, 11 (2021) 938. https://doi.org/10.3390/met11060938
[39] M. Abbasi-Baharanchi, F. Karimzadeh, M. J. M. S. Enayati, E. A, Mechanical and tribological behavior of severely plastic deformed Al6061 at cryogenic temperatures, Mater. Sci. Eng. A, 683 (2017) 56-63. https://doi.org/10.1016/j.msea.2016.11.099
[40] A. Standard, ASTM E92–17, 2017a, Standard test methods for Vickers hardness and Knoop hardness of metallic materials, ed: ASTM International West Conshohocken, 2017.
[41] A. Alateyah, M. Alharbi, H. A. El-Hafez, W. J. S. I. J. o. M. El-Garaihy, Manufacturing, The Effect of Equal-Channel Angular Pressing Processing on Microstructural Evolution, Hardness Homogeneity, and Mechanical Properties of Pure Aluminum, SAE Int. J. Mater. Manf., 14 (2021) 113-125. https://doi.org/10.4271/05-14-02-0009
[42] M. J. M. Mohammadtaheri, Microstructure, and Analysis, A new metallographic technique for revealing grain boundaries in aluminum alloys, Metallogr. Microstruct. Anal., 1 (2012) 224-226. https://doi.org/10.1007/s13632-012-0033-9
[43] W. Maziarz et al., Effect of severe plastic deformation process on microstructure and mechanical properties of AlSi/SiC composite, J. Mater. Res. Technol., 17( 2022) 948-960. https://doi.org/10.1016/j.jmrt.2022.01.023
[44] Y. H. Chung, K. H. J. M. Lee, M. International, An analysis of accumulated deformation in the equal channel angular rolling (ECAR) process, Met. Mater. Int., 12 (2006) 289-292. https://doi.org/10.1007/BF03027545
[45] Y. Duan, L. Tang, G. Xu, Y. Deng, Z. J. J. o. A. Yin, Compounds, Microstructure and mechanical properties of 7005 aluminum alloy processed by room temperature ECAP and subsequent annealing, J. Alloys Compd., 664 (2016) 518-529. https://doi.org/10.1016/j.jallcom.2016.01.022
[46] P. C. Gautam, S. J. M. S. Biswas, E. A, On the possibility to reduce ECAP deformation temperature in magnesium: Deformation behaviour, dynamic recrystallization and mechanical properties, 812 (2021) 141103. https://doi.org/10.1016/j.msea.2021.141103