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H I G H L I G H T S   A B S T R A C T  
• The effect of climate change on net irrigation water 

requirements and crop productivity was 
investigated. 

• Barley has the most influence on climate change. 
• An increase in the quantity of water required for 

irrigation for the common crops under climate 
change. 

• Climate change has negative effects on all crops' 
yield under different climate change scenarios. 

 This study aims to predict the effect of climate change on net irrigation 
water requirements (NIWR) and agricultural productivity from five 
common crops (wheat, barley, summer maize, and sorghum) in the Al-Najaf 
Governorate in Iraq. GFDL-ESM2M mode was used to predict the lower 
and upper temp and precipitation for two time periods (2020-2080) with 30 
years for two periods (P1 and P2) under representative concentrations paths 
(RCP 2.5, RCP6, and RCP8.5). The CROPWAT model is used to determine 
NIWR, and the extreme learning model was used to estimate agricultural 
yields using previous crop yield production and weather data, supported 
vectors machine (SVM) is executed as a Machines Learns algorithm. 
Results showed NIWR increment to consider cropping owing to climate 
change. Barley is the crop most affected by climate change under the 
(RCP2.5, RCP6, and RCP8.5) scenarios, with increasing crop water 
requirements (NIWR) of (22%, 23%, and 24% ) for P1 and (23%, 24%, and 
29%) for P2, respectively. Summer maize is the crop least affected by 
climate change under all climate change scenarios, with increasing crop 
water requirements of (1%, 2%, and 4%)  for P1 and (1%, 2%, and 5% for 
P2. Climate change negatively affects the crop yield of all crops under the 
different climate change scenarios. The findings of this study could be used 
as a guide to developing adaptation strategies for dealing with potential 
changes in water availability and agricultural water productivity due to 
climate change. 
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1. Introduction 
Iraq has adequate water resources when compared with the many countries in Middle Eastern neighbors. Despite this, 

water reaches farmers' crops late or in inadequate quantities [1]. One of the most important reasons is the old and inefficient 
irrigation system (i.e flood irrigation system) [2]. In the past, the management of water resources has needed to be more 
effective, notably in irrigation due to the high amount of water in the two rivers (Euphrates and Tigris). Nowadays, because of 
climate change and a reduction in the major river's discharge and rainfall, it is becoming increasingly vital to address water 
scarcity as a genuine problem in the future. As a result, water resources need to be managed with extreme efficiency by giving 
a particular and optimal amount of water, depending on an accurate understanding of crops' basic water requirements[3]. This 
knowledge is essential for the agricultural sector's performance because any drop in water during the growing season could 
reduce crop production. In addition, any increase in irrigation water, to a certain extent, leads to wasting water and affecting 
soil properties[4]. In arid areas, evapotranspiration (Et), or water lost in the atmosphere from soil and plants, is a major 
constraint to better agricultural productivity. To meet crop water requirements, rainfall or irrigation should balance the amount 
of water loss. As a result, to address the issue of excessive water use, the amounts of evapotranspiration should be precisely 
determined [2].  
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Climate change will occur gradually. The average temperature in the middle east could increase to 2.5°C in 2050 [5]. 
Climate change may have an impact on the future water availability globally because rising temperatures, increase in 
evaporation, and variable rainfall have a considerable impact on agricultural water requirement[6]. 

There are many estimation models for water requirement for agriculture, for example, FAO CROPWAT, Geo WRSI, and 
GCW[7,8]. The CROPWAT model used an equation of the penman-Monteith to change the weather factors such as the air 
pressure average by control on the longitude and latitude [9,10] 

Many successful applications of using CROPWAT to determine the crop's water needs under climate change in different 
countries of the world [11–14]. In Iraq, a few studies evaluated the effect of climate change on the irrigation water 
requirements of crops. Saeed et al. [15] evaluate the spatiotemporal sensitivity of the net irrigation water requirement (NIWR) 
under climate changes for four irrigation projects located in arid and semi-arid regions of Iraq for North Jazeera Irrigation 
Project (NJIP), Kirkuk Irrigation Project (KRIP), Upper Khalis Irrigation Project (UKIP), and Dalmaj Irrigation  (DLIP), 
respectively, So This study is considered the first study that determines the climate changes effects on net irrigation water 
requirements and crop productivity by CROPWAT and machine learning in Iraq  ( AL-Najaf governorate) under future climate 
change scenarios. Three climate change scenarios were utilized to estimate future climate data (RCP2.5, RCP 6, and RCP8.5). 
The RCP2.5 scenario is the lowest to stability, the RCP6 scenario represents a moderate approach, and the RCP8.5 scenario 
represents the most extreme case for greenhouse gas emissions.  

Stakeholders and policymakers can use this study to offer solutions for crop problems under climate change conditions. 

2. Research data and Modelling Methods  

2.1 Study Area 
The selected study area in this study is located in Al-Najaf provenance, Iraq,161 kilometers from south Baghdad on the 

bank of the Euphrates River [16], as shown in Figure 1. The geographic area is located between (42°–44°) in longitudes and 
(29°–32°) in latitudes [17] as shown in Figure 1.With an area of (29,000 km2) and forms 7% of the total area of Iraq. The study 
area is situated in the Plateau area at an altitude of about (60 m). It was sloping were flats and graduated to the north, 
northwestern, east, southeast, and south, when, it much steeps and form natural edges towards the west and southwest. It 
consists of successive rock formations from the sedimentary origin [18]. Al-Najaf-city has an arid and semi-arid climate, with 
the longest, hot, dry, summers there average-approximately 45 °C, and short, cold- winters with average temperatures of 24 °C. 
It rains from October to April. In a rainy year, the grosses annual-rainfall average are around 100 mm, while in a- dry year, it is 
around 30- mm [19]. 

 
Figure 1: The location of the study area 
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2.2 Modelling methods 

2.2.1 The CROPWAT model 
The CROPWAT model predicts how much water will be needed for irrigation. The- (Land- and Water-Developments 

Division) at FAO created the CROPWAT to organize and control water use during irrigation. CROPWAT is supposed to be 
used in the planning, design, and management of irrigation systems, and in the general computation of reference 
evapotranspiration and crop irrigation requirements[20]. CROPWAT uses the Penman-Monteith equation to assess reference 
evapotranspiration as expressed  (Equation 1) [21]:  

 ETo =
0.408Δ (Rn−G)+Υ( 900

Ta+273)U2(es−ea)

Δ+Υ(1+0.34U2)
       (1) 

Where  ETo (mm/day) is the reference evapotranspiration, Rn- (MJ.m2/ day) is the net radiations for the crop surface, G 
(MJ.m2 /day) is the density of the heat-flux density of the soil, Ta is the average daily air temperature (°C), U2(m/sec) is the 
average daily speed of wind at a two-meter height, es (kPa )  is the saturation vapor pressure,  ea  is the mean actual vapor 
pressure, ∆ is the slope of the relation curve between saturation vapor pressure, and temperature (kPa /°C), and γ (kPa /°C) is 
psychometric constant. 

Crop evapotranspiration (Etc ) in mm/day is calculated by multiplying the C evapotranspiration (ET˳ ) by the crop 
coefficient (KC) (Equation 2) [22]: 

 ETc = ETo × KC  (2) 

The Soil-Conservation Service (S.C.S) method of the US Department-of-Agriculture (USDA) and rainfall data was used to 
compute the effective rainfall Equation (3,4) [23]:  

 Peff = Ptot 125_0.2×Ptot
125

   ,       for Ptot < 250 mm  (3) 

 P eff = 125+0.1× Ptot   ,       for   P >250 mm (4) 

  Whereas Peff: effective rainfall, and P:  total rainfall  
The net irrigation water requirements (NIWR) represent the amounts of water that should be delivered to the crop through 

the irrigation system to guarantee that the crop fulfills its full water requirement.  The-water demand for crop irrigation that 
obtains water from one source (surface water) is more than for crops that obtain water from another source (such as deep 
seepages and rain). Hence, NIWR was computed by using (Equation 5) [18]: 

 NIWR =  ETc – Peff  (5) 

 The total gross irrigation water requirements (GIWR) are calculated by using equation (6) as follows:  

 GIWR = (NIWR + Lr)/Ea × 100  (6)  

Ea is the efficiency of irrigation, and  Lr is a requirement of leaching (mm), which is calculated by Lr = f × NIWR, where f 
ranges from (five to twelve ) percent upon available soil salinity [15] 

2.2.2  Extreme Learning Machine Technique 
Conventional single hidden layering feed-forwards neural network, often known as SLFN, has seen widespread use in the 

approximation of functions across various study domains[24]. On the other hand, the models almost have a slow learning 
speed, which hinders their use. The ELM was proposed to improve the functionality of the conventional SLFN. When 
compared to traditional learning algorithms like the backpropagation method, the ELM model is characterized by its lightning-
fast learning speed and reliable generalization [25]. 

In addition, the ELM model does not suffer from the problems of overfitting or local minima problems, which results in 
the model's performance being superior to that of classic ANN models. The ELM model, in its most basic form, of three layers: 
the input layer, the hidden layer, and, the output layer Equations (7) [25]. 

The standard expression of an SLFN having L hidden -nodes and g(x) activation- function: 

 fL(xj) = ∑ βig((wixi + bi),    j = 1,   2, … N L
i=1  (7) 

*where wi = [wi1, wi2, ··, win] are the weights vector connecting the ith hidden-neuron and the input-neurons, βi = [βi1, 
βi2, ···, βim] are the weights vector connecting the ith hidden-neuron and the output-neurons, and bi is the- threshold of the ith 
hidden-neuron. wi · xj denote the inner- products of wi and xj . N is the number of the sample. *  

(Equations7) could be written compactly as Equation (8) [25]: 
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 Hβ = T   (8) 

While H named the hidden-layer output matrix of the neural network.                                                                            
The ELM can be built by the following three stages for a given activation function g(x) as well as the number of hidden 

nodes L for such a training dataset: 
1. Using a randomization process to assign input weights (ω) and biases (bi); 
2. Determining the hidden layer output matrix  H. 
3. Computing the output weight matrix. 

The ELM diagram is shown in detail in Figure 2. 

 

 
Figure 2: The ELM network schematic diagram [26] 

2.3 Research Datasets   

2.3.1 Meteorological data 
Daily precipitation, humidity, maximum and minimum temperatures, sunlight hours, and wind speed data from the 

beginning of January 1988 to the end of December 2019 for AL-Najaf Governorate, these data were gotten from the Iraqi 
“Metrological Organization and Seismology”. Table 1 shows the statistical analysis of rainfall and climatological data. The 
ETo ranged from 1.53 to 9.73 mm, whereas the effective rainfall ranged (from 0 -16) mm. The minimum and maximum 
temperatures ranged from 6 to 17 and 30 to 45 degrees Celsius, respectively. 

2.3.2 Generated Future data  
The future climate dataset was forecasted for two time periods: P1(2020-2050) and P2( 2051-2080), using the GFDL-

ESM2M model under the RCP2.5, RCP6, and RCP8.5 scenarios. CROPWAT 8 and learning machine algorithms were used to 
calculate Future ET0, NIWR, and crop yield. The data on the potential future climate was taken from the “ISIMIP” [27] site, 
which was started via the “Potsdam Instituting to the Climates Impacts Research (PIK) and the International Institute for, 
Applied-Systems Analysis (IIASA), and have since- grown for included over-100 modeling group from the-around the-world”. 

2.3.3 Crop Data 
CRORWAT requires crop-related data. FAO organization and the Iraqi-ministry of Water Resources provided this data. 

which data includes the type of crops, the dates planted and harvested, critical depletion, and the growing season of the crop. 
Table 2 shows the crop data. Crop yield data for the period (1988-2019) was downloaded from the website (Our World in 
Data) [28], which is used to forecast future crop yield using extreme machine learning.   

2.4 Methodology 
The methodology followed in this study is illustrated in Figure 3. Climate data for the period of 1988-2019, crop data 

which includes some information about crops. In addition, future climate data were forecasted using (GFDL- ESM2M model) 
for three scenarios of RCP 2.5, RCP6, and RCP8.5, It was categorized into P1 (2020-2050) and P2 (2051-2080). Then used 
CROPWAT model for calculated references evapotranspiration and net irrigation-water requirement under present and future 
climate data within five-common crops, “sorghum, wheat, barley summer maize, and, autumn maize,” in Al-Najaf, southwest 
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Iraq. Furthermore, the future crop yield was computed using the ELM method, and the support vector(SVM) executed as a 
machine algorithm is utilized in this study. 

Table 1: Historical climatic parameters 
 

Month Min 
Temp 

Max 
Temp Humidity Wind Sun Rad ETo Rain Eff 

rain 
  °C °C % Km/day Hours MJ/m²/day Mm/day Mm Mm 
January, 6 17 67 102 5 10 1.53 16 16 
February, 8 20 58 138 7 14 2.44 12 12 
March, 12 25 47 173 8 18 3.96 10 10 
April 18 31 41 173 7 20 5.17 14 13 
May 24 38 31 173 9 23 7 3 3 
June, 28 43 25 225 10 25 9.15 0 0 
July 30 45 23 225 11 26 9.73 0 0 
August, 29 45 24 173 10 23 8.24 0 0 
September 26 41 29 138 9 20 6.36 0 0 
October, 20 35 40 112 8 16 4.39 6 6 
 ,November 13 25 56 95 7 12 2.52 17 16 
December, 8 19 65 86 6 10 1.6 13 12 
TOTAL 22 384 506 1813 95 216 62 91 89 
Average 18 32 42 151 9 19 5 7 7 
MIN 6 17 23 86 5 10 1.53 0 0 
MAX 30 45 67 225 11 26 9.73 17 16 
Median 19 33 41 156 8 19 5 8 8 
ST DEV 9 11 16 47 2 6 3 7 7 
Mode _ _ _ 173 _ _ _ 0 0 
Skewness -0.1 -0.1 0.3 0.2 0.1 -0.2 0.2 0 0 
Coefficient of 
Variation (CV) 48 33 39 31 21 29 56 89 89 

Table 2: Crops data of the study area. (Ministry of water resources) 

  

2.5 Model Training and Testing 
Typically, five climatic variables are responsible for driving the ET0 process. These variables are maximum and minimum 

temperature, rainfall, relative humidity, and wind speed; the data is divided into two sets, 70% and 30% of which were used for 
training and testing, respectively. Model training is also based on this portion as more training of data is more accurate.  

Then training the model utilizing the preferred algorithm. trial and error method was used to select the best algorithm 
which gives us better accuracy, Non-Linear SVM was selected which got a precision of 62% accuracy, which was low and 
unsuitable for data. Then Linear-SVM was chosen which got us the precision value of 93% accuracy. 

3. Result and Discussion 

3.1 Performance Evaluation 
The Machine Learning model trained via a Support Vector Machine has obtained an accuracy percentage of 93%. 

Furthermore, a root means square error (RMSE) was 0.18, which is a suitable data value. 

3.2 Reference Evapotranspiration (𝐄𝐄𝐄𝐄𝟎𝟎) 
The CROPWAT 8.0 model requires future series data such as sunshine hours, minimum temperature, wind speed, and 

maximum temperature, to calculate the future ETo under different periods (2020-2050) and (2051-2080) as shown in Table 3. 
The maximum value of ET0 was estimated to be 10.02 mm in July under the RCP 8.5- scenario.  The minimum value of  ET0  
was 1.59 mm in January under RCP 2.5 scenario. Whereas, the minimum and the maximum value of the reference ET0 were 

Crops Planting and 
harvesting date 

Critical 
depletion 

Crop Growth Periods (Days) 

Initial season Developed 
season Mild season Late 

season 
Wheat 1/11-9/5 0.55 22 64 73 31 
Barley 16/11-9/5 0.55 21 48 63 43 
Autumn maize 8/7-30/10 0.55 20 32 38 25 
Sorghum 15/3-29/7 0.55 20 37 47 33 
Summer maize 15/3-29/7 0.55 24 39 43 31 
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9.73 in June and 1.53 in January, respectively.  The monthly average of the highest ET0 value was 5.42 mm under the RCP8.5 
scenarios due to the high temperatures in this scenario. Under the reference and RCP 2.5 scenarios, the lowest average monthly 
value of ET0 is 5.18 mm. ET0 rises with time due to climate change, as shown in Figure 4; hence, it is simple to conclude that 
the ET0  is directly proportional to temperature as well as high temperatures and high evapotranspiration is caused by 
conditions including low humidity and strong winds [29]. 

 
 

 

Figure 3: Framework for analyzing the effects of climate change on crop productivity, and net 
irrigation water requirement (NIWR) 

3.3 Rainfall and effective rainfall 
The Climatological Station and the GFDL-ESM2M model were used to collect total monthly present and future rainfall 

and effective rainfall data; however, CROPWAT-8 was utilized for obtaining the effective rainfall of the study area. As shown 
in Table 4, the maximum effective rainfall was expected to be 1.1 mm in December under the RCP 8.5 scenario for the period 
(2020-2050), while the minimum value was estimated to be 0 during the dry season from June to September under all 
scenarios. Under the RCP 8.5 scenarios in P1 and P2, the average monthly effective rainfall's minimum and maximum values 
were expected to be 0.17 mm and 0.31 mm, respectively. 

3.4 Net Irrigation Water Requirements (NIWR) 
The net irrigation water requirement is the quantity of water that should be applied to supply the crop with the water it 

needs to produce its full yield. There is not a consistent distribution of the amount of water that is required for plant growth 
across the entirety of its life cycle [30]. 

NIWR for the five crops (Summer Maize, Sorghum, Autumn Maize, Wheat, and Barley). The summer maize required the 
most irrigation of another four crops, and barley required less irrigation. The findings indicate that the average NIWR will rise 
in the future under climate change; temperature change might increase the rate of evaporation and transpiration, which would 
also affect the NIWR. Precipitation may not be sufficient to irrigate crops. Due to the increase in evapotranspiration, the NIWR 
for crops in the three future scenarios is more than in the reference scenario, as shown in Table 5. 

 Barley was the crop most affected by climate change under the (RCP2.5, RCP6, and RCP8.5) scenarios, with an increase 
in net irrigation water requirement (NIWR) by (22%, 23%, and 24%), for P1 and (23%, 24%, and 29%) for P2, respectively. 
Summer maize is the crop least affected by climate change under all climate change scenarios, with increases in crop water 
requirement of (1%, 2%, and 4%) for P1 and (2%, 4%, and 5%) for P2 as shown in Figure 5. 
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Table 3: Monthly evapotranspiration under reference and climate change scenarios. 

 
Figure 4: Reference ETo under different climate change scenarios 

3.5 Crop yield production 
The ELM model (Support Vector algorithm) was used to simulate the yield for five common crops in Iraq under RCP2.5, 

RCP6, and RCP8.5. According to Table 6, the future yield of wheat and barley would be expected to remain constant under 
(RCP2.5, RCP6, and RCP8.5) because the growing season of these crops doesn’t affect by temperature, and evaporation was 
low in this season. The production of other crops decreases due to rising temperatures and evaporation. Due to an increment in 
temperature and a decrease in precipitation, crop water usage will rise in all three scenarios. Under scenario RCP 6 for P1, crop 
production remains constant due to climate parameters in this scenario having a close value to the second period of RCP. 

Findings shown in Table 3 indicated that values of ETo for RCP 2.5, 6, and 8.5 for period two (P2) are more than ETo for 
the period (P1); this increase is owing to an increase in the temperature in period two (P2). 

Despite the decrease in effective rainfall with time, it is an increase in the second period of RCP6 and one period of 
RCP8.5, An increase in precipitation in these periods may be associated with more intense and extreme precipitation events. as 
shown in Table 4. The precipitations of Iraq during the 21st century tended for decreasing in the a-northern region, while a 
small increase was expected in the southern region due to climate changes [31]. A northward shifting of the intertropical 
convergence zone under climate change conditions which carried much more moisture for the southern part of the Arabian 
Peninsula should generate more fluctuation in the precipitation pattern in these regions [32]. 
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reference ET0 ET0  RCP2.5 (P1) ET0  RCP2.5 (P2)

ET0  RCP6 (P1) ET0  RCP6 (P2) ET0  RCP8.5 (P1)

ET0  RCP8.5 (P2)

Month Reference 
𝐄𝐄𝐄𝐄𝟎𝟎(mm) 𝐄𝐄𝐄𝐄𝟎𝟎 RCP2.5 (mm) 𝐄𝐄𝐄𝐄𝟎𝟎 RCP6 (mm) 𝐄𝐄𝐄𝐄𝟎𝟎 RCP8.5 (mm) 

 
Reference P1 P2 P1 P2 P1 P2 

January 1.53 1.59 1.58 1.61 1.6 1.6 1.68 
February 2.44 2.53 2.51 2.52 2.51 2.56 2.61 

March 3.96 4.01 4.1 4.07 4.11 4.1 4.23 

April 5.17 5.19 5.2 5.22 5.35 5.25 5.48 

May 7 6.9 6.96 6.96 7.03 6.99 7.2 

June 9.15 9.05 9.09 9.04 9.27 9.11 9.29 

July 9.73 9.65 9.66 9.7 9.84 9.71 10.02 

August 8.24 8.19 8.21 8.23 8.31 8.22 8.54 

September 6.36 6.45 6.48 6.47 6.59 6.53 6.79 

October 4.39 4.43 4.48 4.51 4.53 4.48 4.72 

November 2.52 2.57 2.55 2.6 2.64 2.67 2.75 

December 1.6 1.64 1.67 1.66 1.66 1.7 1.78 

Maximum 9.73 9.65 9.66 9.7 9.84 9.71 10.02 

Minimum 1.53 1.59 1.58 1.61 1.6 1.6 1.68 

Average 5.18 5.18 5.21 5.22 5.29 5.24 5.42 
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Table 4: Monthly effective rainfall under reference and climate change scenarios. 

MONTH Reference Eff 
(mm) 

Eff 
RCP2.5 (mm) 

Eff 
RCP2.5 (mm) 

Eff 
RCP6 (mm) 

Eff 
RCP6 (mm) 

Eff 
RCP8.5 (mm) 

Eff 
RCP8.5 (mm) 

 Reference P1 P2 P1 P2 P1 P2 
January. 16 0.3 0.4 0.3 0.7 0.5 0.4 
February. 12 0.6 0.3 0.2 0.3 0.3 0.1 

March 10 0.3 0.4 0.3 0.4 0.3 0.4 

April 13 0.2 0.2 0.2 0.3 0.2 0.2 

May  3 0.1 0.1 0.1 0.2 0.2 0.1 

June  0 0 0 0 0 0 0 

July 0 0 0 0 0 0 0 

August   0 0 0 0 0 0 0 

September  0 0 0 0 0 0 0.1 

October 6 0.5 0.5 0.6 0.6 0.7 0.3 

November  16 0.6 0.8 0.2 0.7 0.4 0.3 

December 12 0.2 0.5 0.2 0.4 1.1 0.1 

Average 7.3 0.23 0.27 0.18 0.3 0.31 0.17 
 

Maximum 16 0.6 0.8 0.6 0.7 1.1 0.4 

Minimum  0 0 0 0 0 0 0 

Table 5: NIWR for crops under present and future climate change scenarios 

  
Figure 5: Percentage increase of crop water requirement under different climate change scenarios 

 

Crops Reference 
scenario 
(1988-
2019) 

                          Climate change scenario 

       RCP2.5         RCP6     RCP8.5 

 NIWR 
(mm) 

    NIWR (mm)     NIWR (mm)       NIWR (mm) 

 (1988-
2019) 

(2020-
2050) 

(2051-
2080)) 

 (2020-
2050) 

 (2051-
2080 

(2020-
2050) 

(2051-
2080) 

Wheat 451.8 538 540 545.5 547.2 548.9 571.6 
Barley 362.3 442.2 444.5 445.6 447.5 449 466.7 

Autumn Maize 618.2 637.8 640.5 642.4 664.8 665.2 668.7 
Sorghum 802.2 817 821.5 821.2 845.8 846 846 
Summer maize 881.3 892.5 897 897 913.3 914 923.8 
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Table 6: Crop yield under different scenarios 

crops Climate change scenario 

 P1(2020-
2050) 

P2(2051-
2080 

P1(2020-
1050) 

P2(2051-
2080 

P1(2020-
1050) 

P2(2051-
2080) 

Wheat 88404 88404 88404 88404 88404 88404 
barley 1966 1966 1966 1966 1966 1966 
autumn maize 3254 3254 3092 3092 3092 3090 
Sorghum 3.3 3.3 3.1 3.1 3.1 3 
spring maize 13.1 13.1 12.4 12.4 12.4 12.3 

 
The high difference in the effective rainfall values between the reference and all scenarios. due to there more than one 

flood year through the years of the reference scenario (1988-2019) 
Table 5 showed an increment in the net irrigation water requirements for two periods under all scenarios for all crops, 

although increasing effective rainfall in the RCP6 with P2 and RCP8.5 with P1 because the high rate of ETo in the study area 
was a pivotal factor controlling within NIWR-Equation (5) rather than Peff. which study showed that NIWR is affected by ETo 
caused by the high rate of ETo drains soil moisture faster in the study area.  

According to Table 6, the future yield of wheat and barley would remain constant under different scenarios. In contrast, the 
yield of other crops decreases due to rising temperatures and evaporation.  

Similar results were obtained by [33] found a decrease in water for irrigation by 2.9 MCM/under climate change. [34] also 
concluded that climates changes negatively affect the irrigation water requirements of all crops in this study. [35] shows the 
large negative effect of climate change on corn yield. The NIWR of barley was sensitive to climate change with an increase in 
NIWR by 38–79% compare to the increase for-maize by 0.2–1.4% under RCP-2.6 and, RCP-8.5 [36]. 

4. Conclusions 
Based on obtained results from this study, The RCP8.5 and RCP2.5 scenarios had the highest and lowest average 

temperatures, respectively, which caused the maximum and minimum real control evapotranspiration (ET) to be found in those 
two scenarios. The Rainfall and effective rainfall results show that the maximum effective rainfall was expected to be 1.1 mm 
in December under the RCP 8.5 scenario for the period (2020-2050), while the minimum value was estimated to be 0 during 
the dry season from June to September under all scenarios. The NIWR Result shows that Barley is the crop most affected by 
climate change under the RCP2.5, RCP6, and RCP8.5 scenarios, with increases in crop water requirement (NIWR) of 22%, 
23%, and 24% for P1 and 23%, 24%, and 29% for P2, respectively. Summer maize is the crop least affected by climate change 
under all climate change scenarios, with an increment in NIWR of 1%, 2%, and 4% for P1 and 2%, 4%, and 5% for P2. In 
summary, for all possible futures, the quantity of water needed for common crop irrigation will increase due to climate change.  

The production of wheat and barley remains the same under the RCP2.5, RCP6, and RCP8 scenarios. Climate change 
adversely affects the crop productivity of other crops (maize, sorghum, and summer maize) under the different climate change 
scenarios. The findings of this research may be utilized to develop adaptation strategies for dealing with potential changes in 
water availability and crop productivity due to climate change.  
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