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H I G H L I G H T S   A B S T R A C T  
• Modeling is a feasible approach to 

estimating the compaction characteristics 
from soil index properties.  

• ANN model outperforms other models in 
predicting OMC.  

• MLR model provides better prediction of 
MDD. 

• PI is a dominant parameter influencing the 
compaction characteristics. 

 The compaction of soil is a pivotal matter in almost every earthwork to achieve 
the densest possible state of the soil. The suitability of soil for earthworks is 
largely decided by compaction characteristics such as Optimal Moisture Content 
(OMC) and Maximum Dry Density (MDD). Identifying the compaction 
characteristics of a large volume of soil in the laboratory requires a while. As a 
result, determining compaction characteristics from physical soil properties is 
critical for initial soil assessment. To predict the compaction characteristics of 
the soil, three different models of the Artificial Neural Network (ANN), M5P-
tree, and Multiple Linear Regression (MLR) are used in this work. Particle size 
and plasticity properties of soil are combined in the models, and seven input 
parameters consist of gravel, sand, silt, and clay contents, plastic limit, liquid 
limit, and plasticity index. 1038 datasets are compiled and processed in order to 
develop the models. To evaluate the effectiveness of the proposed models, 
several statistical analyses are harnessed, including coefficient of determination 
(R2), scatter index (SI), root mean squared error (RMSE), mean absolute error 
(MAE), and Objective (OBJ) value. Overall, the ANN model outperformed the 
MLR model in predicting OMC, while the MLR model outperformed it in 
predicting MDD. Besides this, the sensitivity analyses revealed that the plastic 
limit has a greater influence on the value of OMC, whereas both sand content 
and the plasticity index are important in predicting MDD. 
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1. Introduction 
Soil compaction is a crucial component of the construction process in geotechnical engineering since most of the 

structures, and earth-retaining structures are supported by the soil. The effectiveness of soil compaction may quantify the 
appropriateness of soils for a particular type of earthwork. The percentage of gravel and sand, the liquid limit, the plastic limit, 
the grain-size distribution, the shape of the soil grains, the specific gravity of the soil solids, and the quantity and type of clay 
minerals all impact soil compaction efficiency. 

Soil compaction is one of the most practical methods for densifying soils. When soil is compacted, the particles are forced 
together by compaction force. As a result, there may be an increase in shear strength while diminishing the compressibility and 
permeability of the soil mass [1]. In the laboratory, compaction tests using the Standard Proctor (SP) or Modified Proctor (MP) 
methods are harnessed to determine the two most important parameters, Maximum Dry Density (MDD) and Optimum 
Moisture Content (OMC) [2]. 

It is vital to identify the compaction characteristics of natural soils to evaluate their appropriateness for earthworks. In this 
kind of project, a vast volume of soil is necessitated, and obtaining this massive volume with a desired compaction 
characteristic from a single borrow source is likely to be difficult. Compaction characteristics must be obtained from a 
laboratory compaction test in these circumstances to determine the suitability of soils collected from various borrows sources. 
Nonetheless, laboratory compaction tests necessitate a significant amount of time and effort. As a consequence, in order to 
assess the suitability of the required soils in advance for any such project, it is critical to establish correlations of soil 
compaction characteristics with such simple physical properties as Atterberg limits and particle sizes. These are obtained 
through straightforward methods. 
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Many studies have been undertaken to evaluate compaction characteristics indirectly by considering physical soil 
properties. Several correlations have been developed to estimate compaction characteristics utilizing individual soil index 
properties [3 - 12] or soil fractions [13, 14]. However, other studies have suggested that considering just one input parameter 
may not be enough to estimate compaction characteristics. As a result, multiple linear regression (MLR) models have been 
used to predict compaction characteristics depending on multiple basic soil parameters [15 - 17, 14, 2, 18, 19]. Further to that, 
machine learning techniques were used in some other studies to develop more accurate correlations [20 - 23]. 

Sinha and Wang [24] demonstrated that using artificial neural networks (ANN) for the prediction of soil compaction 
characteristics outperforms traditional statistical models, and a reliable prediction can be obtained. Sivrikaya [16] predicted the 
compaction characteristics of fine-grained soils that used a multilinear regression model (MLR) based on soil index properties 
and particle sizes. The input parameters considered were gravel content (G), sand content (S), fine-grained content (F), 
plasticity index (PI), liquid limit (LL), and plastic limit (PL) (PL). The study concluded that, once compared to other index 
properties, compaction characteristics correlate well with plastic limit. Gunaydin [4] devoted a variety of techniques, including 
simple-multiple analysis and artificial neural networks, to anticipate compaction characteristics based on soil particle sizes. 
The study indicated that reliable correlations (R2 = 0.70 - 0.95) for preliminary design can be procured utilizing both 
techniques. 

Mujtaba et al. [17] as well developed multiple regression analysis models for 110 sandy soils in forecast compaction 
characteristics based on the uniformity coefficient (Cu) and compaction energy (CE). Tenpe and Kaur [25] investigated 
artificial neural network (ANN) modelling performance for predicting compaction characteristics concerning soil index 
properties that use the liquid limit (LL), plasticity index (PI), and compaction energy (CE). What's more, Omar et al. [26] 
utilised complex mathematical models and novel approaches to foresee the compaction characteristics of fine-grained soil 
based on a variety of physical properties. Farooq et al. [2] used a multiple regression model to predict OMC. In addition, Saika 
et al. [8] created a set of regression models for predicting compaction characteristics concerning consistency limits. Karimpour 
et al. [27] utilized ANNs and MLR on 728 datasets to predict compaction characteristics based on soil type, grain size 
distribution, liquid limit (LL), plastic limit (PL), and specific gravity at different energy levels. The analysis revealed that fine 
content has a greater influence on compaction characteristics than other parameters. Besides that, even though ANN models 
are more effective, MLR models can be more advantageous in predicting compaction characteristics. This is due to the fact that 
ANN models are black-box  in nature. Verma and Kumar [23] utilized a novel application of artificial neural networks (ANN) 
to estimate the (MP) compaction characteristics of fine-grained soil in a recent study. The laboratory testing of in situ soil 
samples from a highway construction site yielded 532 datasets. In addition to the index properties test, modified Proctor 
compaction tests were performed on the gathered soil samples. The Python V3.7.9 platform was used to write the ANN 
algorithm code for the analysis. The basic physical soil characteristics of gravel (%), sand (%), fine content (FC), percent 
material retained on 2.0 mm (R2.0 mm), 0.425 mm (R0.425 mm), and 0.075 mm (R0.075 mm), coarse sand (CS), medium 
sand (MS), and fine sand (FS), liquid limit (LL), and plastic limit (PL) have been used as input parameters. 

Moreover, Verma and Kumar [28] aimed at developing a multi-layer perceptron neural network model for predicting the 
modified compaction properties of both coarse- and fine-grained soils. Similarly, the Python V3.7.9 platform was employed to 
write the code for the artificial neural network (ANN) algorithm. To predict the modified compaction characteristics, 179 
coarse-grained and 69 fine-grained soil datasets are examined, with Gravel (percent), Sand (percent), FC (percent), LL 
(percent), PL (percent), and PI (percent) as input parameters. The developed models yielded a high correlation coefficient (R), 
with a value higher than 0.80 for coarse-grained soils and 0.90 for fine-grained soils. 

Various statistical and machine learning models were used in the aforementioned studies to predict compaction 
characteristics from different soil properties for the preliminary assessment of soil suitability for earthworks. Statistical models 
are simple to use, and output predictions are obtained in the form of equations, which can be useful in the field. Machine 
learning models, on the other hand, can analyze large amounts of data and identify specific trends and patterns that humans 
would not be able to visualize. In dynamic and uncertain situations, Machin learning algorithms can be brilliant at processing 
multidimensional and multivariant data. Only a few studies predicted compaction characteristics using both statistical and 
machine learning models. Furthermore, in just a few studies, a large number of data points, such as soil index properties and 
particle size, have been considered. A large volume of data (1038 datasets) has been compiled from prior reports for this work. 
Multiple Linear Regression, M5P-tree, and Artificial Neural Network models have been used to predict compaction 
characteristics (OMC, MDD) with respect to soil index properties and soil particle sizes. In predicting compaction 
characteristics, this work assesses the performance of the models utilized. 

2. Research Objective 
According to several investigations, an individual index properties parameter cannot be used to predict the compaction 

characteristics of different types of soil. As a result, numerous datasets from the literature were gathered in order to develop 
models to predict soil compaction characteristics based on different soil properties obtained from simple laboratory testing, 
such as the G %, S %, M %, C %, LL %, PL %, and PI %. As a consequence, three distinct models were developed. In this 
regard, the models' performance can be evaluated, and the influence of various soil properties can be revealed. As a result, the 
datasets in two groups of training and testing are examined in the models to achieve the study's main objectives: 

 The influence of the physical soil properties on the compaction characteristics will be examined, and the 
input parameter that plays the most remarkable in determining the value of the OMC and MDD will be 
identified from a sensitivity analysis. 
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 From different statistical assessment criteria, the model with the best performance to predict the 
compaction characteristics of soil from basic soil properties will be determined and compared with the 
other models. 

3. Methodology 
Totally, 1038 datasets were collected from the literature. The data were randomly mixed and split into two groups: training 

datasets and testing datasets. The training datasets included 70% of the dataset while 30% was for the testing ones. The 
training data groups were utilized to develop the models. The main objective of the models was to predict the standard Proctor 
compaction characteristics (OMC and MDD). Later on, the models were examined by utilizing the testing data. Table 1 
contains the number of used data from different studies and ranges of the input parameters: gravel content (G %), sand content 
(S %), silt content (M %), clay content (C), liquid limit (LL %), plastic limit (PL %) and plasticity index (PI %). Further, in the 
table, the ranges of the measured values of optimum moisture content (OMC %) and maximum dry density (MDD kN/m3) are 
included, which are compared with the anticipated values obtained from the models later. These input parameters are used to 
develop the models, and the performances of the developed models are evaluated by the actual values of output parameters.  
The procedure of this study is shown by a flowchart in Figure 1 and can be summarized as: 

Stage 1: Collecting data  
Stage2: Correlating input and output parameters 
Stage 3: Splitting data into two groups: 70% training and 30% testing 
Stage 4: Developing different models 
Stage 5: Evaluating the performance of the models    

 
Figure 1: The procedure of the study by a flow chart diagram 
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Table 1: The range and number of the used datasets 

Ranges of Data Ref. 

No. 
Data 

Gravel 
(%) 

Sand 
(%) 

Silt (%) Clay 
(%) 

LL (%) PL (%) PI (%) OMC 
(%) 

MDD 
(kN/m3) 

8 0-26 8-46 23-64 3-35 41-53 26-34 15-19 13.5-24 14.7-17.4 [29] 
90 0-11.8 17-90.5 1.64-65 4-98 23.5-34 10.3-18 9.1-18 9.5-15.5 17.3-20.8 [30] 
25 0-0 5.0-94 9-85 0-59 16-76 16-107 0-45 6.6-32 9.9-21.3 [31] 
121 0-26 0-62 15-95 5-59 17-111 7.0-42 1.0-80 8.9-41 12-20.4 [32] 
16 0-0 8.4-67.8 15.45-51.7 10.2-

48.5 
26.6-72.6 10.5-38.1 13.4-39.4 14.8-33 12.7-18.1 [33] 

27 0-0 2.0-86 5-50 2-86 44-213 33-167 2.0-58 20-160 4.4-14 [34] 
57 0-20 0-100 3-83 6-84 24-495 10.0-47 2-449 8-32.5 12.6-20.8 [35] 
15 0-0 5.0-60 14-59 6-72 43-123 22-50 21-100 20.4-49 10.2-16 [36] 
88 0-0 1.0-52 28-73 15-46 18-66 12-29 6.0-39 9.0-26 14.6-20.3 [37] 
13 0-8 6.0-48 29-58 16-65 24-70 12.0-32 11.0-46 10-24 15.4-20.4 [38] 
6 0-0 0-100 5-70 10-95 19-93 12.0-29 4.0-64 8.9-27.7 14.2-19.4 [39] 
8 3-28.5 3-28.5 13-48 12-53 18-67 7.0-35 11.0-46 9.0-21 15.5-20.6 [40] 
5 0-0 1-13 23.8-58 30-

75.5 
28.2-98 21.1-40 7.1-58 18.6-32 12.5-16.9 [1] 

10 0-0 0-36.5 35.5-88.5 5-51.5 37-73.5 18-51.9 9.5-37.9 16.2-44.4 11.1-17.9 [3] 
13 0-0 10.0-50 35-60 15-42 24-48 15-21 9.0-29 12.5-20.5 16.2-19.1 [41] 
15 0-0 0-79 5.5-59 6.25-

45 
31-102 18.5-39 7.0-63 11.0-29 13.5-18.8 [42] 

9 0-13.3 0-44.3 28.8-41.9 26.9-
64.6 

39.7-
256.3 

6.1-48.2 17.2-
217.1 

15.6-33.8 12.8-17.6 [43] 

92 0-11 0-46 36-88 8-42 25-48 13-29 10.0-24 10.0-22 14.7-19.9 [44] 
5 0-3.9 3.1-59 21.2-82.4 5.7-

75.2 
26-85 14-33 9.0-52 13.5-27.5 14.4-18.5 [45] 

54 0-0 15-67 33-85 1.25-
45 

20.8-58.8 14-38.2 4.7-36.2 12.8-32.4 13-18.8 [46] 

5 0-0 0.9-19.6 24.2-87.9 9.6-
72.3 

30.8-
213.3 

17.1-44.5 10.3-
168.8 

15.4-30.1 12.9-17.5 [47] 

71 0-35 0.9-47 4-86 1.5-
94.3 

24-106 15-46 6-71 14-42 10.9-19.4 [48] 

15 0-0 3.4-35.1 23.2-56.2 21.2-
56.7 

33.4-92.4 17.5-42.3 15.9-50.1 20-36.3 11.8-16.2 [49] 

42 0-2 2-80 6-76 4-78 24-115 17.4-45.3 3.7-75.6 9.5-36.8 12.6-18.3 [50] 
30 0-20.3 4.5-43.9 3.1-38 2.4-

76.5 
29-77.8 18.2-30 10-55.5 12.0-30 14-19.1 [51] 

52 0-0 7.6-71.6 4.3-28.7 18-78 33.8-87.5 15.4-32.3 16.5-55.2 14-24 15.2-20 [14] 
10 0.4-5.2 11-34.1 19.3-43.2 38.8-

56 
31-50 19-37 3-25.4 15-35 11.9-18.3 [52] 

7 0-0 6.6-56.5 23.5-49.8 20-
43.6 

23-41.7 14.9-24.7 5.4-17 14-22.1 13.9-18 [53] 

6 0-0 32.5-
56.6 

19.3-31.3 18-
38.5 

37.8-87.2 17.7-28 17-69 14.8-24.8 14.4-18.1 [54] 

13 0-0 3.6-18.9 59-73.5 11.6-
39.6 

27.3-61.4 19.6-29 7.3-33 16.5-24.5 14.6-17.7 [55] 

4 0-0 1.0-31 32-50 37-53 44-78 18-28 22-57 16-25 14.6-16.4 [56] 
8 1.2-9.2 14.9-

63.5 
20.5-65.9 6.4-

56.5 
33-81 17-25 8.0-60 14-17 17.9-19.5 [57] 

30 0-0 0-60 2-62 5-98 23-227 14.7-39.7 4.0-47 12-29 13.2-18.5 [58] 
8 0-2.9 5.2-37 32.2-70.5 28-

32.42 
63.1-77.4 29.3-37.7 33.6-46.5 17.7-27 13.7-17.2 [59] 

8 0-0 17.7-
67.8 

7.25-28.7 25-62 43.2-76.8 18-25.7 22.9-51.1 15.5-22.5 15.6-19.3 [12] 

17 0-9 28-82 7-29 8-69 25-91 15-41 10.0-50 10.4-29.6 13.8-19.2 [60] 
7 0-3 1-16 40-59 32-56 40-63 20-30 18-37 16-21 16-18.2 [61] 
30 0-7 7.0-26 14-81 7-84 27-32.3 17-22.6 4.9-12.4 11-13 18.9-19.6 [62] 

4. Correlations between Input and Output Parameters 
The correlations are examined to demonstrate the validity of the correlations between the input parameters and the 

compaction parameters. The matrix plot in Figure 2 depicted the relationship between the input and compaction parameters in 
this regard. The Figure demonstrates no strong correlation between the input parameters and the compaction characteristics, 
except a fair correlation between PL and OMC exists with R2 = 0.75, as shown in Figure 3. This correlation is only valid for 
fine-grained soils. In other words, in soils where coarse grains (G % and S %) predominate, PL cannot be used to determine 
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OMC since it does not represent the actual physical behaviour of the soil. Therefore, these index properties are combined to 
predict accurate compaction characteristics values. Also, the normal distribution of the compaction characteristics data is 
illustrated in Figure 4. Table 2 shows statistical data such as minimum, maximum, average, standard deviation, skewness, 
kurtosis, and variance. A high negative value for the kurtosis parameter signifies shorter ends than the normal distribution, 
while a positive value indicates longer ends. For the skewness parameter, a negative value indicates a left end and a positive 
value indicates a right end. 

 
Figure 2: Matrix Plot between the input parameters and the compaction characteristics 

 
Figure 3: Correlation matrix between the input and output parameters 

 
Figure 4: Normal Distribution of the compaction characteristics data 
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Table 2: Statistical parameters for input and output variables 

No. Variables Min Max Mean Variance Standard Deviation Skewness Kurtosis 
1 G (%) 0 75.8 1.67 26.44 5.142 6.24 59.8 
2 S (%) 0 90.5 22.44 329.63 18.15 1.026 0.716 
3 M (%) 1.64 95 43.63 386 19.64 0.043 -0.54 
4 C (%) 0 98 32 318.94 17.85 0.92 0.716 
5 LL (%) 14.5 495 54.69 2956.9 54.37 5.38 33.49 
6 PL (%) 1 119 24.08 94.3 9.71 2.85 18.25 
7 PI (%) 1 449 30.74 2547.25 50.47 5.85 38.06 
8 OMC (%) 6.8 95 20.49 63.09 7.94 2.65 14.28 
9 MDD (kN/m3) 5.98 23 16.38 4.09 2.02 -0.83 1.85 

5. Modeling 
Each parameter of G, S, M, C, LL PL, and PI is connected to the OMC and MDD in the preceding Figures in order to 

develop a direct relationship between these parameters to predict the compaction characteristics from one of these parameters. 
The Figures and statistical analysis, however, reveal that a reliable direct correlation between the compaction characteristics 
and the input parameters cannot be accomplished. To resolve this shortcoming and establish a reliable correlation to predict 
OMC and MDD from input parameters, three models are developed, as shown below, taking into account the influence of soil 
particle size and index properties. 

The models are used to predict the OMC and MDD in this work, and the performance of each model is evaluated using the 
measured data. To compare the outcomes of the models and measure the performance of each model, the following assessment 
standards are used: To be considered scientifically accurate and reliable, a model must have a small percentage difference 
between observed and predicted data, a higher R2 value, and lower RMSE, Objective (OBJ), MAE, and SI values. 

5.1 Multiple Linear Regression Model 
The most often used method for estimating the compaction characteristics of soils is the linear regression model (LR) [4, 

63, 11, 12], as illustrated in Equation (1): 

 OMC, MDD = a + bX (1) 

Where a and b are constants, and x might be one of the G, S, F, LL, PL, or PI. The other variables that might affect OMC 
and MDD, including soil particle - size and soil plasticity, are not included in the previous formulas. To incorporate all the 
various characteristics and circumstances that could affect OMC and MDD and produce more trustworthy scientific results, the 
following Equation (2) is proposed. 

 OMC, MDD = β0  +  β1G + β2S + β3M + β4C + β5LL + β6PL + β7PI (2) 

Where G is gravel content (%), S is sand content (%), M is silt content (%), C is clay content (%), LL is the liquid limit, 
PL is the plastic limit, and PI is the plasticity index. 

Moreover, the constant parameters of the model are β0, β1,β2, β3, β4, β5, β6and β7. Equation (2) can be viewed as a 
development of Equation (1) since all variables can be modified linearly. This combination might not always be the case as all 
factors are unlikely to affect the compaction characteristics and interact with one another. Consequently, frequent updates are 
required for the model to accurately estimate the OMC and MDD [26, 13, 14]. 

5.2 M5P-tree Model 
Quinlan (1992) invented the M5 algorithm, which later evolved into the M5P-tree algorithm [64]. One of the key benefits 

of model trees is their ability to effectively solve problems when dealing with multiple datasets with a large number of features 
and dimensions. They are also well-known for their expertise in dealing with missing data. The M5P-tree method categorizes 
or divides various data areas into distinct spaces, establishing a linear regression at the terminal node. A multivariate linear 
regression model demonstrates that it applies to each sub-location. The error is guesstimated by the node's default variance 
value. The correlations of tree-shaped branches are shown in Figures 5 and 6. Additionally, Equation demonstrates that the 
generic version of the M5P-tree model equation is 

 OMC, MDD =   β0 + β1(G) + β2(S)  +  β3(M)  + β4(C) + β5(LL)  +  β6(PL) + β7(PI) (3) 

Where G is gravel content (%), S is sand content (%), M is silt content (%), C is clay content (%), LL is the liquid limit, 
PL is the plastic limit, and PI is the plasticity index. Additionally, β0, β1, β2, β3, β4, β5, β6and β7 represent the model 
parameters. 
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Figure 5: The obtained M5P-tree model for OMC 

 
Figure 6: The obtained M5P-tree model for MDD 

5.3 ANN Model 
Artificial neural networks (ANN) are cognitive computing systems that analyze and simulate nonlinear data using 

algorithms that only vaguely resemble the operations of the human nervous system [65]. This machine learning method is 
frequently used in construction engineering to predict the future behaviour of a variety of numerical issues [23, 28]. The ANN 
model is divided into three layers: input, hidden, and output. Each input and output layer may consist of one or more layers, 
depending on the intended problem. The hidden layer is frequently extended to include two or more layers. The input and 
output layers are frequently determined by the designed model's objective and the data collected, whereas the hidden layer is 
influenced by the rating weight, transfer function, and bias of each layer toward other levels [65].  

A multi-layer feed-forward network is built using a combination of proportions, weight/bias, and various parameters, 
including (G, S, M, C, LL, PL, and PI) as inputs, and the output ANN is either the OMC or MDD. There is no standard 
approach for designing network architecture. The trial-and-error test is thus harnessed to ascertain the number of hidden layers 
and neurons. The ultimate focus of the network's training process is to obtain the optimal number of iterations (epochs) from 
which the minimum mean absolute error (MAE), root mean square error (RMSE), and high R2-value are obtained. Several 
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studies have been conducted to investigate the effect of iteration on lowering the MAE and RMSE.  The obtained dataset (a 
total of 1038 data) has been split into 2 groups in order to prepare for the designed ANN. Approximately 70% of the datasets 
were used as trained data to train the network. For the trained network, 30 % data was used for testing. The trained and tested 
ANN has been used to decide the correct network structure based on the compatibility of the predicted compaction 
characteristics with the actual obtained data. The ANN structure with one hidden layer, eight neurons, and a hyperbolic tangent 
transfer function was determined to be the best-trained network that delivers the highest R2 and the lowest MAE and RMSE for 
predicting both OMC and MDD (as illustrated in Figure. 9 and Tables 5 and 6). Equations 4, 5, and 6 display the ANN model's 
General Equation. 

From linear node 0:  

 OMC, MDD = Threshold + �Node 1
1+e−B1

� + �Node 2
1+e−B2

�+ ⋯ (4) 

From sigmoid node 1: 

 B1 = Threshold + ∑(Attribute ∗ Variables)  (5) 

From sigmoid node 2: 

 B2 = Threshold + ∑(Attribute ∗ Variables)  (6) 

6. Model Assessment Tools 
Several measures, such as the coefficient of determination (R2), scatter index (SI), objective (OBJ), root mean squared 

error (RMSE), and mean absolute error (MAE), were used to assess the proposed models, which may be calculated using the 
formulas below: 

 R2 = �
∑ (yi−yi′)(yp−yp′)p
p=1

��∑ (yi−yi′)p
p=1

2
��∑ (yp−yp′)p

p=1
2
�
�

2

 (7) 

 RMSE = �∑ (yp−yi)2p
p=1

p
  (8) 

 MAE =
∑ |yp−yi|p
p=1

p
 (9) 

 SI = RMSE
y′

 (10) 

 OBJ = �ntr
nall

∗ RMSEtr+MAEtr
Rtr2 +1

� + �ntst
nall

∗ RMSEtst+MAEtst
Rtst2 +1

� (11) 

In the calculations above, yp and yi represent the expected and actual values of the path pattern, respectively, whereas yp' 
and yi' represent the averages of the actual and predicted values. The terms training and testing datasets are abbreviated as tr 
and tst, respectively. The term n refers to the number of patterns (collected data) in the related dataset. In contrast to R2, which 
has an optimal value of one, the other evaluating factors have optimal values of zero. In terms of the SI parameter, a model 
performs poorly when it is 0.3, reasonably when it is between 0.2 and 0.3, well when it is between 0.1 and 0.2, and extremely 
well when it is less than 0.1. The OBJ parameter was also utilized in Equation (11) as an integrated performance indicator to 
evaluate the efficacy of the suggested models. Positive and negative error margin lines were added to the model findings to 
visually depict how each model overestimates and underestimates the anticipated effects of OMC and MDD compared to the 
actual values from the tests. A positive score indicates an exaggerated percentage of OMC and MDD, whereas a negative value 
indicates an underestimated amount. 

7. Results and Analysis 

7.1 Predicted and Measured the Compaction Characteristics 

7.1.1 The MLR model 
Figure 7 describes the correlation between actual and estimated OMC and MDD values for all training and testing datasets. 

A total of 1038 data sets were utilized to construct the model. In the developed equations, the two plasticity parameters LL and 
PI significantly contribute to the values of OMC and MDD. The optimal value (a specific value, minimum or maximum) in the 
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equation was unearthed by optimizing the sum of error squares and the least squares method in Excel Solver. In the current 
model, the weight of each parameter on the OMC and MDD was also determined. The values of other equation cells in the 
worksheet were used to set limitations or restrictions on this object cell. The following is the Equation for the MLR model with 
various weight parameters (Equations 12 and 13): 

 OMC = 15.34 − 0.19G − 0.166S− 0.1185M− 0.05C + 0.76LL− 0.065PL − 0.788PI (12) 

 MDD = 17.23 + 0.091G + 0.049S + 0.029M + 0.018C− 0.187LL + 0.0177PL + 0.1886PI (13) 

According to the above Equations, among other input parameters, PI can have a stronger influence on the decline of OMC 
and the increase of the MDD value, even though this may contradict experimental findings reported in the literature, which 
show that a soil with a higher PI has a lower MDD value. The obtained R2, RMSE, and MAE assessment parameters for the 
OMC are 0.8, 3.17 %, and 2.51 %, respectively. The MDD, R2, RMSE, and MAE values are 0.76, 0.95, and 0.75 kN/m3, 
respectively. Figures 13 and 14 reveal that the current model's OBJ and SI values for OMC for the training dataset are 3.43 and 
0.182, respectively, while these values are 0.97 and 0.057, respectively, for the test dataset. 

  
Figure 7: Measured and predicted values of a) OMC and b) MDD for MLR model: training and testing datasets 

7.1.2 M5P-tree Model 
Figure 8 illustrates the predicted and actual values of both OMC and MDD obtained in the M5P-tree model. Compared to 

MLR, PL has a relatively greater influence on the compaction characteristics than the other input parameters. Additionally, the 
model parameters are presented in Tables 3 and 4. The model parameters from the tables are chosen with respect to the linear 
tree function shown in Figures 5 and 6. In the figures, it is indicated that to predict the OMC, 14 Lum are desired, while there 
are 5 Lum to predict the MDD. The use of the Lum relies on the input parameters. For example, if the value of PL is 34%, the 
model equations will be in Lum 5 and Lum 2 for OMC and MDD, respectively, as: 

 OMC = 19.8 − 0.168(G) − 0.21(S) − 0.1(M) − 0.053(C) − 0.015(LL) +  0.535(PL) − 0.0019(PI)  (14) 

 MDD =  16.73 +  0.0339(G) +  0.0509(S) +  0.02(M)  +  0.0187(C) − 0.14(PL) − 0.0001(PI) (15) 

Table 3: M5P-tree model parameters for OMC 

LM Model Parameters 

𝛃𝛃𝟎𝟎 𝛃𝛃𝟏𝟏 𝛃𝛃𝟐𝟐 𝛃𝛃𝟑𝟑 𝛃𝛃𝟒𝟒 𝛃𝛃𝟓𝟓 𝛃𝛃𝟔𝟔 𝛃𝛃𝟕𝟕 

1 1.81 -0.29 -0.01 0.01 0.017 0.201 0.456 -0.03 
2 9.836 -0.09 -0.01 0.027 0.053 0.036 0.035 0.025 
3 9.3 -0.144 -0.031 -0.002 0.006 -0.026 0.5 -0.019 
4 0.006 0.32 0.056 0.11 0.094 -0.043 0.41 0.121 
5 19.8 -0.168 -0.21 -0.1 -0.053 -0.015 0.535 -0.002 
6 38.9 -0.307 -0.0722 -0.0172 -0.003 0 -0.13 -0.004 
7 25.58 -0.3077 -0.0722 -0.0172 -0.003 0 0.243 -0.004 
8 28.38 -0.3077 -0.0846 -0.0172 -0.0487 0 0.1696 -0.004 
9 27.87 -0.307 -0.084 -0.017 -0.042 0 0.17 -0.004 
10 26.85 -0.46 -0.068 -0.017 -0.003 0 0.169 -0.004 
11 31.85 -0.266 -0.039 -0.054 -0.003 -0.001 0.196 -0.004 
12 15.6 -0.266 0.0376 -0.13 -0.003 -0.0078 0.55 -0.004 
13 29.06 -0.266 0.0547 -0.0172 -0.003 0 0.239 -0.004 
14 30.8 -0.266 0.0547 -0.0172 -0.003 0 0.196 -0.004 
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Table 4: M5P-tree model parameters for MDD 

LM Model Parameters 

𝛃𝛃𝟎𝟎 𝛃𝛃𝟏𝟏 𝛃𝛃𝟐𝟐 𝛃𝛃𝟑𝟑 𝛃𝛃𝟒𝟒 𝛃𝛃𝟓𝟓 𝛃𝛃𝟔𝟔 𝛃𝛃𝟕𝟕 

1 21.77 0.0372 0.0015 -0.0173 -0.0245 0 -0.1442 -0.0184 
2 16.73 0.0339 0.0509 0.02 0.0187 0 -0.1412 -0.0001 
3 14.96 0.132 0.0098 0.0042 0.0031 -0.0009 -0.0569 -0.0001 
4 18.035 0.0649 0.0098 0.0042 0.0031 -0.0224 -0.0642 -0.0001 
5 20.6 0.065 -0.0984 0.0042 0.0031 -0.0104 -0.0805 -0.0001 

As far as OMC is concerned, the obtained R2, RMSE, and MAE assessment parameters are 0.84, 4.26%, and 2.59%, 
respectively. For the MDD, R2, RMSE, and MAE are 0.823, 1.198 kN/m3 and 0.82 kN/m3, respectively.  The OBJ and SI 
values of the present model for OMC of the training dataset are 3.68 and 0.23, respectively, as shown in Figures 13 and 14, 
while these values are 1.08 and 0.072 for MDD. 

  
Figure 8: Measured and predicted values of a) OMC and b) MDD for M5P-tree model: training and testing datasets 

7.1.3 ANN model 
To achieve excellent ANN performance, the author investigated various hidden layers, neurons, momentum, learning rate, 

and iterations. Tables 5 and 6 display several ANN architectures that were investigated in order to select the optimal ANN 
model for OMC and MDD. As a direct consequence, it was discovered that an ANN with one hidden layer, eight neurons on 
the left (as shown in Figure 9), 0.1 momentum, 0.2 learning rate, and 2000 iterations best predict the OMC and MDD. Figure 
10 provides a comparative analysis of predicted and actual values of compaction characteristics for both phases (training and 
testing datasets). The ANN model outperforms other models when estimating the value of OMC. Nonetheless, the ANN model 
only outperformed the other models in terms of providing R2 value and predicting MDD. The R2, RMSE, and MAE assessment 
parameters for the ANN model are 0.9, 3.41 %, and 2.47 %, respectively, according to the OMC. However, R2, RMSE, and 
MAE values for predicting MDD are 0.86, 1.087 kN/m3, and 0.81 kN/m3, respectively. Besides this, in the current model, the 
OBJ for OMC and MDD are 3.05 and 1.0, respectively. Further to that, the SI values for OMC and MDD in the training dataset 
are 0.184 and 0.06, respectively. 

 

Table 5: the tested ANN architecture for OMC 

No. of 
Hidden 
layers 

No. of Neurons in Hidden Layers R2 MAE (%) RMSE (%) 

The left side The middle The right side 
1 6 0 0 0.89 2.7 3.77 
1 7 0 0 0.89 2.72 3.78 
1 8 0 0 0.909 2.47 3.41 
1 10 0 0 0.899 2.55 3.58 
2 8 0 6 0.84 2.82 4.36 
2 8 0 4 0.836 2.85 4.47 
1 12 0 0 0.902 2.43 3.42 
1 15 0 0 0.89 2.47 3.54 
2 8 0 8 0.84 2.58 4.21 
3 6 6 6 0.838 2.77 4.399 
3 8 8 8 0.85 2.58 4.13 
3 10 10 10 0.849 2.599 4.15 
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Table 6: the tested ANN architecture for MDD 

No. of Hidden 
layers 

No. of Neurons in Hidden Layers R2 MAE 
(kN/m3) 

RMSE 
(kN/m3) 

The left side The middle The right side 

1 6 0 0 0.829 0.83 1.19 
1 8 0 0 0.86 0.81 1.08 
1 10 0 0 0.86 0.89 1.17 
1 7 0 0 0.849 0.92 1.202 
2 8 0 6 0.809 0.868 1.25 
3 6 6 6 0.81 0.85 1.23 
3 5 5 5 0.8139 0.8513 1.228 
3 8 8 8 0.815 0.84 1.225 
2 8 0 8 0.8103 0.856 1.24 
3 10 10 10 0.8158 0.846 1.23 

 
Figure 9: the architecture of the used ANN models to predict both OMC and MDD 

  
Figure 10: Measured and predicted values of a) OMC and b) MDD for ANN model: training and testing datasets 
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7.2 Model Comparisons 
The potency of the proposed model was classified by employing five different quantitative tools: MAE, R2, RMSE, OBJ, 

and SI. R2, RMSE, and MAE are depicted in Figures 15, 16, and 17. 
In terms of OMC, the ANN outperforms the MLR and M5P-tree models in terms of R2, but the RMSE and MAE values 

are slightly higher than the MLR model, as shown in Figures 15a, 16a, and 17a, respectively. Figure 12a compares the 
predicted OMC and the actual measured OMC based on the results of all models. Besides this, Figures 11a and b show the 
residual error for all models in both phases. Observing actual and predicted OMC values in Figures 11a and 12a reveals that 
the ANN model outperforms the other models. Figures 13a and b show the OBJ for all of the models. 

MLR, M5P-tree, and ANN models have OBJ values of 3.43, 3.68, and 3.05, respectively, to predict OMC (Figure 13a). 
Despite the fact that the OBJ values for all models are very close, the ANN model has the minimum OBJ value when 
compared to the others. This indicates that the ANN approach produces more consistent results and is more accurate in 
predicting OMC. 

Figures 14a and 14b display the SI values for the training and testing phases. In Figure 14a, the testing phases for MLR 
and ANN are between 0.1 and 0.2, indicating satisfactory accuracy. However, the SI value for the M5P-tree model outperforms 
the fair one. The ANN model performs well in both the training and testing phases. Relying on these analyses, while all models 
can be used to predict the OMC from physical soil properties to some extent, the ANN model was shown to perform much 
better. 

Regarding MDD, in Figure 14b, ANN still provides better performance than the other models. However, the MLR model 
provides lower dispersion and percentages of error than other models, as shown in Figures 11b and 12b. Concerning Figure 
13b, the OBJ values of MLR, M5P-tree, and ANN are 0.97, 1.08, and 1.0, respectively. MLR model has the least OBJ 
compared to the other models. In this regard, the MLR and ANN somewhat perform well in predicting MDD. Referring to 
Figure 14b, the SI value for MLR, M5P-tree, and ANN models are 0.057, 0.072, and 0.06, respectively. These values show 
that all the models are excellent in predicting MDD. Although all the models are likely to perform well and the ANN model 
provides higher R2, MLR performs better in predicting MDD considering all quantitative tools (Figures 15b, 16b and 17b).  

  
Figure 11: Variation in predicted values of a) OMC and b) MDD based on the four different models 

  
Figure 12: Comparison between model predictions of a) OMC and b) MDD using all data 
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Figure 13: The OBJ values of a) OMC, b) MDD for all the models 

  
Figure 14: The SI values of a) OMC and b) MDD for all developed models 

  
Figure 15: The R2 values of a) OMC and b) MDD for all four models 

  
Figure 16: The RMSE values of a) OMC and b) MDD for all four models 
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Figure 17: The MAE value of a) OMC and b) MDD for all the four models 

7.3 Sensitivity Analysis 
Sensitivity analyses were carried out in order to assess the immediate effect of each parameter on the OMC and MDD. The 

ANN model was chosen for this purpose because it performed the best when compared to the others. In this regard, the true 
contribution of each parameter in the model to the values of OMC and MDD can be seen. In each of these studies, a single 
input variable was removed while all training data were combined. To analyze the influence of each parameter, RMSE, R2, and 
MAE were calculated separately. Tables 7 and 8 show the differences in statistical tools for predicting OMC and MDD, 
respectively. 

Table 7: sensitivity analysis for ANN model on OMC 

No. Input parameters Removed parameter R2 MAE RMSE Ranking 
1 G, S, M, C, LL, PL, PI  0.9 4.29 5.14 - 
2 S, M, C, LL, PL, PI G 0.896 4.199 5.058 6 
3 G, M, C, LL, PL, PI S 0.8904 4.54 5.40 5 
4 G, S, C, LL, PL, PI M 0.8909 4.57 5.44 4 
5 G, S, M, LL, PL, PI C 0.89 5.21 6.04 2 
6 G, S, M, C, PL, PI LL 0.8997 3.64 4.55 7 
7 G, S, M, C, LL, PI PL 0.8926 5.24 6.14 1 
8 G, S, M, C, LL, PL PI 0.8925 5.13 5.959 3 

Table 8: sensitivity analysis for ANN model on MDD 

No. Input parameters Removed parameter R2 MAE RMSE Ranking 
1 G, S, M, C, LL, PL, PI  0.86 0.81 1.087 - 
2 S, M, C, LL, PL, PI G 0.836 0.834 1.169 6 
3 G, M, C, LL, PL, PI S 0.829 0.9196 1.258 1 
4 G, S, C, LL, PL, PI M 0.828 0.826 1.1935 4 
5 G, S, M, LL, PL, PI C 0.858 0.8128 1.088 7 
6 G, S, M, C, PL, PI LL 0.821 0.8332 1.209 3 
7 G, S, M, C, LL, PI PL 0.829 0.8289 1.187 5 
8 G, S, M, C, LL, PL PI 0.827 0.8778 1.2327 2 

When the appraisal values of statistical tools are slightly changed and decreased, the effectiveness of each input parameter 
is procured. Table 7 illustrates the study's sensitivity analysis consequences for predicting OMC. Although the discrepancy is 
marginal, it is interesting to see the overall effect of excluding each input parameter on the OMC. The results show that PL is 
the most influential parameter influencing the value of OMC. When PL is removed from the equation, the R2 value of the 
model falls from 0.897 to 0.892. RMSE, on the other hand, increased from 5.14 to 6.14. Table 8 illustrates the impact of a 
single input parameter on MDD. When S and PI were removed individually, they had nearly the same influence. The R2 value 
declined from 0.86 to 0.82; however, the values of RMSE and MAE increased to 1.2 and 0.91 respectively. Therefore, PL can 
be considered as a parameter with more influence on the value of OMC while, for quantifying MDD, both S and PI play a 
notable role.  

8. Conclusion 
It is critical to develop a reliable and accurate model to predict the OMC and MDD for preliminary assessment and to save 

time when selecting appropriate soils. Since the models' input parameters are soil properties like the percentage of soil particle 
size and plasticity, they can be resolved utilizing simple laboratory tests. The values of OMC and MDD in the field quantify 
the properness of compaction. As a result, OMC and MDD can be acquired from such simple properties without the need for 
standard Proctor tests. This will affect the time required to identify the proper soil for specific earthworks. The outcomes of 
this work can be summarized based on the analysis and modelling of the 1038 datasets incorporating G, S, M, C, PL, LL, and 
PI parameters: 
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• The MLR, M5P-tree, and ANN were established in this study to predict OMC and MDD. In terms of several 
evaluation tools, the ANN model outperformed the other models, with higher R2 and lower values of OBJ, RMSE, SI, 
and MAE, particularly for predicting OMC. Aside from the R2 value, the MLR model outperforms the ANN and M5P-
tree models in predicting MDD. 

• The SI values for MLR and ANN models were smaller than 0.2, suggesting good performance in predicting OMC. 
However, all the models showed excellent performance in predicting MDD.  

• For OMC, the OBJ value of the ANN model is slightly smaller than MLR and M5P-tree models. Although the 
difference is not significant, the ANN model still performs better in predicting OMC. On the contrary, the OBJ value 
of the MLR model was smaller than both models when predicting MDD.  

• Although the R2 value of the ANN model is higher than other models, MLR and M5P-tree models still have reasonable 
R2 values (MLR = 0.8, M5P-tree = 0.84) and can relatively be used as reliable models to predict OMC from G, S, M, 
C, PL, LL, PI parameters. Similarly, the R2 value of the MLR model (0.77) and M5P-tree (0.84) can be considered 
relatively reliable in predicting MDD.   

• In the developed equations, PI dominated the MLR model to predict both OMC and MDD. However, in M5P-tree 
models, PL played a noticeable role compared to the other parameter. This might be attributed to the fact that most of 
the soil properties utilized in this study were associated with fine-grained soil. 

• In order to determine the most influential parameter that impacts OMC and MDD, sensitivity analyses were performed 
for the ANN model. In light of the analysis, PL is a parameter with more influence on OMC, while MDD is influenced 
by S and PI.  

• Although the ANN model outperforms to predict the OMC and MDD, the MLR and M5P-tree models can be more 
beneficial in predicting OMC and MDD from the developed equations with respect to the soil’s physical properties. 
This can be attributed to the fact that there is a nature of black box in the ANN approach.  
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