Document Type : Research Paper

Author

Department of Civil Engineering, University of Halabja, Kurdistan Region, Iraq

Abstract

In almost every earthwork, it is essential to compact soil so that the densest possible state of the soil can be achieved. The suitability of soil for earthworks relies on the compaction characteristics; Optimum Moisture Content (OMC), and Maximum Dry Density (MDD). The determination of the compaction characteristics in the laboratory, for a vast volume of soil, is time-consuming. Therefore, for the initial assessment of soil, it is crucial to determine the compaction characteristics from physical soil properties. In this work, three different models of the Artificial Neural Network (ANN), M5P-tree, and Multiple Linear Regression (MLR) are used to predict the compaction characteristics of the soil. In the models, particle size and plasticity properties of soil are combined and, seven input parameters of gravel, sand, silt, and clay contents, plastic limit, liquid limit, and plasticity index are comprised. To develop the models, 1038 datasets are compiled and processed. Several statistical analyses, including coefficient of determination (R2), scatter index (SI), root mean squared error (RMSE), mean absolute error (MAE), and Objective (OBJ) value, are used to assess the effectiveness of the proposed models. The findings demonstrated that overall, the ANN model performed better in predicting the OMC, while the MLR model performed better in predicting MDD. Further, from the sensitivity analyses, it was indicated that the plastic limit has more influence on the value of OMC while, to predict the MDD, both sand content and the plasticity index play a foremost role.

Graphical Abstract

Highlights

  • Modeling is a feasible approach to estimating the compaction characteristics from soil index properties.
  • ANN model outperforms other models in predicting OMC.
  • MLR model provides better prediction of MDD.
  • PI is a dominant parameter influencing the compaction characteristics.

Keywords

Main Subjects

[1] Y. Gurtug ,A. Sridharan, Prediction of compaction characteristics of fine-grained soils, Geotechnique, 52 (2002) 761-763. https://doi.org/10.1680/geot.2002.52.10.761
[2] K. Farooq,  U. Khalid ,H. Mujtaba, Prediction of compaction characteristics of fine-grained soils using consistency limits, Arab J. Sci. Eng., 41 (2016) 1319–1328. https://doi.org/10.1007/s13369-015-1918-0
[3] A. Sridharan , H. B. Nagaraj, Plastic limit and compaction characteristics of fine-grained soils, Proc. Inst. Civ. Engineers-Ground Improv., 9 (2005) 17-22. https://doi.org/10.1680/grim.2005.9.1.17
[4] O. Günaydın, Estimation of soil compaction parameters by using statistical analyses and artificial neural networks,Environ. Geol., 57 (2009) 203–215. https://doi.org/10.1007/s00254-008-1300-6
[5] K. Djokovic, D. Rakic, M. Ljubojev, Estimation of soil compaction parameters based on the Atterberg limits, Min. Metall. Eng. Bor., (2013) 1–16. https://doi.org/10.5937/mmeb1304001D
[6] K. Jyothirmayi, T. Gnanananda , K. Suresh, Prediction of compaction characteristics of soil using plastic limit, Int. J. Eng. Res. Technol., 4 (2015) 253-256.
[7] K. Zhang , C. Frederick, Experimental investigation on compaction and Atterberg limits characteristics of soils: Aspects of clay content using artificial mixtures, KSCE J. Civ. Eng., 21 (2017) 546–553. https://doi.org/10.1007/s12205-017-1580-z
[8] A. Saikia, D. Baruah, K. Das, H. Rabha, A. Dutta , A. Saharia, Predicting compaction characteristics of fine-grained soils in terms of Atterberg limits, Int. J. of Geosynth. Ground Eng., 3 (2017)18. https://doi.org/10.1007/s40891-017-0096-4
[9] E. Karakan , S. Demir, Effect of fines content and plasticity on undrained shear strength of quartz-clay mixtures, Arab J .Geosci., 11 (2018) 743. https://doi.org/10.1007/s12517-018-4114-1
[10] W. Firomsa , E. Quezon, Parametric modelling on the relationships between Atterberg limits and compaction characteristics of fine-grained soils, Int. j. Adv. res. eng. appl. sci., 8 (2019) 1-20.
[11] H. F. Ali, A. J. Rash, M. Hama Kareem , D. A. Muhedin, A correlation between compaction characteristics and soil index properties for fine-grained soils, Polytechnic J., 9 (2019) 93-99 https://doi.org/10.25156/ptj.v9n2y2019.pp93-99
[12] A. Hussain ,C. Atalar, Estimation of compaction characteristics of soils using Atterberg limits, IOP Conf. Ser. Mater. Sci. Eng., 800,2020, 012024. https://doi.org/10.1088/1757-899X/800/1/012024
[13] O. Sivrikaya, C. Kayadelen ,E. Cecen, Prediction of the compaction parameters for coarse-grained soils with fines content by MLA and GEP, Acta Geotech. Slov., 10 (2013) 29-41.
[14] Hussain, A. H. A. Prediction of compaction characteristics of over-consolidated soils. PhD. Thesis, Near East University, 2016. 
[15] M. Jesmani, A. N. Manesh , S. M. R.  Hoseini, Optimum water content and maximum dry unit weight of clayey gravels at different compactive efforts, Eur. J. Gov. Econ., 13 (2008) 1-14.
[16] O. Sivrikaya, Models of compacted fine-grained soils used as mineral liner for solid waste, Environ. Geol., 53 (2008) 1585–1595. https://doi.org/10.1007/s00254-007-1142-7
[17] H. Mujtaba, K. Farooq, N. Sivakugan ,B. M. Das, Correlation between particle - sizeal parameters and compaction characteristics of sandy soils, Int. J. Geotech. Eng., 7 (2013) 395-401. https://doi.org/10.1179/1938636213Z.00000000045
[18] J. Duque, W. Fuentes, S. Rey , E. Molina, Effect of grain size distribution on California bearing ratio (CBR) and modified proctor parameters for granular materials, Arab. J. Sci. Eng., 45 (2020) 8231-8239. https://doi.org/10.1007/s13369-020-04673-6
[19] S. Alzabeebee, S. A. Mohamad , R. K. S. Al-Hamd, Surrogate models to predict maximum dry unit weight, optimum moisture content and California bearing ratio form grain size distribution curve, Road Mater. Pavement Des., 23 (2022) 2733-2750. https://doi.org/10.1080/14680629.2021.1995471
[20] O. Sivrikaya Y. T. Soycan, Estimation of compaction parameters of fine-grained soils using Artificial neural networks, In Proc,of the 2nd international conference on new developments in soil mechanics and geotechnical engineering, 2009,  406-412.
[21] F. E. Jalal, Y. Xu, M. Iqbal, B. Jamhiri ,M. F. Javed, Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms, Transp. Geotech., 30 (2021) 100608. https://doi.org/10.1016/j.trgeo.2021.100608
[22] K. Othman, H. Abdelwahab, Prediction of the soil compaction parameters using deep neural networks, Transp. Infrastruct. Geotech., 10 (2023) 147–164. https://doi.org/10.1007/s40515-021-00213-3
[23] G. Verma, B. Kumar, Artificial Neural Network Equations for Predicting the Modified Proctor Compaction Parameters of Fine-Grained Soil, Transp. Infrastruct. Geotech., (2022) 1-24. https://doi.org/10.1007/s40515-022-00228-4
[24] S. K. Sinha, M. C. Wang, Artificial neural network prediction models for soil compaction and permeability, Geotech. Geol. Eng., 26 (2008) 47-64. https://doi.org/10.1007/s10706-007-9146-3
[25] A. Tenpe , S. Kaur, Artificial neural network modeling for predicting compaction parameters based on index properties of soil, Int. J. Sci. Res., 4 (2015) 1198-1202.
[26] M. Omar, A. Shanableh, O. Mughieda, M. Arab, W. Zeiada , R. Al-Ruzouq, Advanced mathematical models and their comparison to predict compaction properties of fine-grained soils from various physical properties, Soils Found., 58 (2018) 1383-1399. https://doi.org/10.1016/j.sandf.2018.08.004
[27] M. Karimpour-Fard, S. L. Machado, A. Falamaki, M. F. Carvalho ,P. Tizpa, Prediction of compaction characteristics of soils from index test’s results, Iran. J. Sci. Technol. Trans. Civ. Eng., 43 (2019) 231-248. https://doi.org/10.1007/s40996-018-0161-9
[28] G. Verma , B. Kumar,  Multi-layer perceptron (MLP) neural network for predicting the modified compaction parameters of coarse-grained and fine-grained soils, Innov. Infrastruct. Solut., 7 (2022) 1-13. https://doi.org/10.1007/s41062-021-00679-7
[29] N. KS, Y. M. Chew, M. H. Osman ,M. G. SK, Estimating maximum dry density and optimum moisture content of compacted soils, Int. Conf. Adv. Civil Environ. Eng., 2015,1-8.
[30] J. F. Shook, H. Y. Fang, Cooperative Materials Testing Programs At The Aasho Road Test, Highway Research Board Special Report, 66 (1961)59-102.
[31] A. W. Johnson , J. R. Sallberg, Factors influencing compaction test results, Highway Research Board Bulletin, 319 (1962) 1-148.
[32] Harris, M. T.  A study of the correlation potential of the optimum moisture content, maximum dry density, and consolidated drained shear strength of plastic fine-grained soils with index properties. MSc. Thesis, Missory University of Science and Technology, 1969.
[33] B. K. Ramiah, V. Viswanath , H. V. Krishnamurthy, Interrelationship of compaction and index properties, In Proceedings of the 2nd South East Asian Conference on Soil Engineering, 587,1970.
[34] L. D. Wesley, Some basic engineering properties of halloysite and allophane clays in Java, Indonesia. Geotechnique, 23 (1973) 471-494. https://doi.org/10.1680/geot.1973.23.4.471
[35] M. C. Wang ,C. C. Huang, Soil compaction and permeability prediction models, J. Environ. Eng., 110 (1984) 1063-1083. https://doi.org/10.1061/(ASCE)0733-9372(1984)110:6(1063)
[36] Sridharan, A. Classification of expansive soils by sediment volume method, ASTM International, 1990.
[37] A. N. Al-Khafaji, Estimation of soil compaction parameters by means of Atterberg limits, Q. J. Eng. Geol. Hydrogeol., 26 (1993) 359-368. https://doi.org/10.1144/GSL.QJEGH.1993.026.004.10
[38] C. H. Benson , J. M. Trast, Hydraulic conductivity of thirteen compacted clays, Clays Clay Miner., 43,(1995) 669-681. https://doi.org/10.1346/CCMN.1995.0430603
[39] L. N. Mohammad, B. Huang, A. J. Puppala, A. Allen, Regression model for resilient modulus of subgrade soils, Transp. Res. Rec., 1687 (1999) 47-54. https://doi.org/10.3141/1687-06
[40] B. A. Albrecht, C. H. Benson, Effect of desiccation on compacted natural clays, J. Geotech. Geoenvironmental Eng., 127 (2001) 67-75. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(67)
[41] R. Daita, V. Drnevich, D. Kim, Family of compaction curves for chemically modified soils, Joint Transportation Research Program, 2005.
[42] I. Bellezza, E. Fratalocchi, Effectiveness of cement on hydraulic conductivity of compacted soil–cement mixtures, Proc. Inst. Civ. Eng.: Ground Improv., 10 (2006) 77-90. https://doi.org/10.1680/grim.2006.10.2.77
[43] S. Horpibulsuk, W. Katkan , A. Apichatvullop, An approach for assessment of compaction curves of fine-grained soils at various energies using a one-point test, Soils Found., 48 (2008) 115-125. https://doi.org/10.3208/sandf.48.115
[44] Hong, L. Optimization and management of materials in earthwork construction.PhD. Thesis, Iowa State University, 2008.
[45] A. Sawangsuriya, T. B. Edil , P. J. Bosscher, Modulus-suction-moisture relationship for compacted soils in post compaction state, J. Geotech. Geoenvironmental Eng., 135 (2009) 1390. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000108
[46] İ. Demiralay, Y. Z. Güresinli,  Erzurum Ovasi Topraklarinin Kivam Limitleri Ve  Sikişabilirliği Üzerinde Bir Araştirma, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 10 (2010)77-93.
[47] A. Bera, A. Ghosh, Regression model for prediction of optimum moisture content and maximum dry unit weight of fine-grained soil, Int. J. Geotech Eng.,5 (2011) 297-305. https://doi.org/10.3328/IJGE.2011.05.03.297-305
[48] Atsbeha, N. Prediction of Compaction Characteristics from Atterberg Limits For Fine-Grained Soils. Master Thesis, Addis Ababa University, 2012.
[49] A. H. Ören, Estimating compaction parameters of clayey soils from sediment volume test,         Appl.Clay Sci., 101(2014) 68-72. https://doi.org/10.1016/j.clay.2014.07.019
[50] H. B. Nagaraj, B. Reesha, M. V.Sravan, M. R. Suresh, Correlation of compaction characteristics of natural soils with modified plastic limit, Transp. Geotech., 2 (2015) 65–77. https://doi.org/10.1016/j.trgeo.2014.09.002
[51] R. Nesamatha, P. D. Arumairaj, Numerical modeling for prediction of compression index from soil index properties, Electron. J. Geotech. Eng., 20 (2015) 4369- 4378.
[52] Winta, A. Prediction Of Soaked California Bearing Ratio (Cbr) Of Fine-Grained Soils From Index Properties; Case Of Silty Clay Soils From Addis Ababa. PhD. Thesis, University of Addis Ababa, 2016.
[53] B. Sen , S. K. Pal, Compaction and Consolidation Characteristics of Soils and Correlations of Parameters, Int. J. Eng. Technol. Sci. Res., 4 (2017) 874 – 886.
[54] O. M. Taha, Z. H. Majeed ,S. M. Ahmed, Artificial neural network prediction models for maximum dry density and optimum moisture content of stabilized soils, Transp. Infrastruct. Geotech., 5 (2018) 146-168. https://doi.org/10.1007/s40515-018-0053-2
[55] Saran, O. Investigation of Compaction Parameters and Preconsolidation Pressure of Fine Granular Soils Around Van Lake with Standard and Modified Proctor Methods, 2018
[56] A. Soltani, A. Deng, A. Taheri , A. Sridharan, Consistency limits and compaction characteristics of clay soils containing rubber waste,  Proc. Inst. Civ. Eng.: Geotech. Eng., 172 (2019) 174-188. https://doi.org/10.1680/jgeen.18.00042
[57] U. V. Ratnam , K. N. Prasad, Prediction of compaction and compressibility characteristics of compacted soils, Int. J. Appl. Eng. Res., 14 (2019) 621-632.
[58] Pillai, G. S. and Vinod, P. 2019. A framework for prediction of compaction parameters in standard proctor tests. In Recent advances in materials, mechanics and management, pp. 9-12. CRC Press.
[59] P. O. Ogbuchukwu, O. C. Okeke, C. A. Ahiarakwem , O. O. Ozotta,  Geotechnical properties of expansive soils in Awka and environs, Southeastern Nigeria, in relation to engineering problems, Int. J. Appl. Sci. Res., 2 (2019) 79-94.
[60] S. L. Machado, M. F. Carvalho, Z. S. Carvalho, M. Karimpour-Fard D. G. Mariz,  Optimal ranges of soil index properties for diesel containment using compacted barriers, Environ. Geotech., 7 (2019) 540-553. https://doi.org/10.1680/jenge.18.00076
[61] M. D.Sante, On the compaction characteristics of soil-lime mixtures, Geotech. Geol. Eng., 38 (2020) 2335-2344. https://doi.org/10.1007/s10706-019-01110-w
[62] J. Hassan, B. Alshameri,F. Iqbal, Prediction of California Bearing Ratio (CBR) Using Index Soil Properties and Compaction Parameters of Low Plastic Fine-Grained Soil, Transp. Infrastruct. Geotech., 9 (2022) 764-776. https://doi.org/10.1007/s40515-021-00197-0
[63] Y. Gurtug , A. Sridharan,  Prediction of compaction behaviour of soils at different energy levels, Int. J. Eng. Res. Dev., 7 (2015) 15-18. https://doi.org/10.29137/umagd.379757
[64] K. Ghafor, H. U. Ahmed, R. H. Faraj, A. S. Mohammed, R. Kurda, W. S. Qadir, A. A.  Abdalla, Computing Models to Predict the Compressive Strength of Engineered Cementitious Composites (ECC) at Various Mix Proportions, Sustainability, 14 (2022) 12876. https://doi.org/10.3390/su141912876
[65] A. Masood ,K. Ahmad, A review on emerging artificial intelligence (AI) techniques for air pollution forecasting: Fundamentals, application and performance, J. Clean. Prod., 322 (2021) 129072. https://doi.org/10.1016/j.jclepro.2021.129072