Document Type : Review Paper


Applied Science Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.


In this study, attention was directed to the preparation of nano-copper oxide films and their multiple applications, where a group of recent researches were presented and compared to reach the optimal phase, then the optimal application, and finally the optimal values in the optimal application. Where the metal-oxides are significant technology used in device fabrication in electronic and chemical industries, due to their applications in advanced technologies, which have been attached to the synthesis of copper oxide nanoparticles. These materials present different properties depending on molecular structure. Copper oxide is used in a wide range of applications. The copper oxide phases CuxO are interesting materials, because of its electrical, optical, and thermal properties. Nano-structuring technologies can enhance the performance of this material and produce it with unique properties that don’t exist in its bulk form. Copper oxide could be found in three different distinct phases, this includes CuO, Cu2O, and Cu4O3, which can be prepared by various synthesis techniques, depending on chemical and physical roots. The most two common Cupric oxide phase is the CuO formula, an inorganic material with black color, it represents one of the other two oxides of copper, the second being Cu2O or cuprous oxide with brownish semiconducting properties. Using A technique to prepare the same material with different phases required physical engineering, where the effect of different parameters plays a role. In this article, the chemical and physical properties of particles using hydrothermal technology for the synthesis of copper oxide were briefly reviewed.

Graphical Abstract


  • Considerable focus has been attached to the synthesis of copper oxide nanoparticles.
  • Copper oxide is used in a wide range of applications such as solar energy and gas sensors.
  • A high-score scientific manuscript that used copper oxides as electro-optical applications has been studied.


Main Subjects

  1. M. Ho, A review on copper oxide thin films, Int. J. Recent Sci. Res., 7 (2016) 11914-11918.‏
  2. S. Pedanekar, S. K. Shaikh, K. Y. Rajpure, Thin film photocatalysis for environmental remediation: A status review, Curr. Appl. Phys., 20 (2020) 931-952.‏ 
  3. Song, J. Liao, X. Ding, X. Liu, Q. Liu, Synthesis of YAG phosphor particles with excellent morphology by solid state reaction, J. Cryst. Growth, 365 (2013) 24-28.‏
  4. Guo, M. Yu, F. Wu, Preparation of high purity iron phosphate based on the advanced liquid-phase precipitation method and its enhanced properties, J. Solid State Chem., 287 (2020) 121346.‏
  5. Duan, Z. Zhu, C. Sun, J. Zhou, A. Walsh, Preparing copper catalyst by ultrasound-assisted chemical precipitation method, Ultrason. Sonochem., 64 (2020) 105013.‏ 
  6. Yang, S. J. Park, Conventional and microwave hydrothermal synthesis and application of functional materials: A review, Materials, 12 (2019) 1177.‏
  7. Li, Y. L. Lu, K. D. Wu, D. Z. Zhang, M. Debliquy, C. Zhang, Microwave-assisted hydrothermal synthesis of copper oxide-based gas-sensitive nanostructures, Rare Met., 40 (2021) 1477-1493.‏
  8. L. Chen, X. J. Wang, X. Huang, Z. L. Zhao, L. Z. Bai, W. J. Liang, Y. L. Ma, Synthesis of CuInSe 2 (CIS) Nanosheets by Two Liquid Phase Methods and Photoelectric Properties of CIS Thin Films, Chalcogenide Lett., 17 (2020) 386-396.‏
  9. Li, T. Chen, J. Liang, C. Zhang, J. Li, Y. Zhou, X. Sun, Manufacturing of ceramic cores: from hot injection to 3D printing, J. Mater. Sci. Technol., 134 (2023) 95-105.‏
  10. Liang, L. Shen, C. Zhou, H. Chen, J. Li, Scalable preparation of hollow ZrO2 microspheres through a liquid-liquid phase reunion assisted sol-gel method, Ceram. Int., 46 (2020) 14188-14194.‏ 
  11. N. Hasnidawani, H. N. Azlina, H. Norita, N. N. Bonnia, S. Ratim, E. S. Ali, Synthesis of ZnO nanostructures using sol-gel method,  Procedia Chem., 19 (2016) 211-216.‏
  12. X. Rutherford, H. Dou, B. Zhang, Z. He, J. P. Barnard, R. L. Paldi, H. Wang, Single-Step Fabrication of Au-Fe-BaTiO3 Nanocomposite Thin Films Embedded with Non-Equilibrium Au-Fe Alloyed Nanostructures, Nanomaterials, 12 (2022) 3460.
  13. Yang, S. J. Park, Conventional and microwave hydrothermal synthesis and application of functional materials: A review, Materials, 12 (2019) 1177.‏
  14. G. Jamkhande, N. W. Ghule, A. H. Bamer, M. G. Kalaskar, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, J. Drug Deliv. Sci. Technol., 53 (2019) 101174.‏ 
  15. Singh, V. Joshi, N. Mehetre, A. T. Sangamwar, Insights into co-amorphous systems in therapeutic drug delivery, Ther. Deliv., 12 (2021) 245-265.‏ 
  16. X. Gan, A. H. Jayatissa, Z. Yu, X. Chen, & M. Li, Hydrothermal synthesis of nanomaterials, J. Nanomater., 2020 (2020) 3. ‏
  17. Guillén, J. Herrero, Single-phase Cu2O and CuO thin films obtained by low-temperature oxidation processes, J. Alloys Compd., 737(2018) 718-724.
  18. Hong, R. M. Doughty, F. E. Osterloh, J. V. Zaikina, Deep eutectic solvent route synthesis of zinc and copper vanadate n-type semiconductors–mapping oxygen vacancies and their effect on photovoltage, J. Mater. Chem. A , 7 (2019) 12303-12316.‏
  19. V. Rane, K. Kanny, V. K. Abitha, S. Thomas . 2018 . In Synthesis of inorganic nanomaterials ,  pp.121-139. Woodhead publishing.
  20. Khaghani, D. Ghanbari, Magnetic and photo-catalyst Fe3O4–Ag nanocomposite: green preparation of silver and magnetite nanoparticles by garlic extract, J. Mater. Sci. Mater. Electron., 28 (2017) 2877-2886.‏
  21. Dąbrowska, T. Chudoba, J. Wojnarowicz, W. Łojkowski, Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: a review, Crystals, 8 (2018) 379.‏
  22. Tran, Y. C. Pyo, D. H. Kim, S. E. Lee, J. K. Kim, & J. S. Park, Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs, Pharmaceutics, 11 (2019) 132.‏
  23. Zhang, L. Wang, H. Qian, X. Li, Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions, J. Coat. Technol. Res., 13 (2016) 11-29.‏
  24. Qinhua, Y. Aizhen, Hydrothermal synthesis and crystallization of zeolites, Prog. Cryst. Growth Charact. Mater., 21 (1991) 29-70.‏
  25. L. Yu, J. J. Zhu, J. T. Zhao, Beta-manganese dioxide nanoflowers self-assembled by ultrathin nanoplates with enhanced supercapacitive performance, J. Mater. Chem. A , 2 (2014) 9353-9360.‏
  26. Zouridi, E. Gagaoudakis, E. Mantsiou, T. Dragani, X. Maragaki, E. Aperathitis, V. Binas, The Effect of Additives on the Hydrothermal Synthesis and Thermochromic Performance of Monoclinic Vanadium Dioxide Powder, Oxygen, 2 (2022) 410-423.
  27. Wang, P. K. Nayak, J. A. Caraveo‐Frescas, H. N. Alshareef, Recent developments in p‐Type oxide semiconductor materials and devices, Adv. Mater., 28 (2016) 3831-3892.‏
  28. Youn, M. Lee, D. Kim, J. K. Jeong, Y. Kang, & S. Han, Large-scale computational identification of p-type oxide semiconductors by hierarchical screening, Chem. Mater., 31 (2019) 5475-5483. ‏
  29. Bandara, J. P. Yasomanee, P-type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells, Semicond. Sci .Technol ., 22 (2006) 20.‏
  30. Ouyang, W. Wang, M. Dai, B. Zhang, J. Gong, M. Li, H. Sun, Research Progress of p-Type Oxide Thin-Film Transistors, Materials, 15 (2022) 4781.‏
  31. P. Allaker, K. Memarzadeh, Nanoparticles and the control of oral infections, Int. J. Antimicrob. Agents, 43 (2014) 95-104.
  32. S. Zoolfakar, R. A. Rani, A. J. Morfa, A. P. O'Mullane, K. Kalantar-Zadeh, Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications,  J. Mater. Chem. C, 2 (2014) 5247-5270.‏
  33. Majumder, I. Biswas, S. Pujaru, A. K. Chakraborty, Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique, Thin Solid Films , 589 (2015) 741-749.
  34. P. Kuzmina, N. M. Khaidukov, Crystallization of Copper Oxide Under Hydrothermal Conditions, in: Crystal Growth from High Temperature Aqueous Solutions., Nauka, Moscow, (1977) 178–189.
  35. Majumdar, S. Ghosh, Recent advancements of copper oxide based nanomaterials for supercapacitor applications, J. Energy Storage, 34 (2021) 101995.‏
  36. Wang, T. Jiang, D. Meng, J. Yang, Y. Li, Q. Ma, J. Han, Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties,  Appl. Surf. Sci., 317 (2014) 414-421.‏
  37. Liu, H. Zhu, Y. Y. Noh, Polyol reduction: a low-temperature eco-friendly solution process for p-channel copper oxide-based transistors and inverter circuits, ACS Appl. Mater. Interfaces , 11 (2019) 33157-33164.‏
  38. Pan, J. J. Zou, T. Zhang, S. Wang, Z. Li, L. Wang, X. Zhang, Cu2O film via hydrothermal redox approach: morphology and photocatalytic performance, J. Phys. Chem. C, 118 (2014) 16335-16343.
  39. L. Luo, M. J. Wang, D. S. Yang, J. Yang, Y. S. Chen, Hydrothermal synthesis of morphology controllable Cu2O and their catalysis in thermal decomposition of ammonium perchlorate, J. Ind. Eng. Chem., 32 (2015) 313-318.‏
  40. ‏ Jiang, Z. Li, Q. Lin, K. Dong, Y. Zhang, Z. Sun, Structure, optical properties and photocatalysis performance of Cu2O microspheres prepared by hydrothermal method, J. Mater. Sci. Mater. Electron., 27 (2016) 8856-8861.
  41. Cao, T. Han, L. Peng, C. Zhao, J. Wang, Hydrothermal synthesis, characterization and gas sensing properties of novel Cu2O open hollow nanospheres,  Ceram. Int., 43 (2017) 4721- 4724.
  42. C. Mevada, B. Sengupta, Effect of Temperature and Precursor Concentration on Morphology of Copper Oxide Synthesized on Glass Substrates Via Hydrothermal Method, Int. J. Sci.Technol. Eng., 3 (2017) 6-11.‏
  43. Yuan, X. Liu, H. Fu, J. Liu, Q. Zhu, M. Wu, One-step synthesis of flower-like Cu2O photoelectric materials by hydrothermal method, Sol. Energy, 188 (2019) 265-270.‏
  44. I. Khandaker, Hydrothermal Synthesis of CuO Nanopaticles and A Study on Property Variation with Synthesis Temperature, J.Appl.Fund. Sci., 6 (2020) 52 – 60 .
  45. Claros, I. Gràcia, E. Figueras, S. Vallejos, Hydrothermal Synthesis and Annealing Effect on the Properties of Gas-Sensitive Copper Oxide Nanowires,Chemosensors, 10 (2022) 353.‏
  46. Saleem, A. H. Jabbar, M. H. Jameel, A. Rehman, Z. H. Kareem, A. H. Abbas, & S. M. Sapuan, Enhancement in structural, morphological, and optical properties of copper oxide for optoelectronic device applications, Nanotechnol. Rev., 11 (2022) 2827-2838.‏
  47. Pratap, F. Babbe, N. S. Barchi, Z. Yuan, T. Luong, Z. Haber, P. Müller-Buschbaum, Out-of-equilibrium processes in crystallization of organic-inorganic perovskites during spin coating, Nat. Commun., 12 (2021) 1-9.
  48. Cao, H. Chen, T. Han, C. Zhao, L. Peng, Rose-like Cu2O nanoflowers via hydrothermal synthesis and their gas sensing properties, Mater. Lett., 180 (2016) 135-139. 
  49. E. N. Ç. Aziz, Hydrothermal Synthesis of Cuprous Oxide Nanoflowers and Characterization of Their Optical Properties,  Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22 (2018) 397-401.‏
  50. S. Zimbovskii, B. R. Churagulov, A. N. Baranov, Hydrothermal synthesis of Cu2O films on the surface of metallic copper in a NaOH solution, Inorg. Mater., 55 (2019) 582-585.‏
  51. Chen, K. Cui, Z. Hai, W. Kuang, L. Wang, J. Zhang, X. Tian, Hydrothermal synthesis of Cu2O with morphology evolution and its effect on visible-light photocatalysis, Mater. Lett., 297 (2021) 129921.‏
  52. Seidler, V. Landgraf, L. Vieira, D. Van Opdenbosch, S. R. Waldvogel, Novel cuprous oxide morphologies using amino acids and carboxylic acids as structure directing agents in a simple hydrothermal method, Mater. Lett., 292 (2021) 129553,
  53. H. Lam, N. T. N. Truong, C. T. T. Thuy, Tamboli, M. S., A. M. Tamboli, J. Jung, J. H. Jung, Fabrication and Characterization of the Broccoli-like Structured CuO Thin Films Synthesized by a Facile Hydrothermal Method and Its Photoelectrochemical Water Splitting Application, Metals, 12 (2022) 484.‏
  54. Hu, S. Dai, Dye-sensitized Solar Cells, Boston: De Gruyter , Berlin , 2022.‏
  55. Ozga, J. Kaszewski, A. Seweryn, P. Sybilski, M. Godlewski, B. S. Witkowski, Ultra-fast growth of copper oxide (II) thin films using hydrothermal method,  Mater. Sci. Semicond. Process., 120 (2020) 105279.‏
  56. Liu, Q. Song, H. Xie, Z. Ning, Influence of pH on Hydrothermal Synthesis of Photoactive Cu2O Films in an Acetate Solution, Int. J. Electrochem. Sci., 17 (2022) .‏
  57. Gerbreders, M. Krasovska, E. Sledevskis, A. Gerbreders, I. Mihailova, E. Tamanis, A. Ogurcovs, Hydrothermal synthesis of ZnO nanostructures with controllable morphology change, CrystEngComm, 22 (2020) 1346-1358.‏