Document Type : Review Paper

Authors

Applied Science Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

Abstract

In this study, attention was directed to the preparation of nano-copper oxide films and their multiple applications, where a group of recent researches were presented and compared to reach the optimal phase, then the optimal application, and finally the optimal values in the optimal application. Where the metal-oxides are significant technology used in device fabrication in electronic and chemical industries, due to their applications in advanced technologies, which have been attached to the synthesis of copper oxide nanoparticles. These materials present different properties depending on molecular structure. Copper oxide is used in a wide range of applications. The copper oxide phases CuxO are interesting materials, because of its electrical, optical, and thermal properties. Nano-structuring technologies can enhance the performance of this material and produce it with unique properties that don’t exist in its bulk form. Copper oxide could be found in three different distinct phases, this includes CuO, Cu2O, and Cu4O3, which can be prepared by various synthesis techniques, depending on chemical and physical roots. The most two common Cupric oxide phase is the CuO formula, an inorganic material with black color, it represents one of the other two oxides of copper, the second being Cu2O or cuprous oxide with brownish semiconducting properties. Using A technique to prepare the same material with different phases required physical engineering, where the effect of different parameters plays a role. In this article, the chemical and physical properties of particles using hydrothermal technology for the synthesis of copper oxide were briefly reviewed.

Graphical Abstract

Highlights

  • Considerable focus has been attached to the synthesis of copper oxide nanoparticles.
  • Copper oxide is used in a wide range of applications such as solar energy and gas sensors.
  • A high-score scientific manuscript that used copper oxides as electro-optical applications has been studied.

Keywords

Main Subjects

  1. M. Ho, A review on copper oxide thin films, Int. J. Recent Sci. Res., 7 (2016) 11914-11918.‏
  2. S. Pedanekar, S. K. Shaikh, K. Y. Rajpure, Thin film photocatalysis for environmental remediation: A status review, Curr. Appl. Phys., 20 (2020) 931-952.‏ https://doi.org/10.1016/j.cap.2020.04.006 
  3. Song, J. Liao, X. Ding, X. Liu, Q. Liu, Synthesis of YAG phosphor particles with excellent morphology by solid state reaction, J. Cryst. Growth, 365 (2013) 24-28.‏ https://doi.org/10.1016/j.jcrysgro.2012.12.022
  4. Guo, M. Yu, F. Wu, Preparation of high purity iron phosphate based on the advanced liquid-phase precipitation method and its enhanced properties, J. Solid State Chem., 287 (2020) 121346.‏ https://doi.org/10.1016/j.jssc.2020.121346
  5. Duan, Z. Zhu, C. Sun, J. Zhou, A. Walsh, Preparing copper catalyst by ultrasound-assisted chemical precipitation method, Ultrason. Sonochem., 64 (2020) 105013.‏ https://doi.org/10.1016/j.ultsonch.2020.105013 
  6. Yang, S. J. Park, Conventional and microwave hydrothermal synthesis and application of functional materials: A review, Materials, 12 (2019) 1177.‏ https://doi.org/10.3390/ma12071177
  7. Li, Y. L. Lu, K. D. Wu, D. Z. Zhang, M. Debliquy, C. Zhang, Microwave-assisted hydrothermal synthesis of copper oxide-based gas-sensitive nanostructures, Rare Met., 40 (2021) 1477-1493.‏ https://doi.org/10.1007/s12598-020-01557-4
  8. L. Chen, X. J. Wang, X. Huang, Z. L. Zhao, L. Z. Bai, W. J. Liang, Y. L. Ma, Synthesis of CuInSe 2 (CIS) Nanosheets by Two Liquid Phase Methods and Photoelectric Properties of CIS Thin Films, Chalcogenide Lett., 17 (2020) 386-396.‏ https://doi.org/10.15251/cl.2020.178.385
  9. Li, T. Chen, J. Liang, C. Zhang, J. Li, Y. Zhou, X. Sun, Manufacturing of ceramic cores: from hot injection to 3D printing, J. Mater. Sci. Technol., 134 (2023) 95-105.‏ https://doi.org/10.1016/j.jmst.2022.06.033
  10. Liang, L. Shen, C. Zhou, H. Chen, J. Li, Scalable preparation of hollow ZrO2 microspheres through a liquid-liquid phase reunion assisted sol-gel method, Ceram. Int., 46 (2020) 14188-14194.‏ https://doi.org/10.1016/j.ceramint.2020.02.227 
  11. N. Hasnidawani, H. N. Azlina, H. Norita, N. N. Bonnia, S. Ratim, E. S. Ali, Synthesis of ZnO nanostructures using sol-gel method,  Procedia Chem., 19 (2016) 211-216.‏ https://doi.org/10.1016/j.proche.2016.03.095
  12. X. Rutherford, H. Dou, B. Zhang, Z. He, J. P. Barnard, R. L. Paldi, H. Wang, Single-Step Fabrication of Au-Fe-BaTiO3 Nanocomposite Thin Films Embedded with Non-Equilibrium Au-Fe Alloyed Nanostructures, Nanomaterials, 12 (2022) 3460. https://doi.org/10.3390/nano12193460
  13. Yang, S. J. Park, Conventional and microwave hydrothermal synthesis and application of functional materials: A review, Materials, 12 (2019) 1177.‏ https://doi.org/10.3390/ma12071177
  14. G. Jamkhande, N. W. Ghule, A. H. Bamer, M. G. Kalaskar, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, J. Drug Deliv. Sci. Technol., 53 (2019) 101174.‏ https://doi.org/10.1016/j.jddst.2019.101174 
  15. Singh, V. Joshi, N. Mehetre, A. T. Sangamwar, Insights into co-amorphous systems in therapeutic drug delivery, Ther. Deliv., 12 (2021) 245-265.‏ https://doi.org/10.4155/tde-2020-0109 
  16. X. Gan, A. H. Jayatissa, Z. Yu, X. Chen, & M. Li, Hydrothermal synthesis of nanomaterials, J. Nanomater., 2020 (2020) 3. ‏ https://doi.org/10.1155/2020/8917013
  17. Guillén, J. Herrero, Single-phase Cu2O and CuO thin films obtained by low-temperature oxidation processes, J. Alloys Compd., 737(2018) 718-724. https://doi.org/10.1016/j.jallcom.2017.12.174
  18. Hong, R. M. Doughty, F. E. Osterloh, J. V. Zaikina, Deep eutectic solvent route synthesis of zinc and copper vanadate n-type semiconductors–mapping oxygen vacancies and their effect on photovoltage, J. Mater. Chem. A , 7 (2019) 12303-12316.‏ https://doi.org/10.1039/c9ta00957d
  19. V. Rane, K. Kanny, V. K. Abitha, S. Thomas . 2018 . In Synthesis of inorganic nanomaterials ,  pp.121-139. Woodhead publishing. https://doi.org/10.1016/B978-0-08-101975-7.00005-1
  20. Khaghani, D. Ghanbari, Magnetic and photo-catalyst Fe3O4–Ag nanocomposite: green preparation of silver and magnetite nanoparticles by garlic extract, J. Mater. Sci. Mater. Electron., 28 (2017) 2877-2886.‏ https://doi.org/10.1007/s10854-016-5872-8
  21. Dąbrowska, T. Chudoba, J. Wojnarowicz, W. Łojkowski, Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: a review, Crystals, 8 (2018) 379.‏ https://doi.org/10.3390/cryst8100379
  22. Tran, Y. C. Pyo, D. H. Kim, S. E. Lee, J. K. Kim, & J. S. Park, Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs, Pharmaceutics, 11 (2019) 132.‏ https://doi.org/10.3390/pharmaceutics11030132
  23. Zhang, L. Wang, H. Qian, X. Li, Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions, J. Coat. Technol. Res., 13 (2016) 11-29.‏ https://doi.org/10.1007/s11998-015-9744-6
  24. Qinhua, Y. Aizhen, Hydrothermal synthesis and crystallization of zeolites, Prog. Cryst. Growth Charact. Mater., 21 (1991) 29-70.‏ https://doi.org/10.1016/0960-8974(91)90007-y
  25. L. Yu, J. J. Zhu, J. T. Zhao, Beta-manganese dioxide nanoflowers self-assembled by ultrathin nanoplates with enhanced supercapacitive performance, J. Mater. Chem. A , 2 (2014) 9353-9360.‏ https://doi.org/10.1039/c4ta00155a
  26. Zouridi, E. Gagaoudakis, E. Mantsiou, T. Dragani, X. Maragaki, E. Aperathitis, V. Binas, The Effect of Additives on the Hydrothermal Synthesis and Thermochromic Performance of Monoclinic Vanadium Dioxide Powder, Oxygen, 2 (2022) 410-423. https://doi.org/10.3390/oxygen2040028
  27. Wang, P. K. Nayak, J. A. Caraveo‐Frescas, H. N. Alshareef, Recent developments in p‐Type oxide semiconductor materials and devices, Adv. Mater., 28 (2016) 3831-3892.‏ https://doi.org/10.1002/adma.201503080
  28. Youn, M. Lee, D. Kim, J. K. Jeong, Y. Kang, & S. Han, Large-scale computational identification of p-type oxide semiconductors by hierarchical screening, Chem. Mater., 31 (2019) 5475-5483. ‏ https://doi.org/10.1021/acs.chemmater.9b00816
  29. Bandara, J. P. Yasomanee, P-type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells, Semicond. Sci .Technol ., 22 (2006) 20.‏ https://doi.org/10.1088/0268-1242/22/2/004
  30. Ouyang, W. Wang, M. Dai, B. Zhang, J. Gong, M. Li, H. Sun, Research Progress of p-Type Oxide Thin-Film Transistors, Materials, 15 (2022) 4781.‏ https://doi.org/10.3390/ma15144781
  31. P. Allaker, K. Memarzadeh, Nanoparticles and the control of oral infections, Int. J. Antimicrob. Agents, 43 (2014) 95-104. https://doi.org/10.1016/j.ijantimicag.2013.11.002
  32. S. Zoolfakar, R. A. Rani, A. J. Morfa, A. P. O'Mullane, K. Kalantar-Zadeh, Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications,  J. Mater. Chem. C, 2 (2014) 5247-5270.‏ https://doi.org/10.1039/c4tc00345d
  33. Majumder, I. Biswas, S. Pujaru, A. K. Chakraborty, Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique, Thin Solid Films , 589 (2015) 741-749. https://doi.org/10.1016/j.tsf.2015.07.002
  34. P. Kuzmina, N. M. Khaidukov, Crystallization of Copper Oxide Under Hydrothermal Conditions, in: Crystal Growth from High Temperature Aqueous Solutions., Nauka, Moscow, (1977) 178–189.
  35. Majumdar, S. Ghosh, Recent advancements of copper oxide based nanomaterials for supercapacitor applications, J. Energy Storage, 34 (2021) 101995.‏ https://doi.org/10.1016/j.est.2020.101995
  36. Wang, T. Jiang, D. Meng, J. Yang, Y. Li, Q. Ma, J. Han, Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties,  Appl. Surf. Sci., 317 (2014) 414-421.‏ https://doi.org/10.1016/j.apsusc.2014.08.144
  37. Liu, H. Zhu, Y. Y. Noh, Polyol reduction: a low-temperature eco-friendly solution process for p-channel copper oxide-based transistors and inverter circuits, ACS Appl. Mater. Interfaces , 11 (2019) 33157-33164.‏ https://doi.org/10.1021/acsami.9b11161
  38. Pan, J. J. Zou, T. Zhang, S. Wang, Z. Li, L. Wang, X. Zhang, Cu2O film via hydrothermal redox approach: morphology and photocatalytic performance, J. Phys. Chem. C, 118 (2014) 16335-16343. https://doi.org/10.1021/jp408056k
  39. L. Luo, M. J. Wang, D. S. Yang, J. Yang, Y. S. Chen, Hydrothermal synthesis of morphology controllable Cu2O and their catalysis in thermal decomposition of ammonium perchlorate, J. Ind. Eng. Chem., 32 (2015) 313-318.‏ https://doi.org/10.1016/j.jiec.2015.09.015
  40. ‏ Jiang, Z. Li, Q. Lin, K. Dong, Y. Zhang, Z. Sun, Structure, optical properties and photocatalysis performance of Cu2O microspheres prepared by hydrothermal method, J. Mater. Sci. Mater. Electron., 27 (2016) 8856-8861. https://doi.org/10.1007/s10854-016-4911-9
  41. Cao, T. Han, L. Peng, C. Zhao, J. Wang, Hydrothermal synthesis, characterization and gas sensing properties of novel Cu2O open hollow nanospheres,  Ceram. Int., 43 (2017) 4721- 4724. https://doi.org/10.1016/j.ceramint.2016.12.131
  42. C. Mevada, B. Sengupta, Effect of Temperature and Precursor Concentration on Morphology of Copper Oxide Synthesized on Glass Substrates Via Hydrothermal Method, Int. J. Sci.Technol. Eng., 3 (2017) 6-11.‏
  43. Yuan, X. Liu, H. Fu, J. Liu, Q. Zhu, M. Wu, One-step synthesis of flower-like Cu2O photoelectric materials by hydrothermal method, Sol. Energy, 188 (2019) 265-270.‏ https://doi.org/10.1016/j.solener.2019.06.014
  44. I. Khandaker, Hydrothermal Synthesis of CuO Nanopaticles and A Study on Property Variation with Synthesis Temperature, J.Appl.Fund. Sci., 6 (2020) 52 – 60 .
  45. Claros, I. Gràcia, E. Figueras, S. Vallejos, Hydrothermal Synthesis and Annealing Effect on the Properties of Gas-Sensitive Copper Oxide Nanowires,Chemosensors, 10 (2022) 353.‏ https://doi.org/10.3390/chemosensors10090353
  46. Saleem, A. H. Jabbar, M. H. Jameel, A. Rehman, Z. H. Kareem, A. H. Abbas, & S. M. Sapuan, Enhancement in structural, morphological, and optical properties of copper oxide for optoelectronic device applications, Nanotechnol. Rev., 11 (2022) 2827-2838.‏ https://doi.org/10.1515/ntrev-2022-0473
  47. Pratap, F. Babbe, N. S. Barchi, Z. Yuan, T. Luong, Z. Haber, P. Müller-Buschbaum, Out-of-equilibrium processes in crystallization of organic-inorganic perovskites during spin coating, Nat. Commun., 12 (2021) 1-9. https://doi.org/10.1038/s41467-021-25898-5
  48. Cao, H. Chen, T. Han, C. Zhao, L. Peng, Rose-like Cu2O nanoflowers via hydrothermal synthesis and their gas sensing properties, Mater. Lett., 180 (2016) 135-139. https://doi.org/10.1016/j.matlet.2016.05.105 
  49. E. N. Ç. Aziz, Hydrothermal Synthesis of Cuprous Oxide Nanoflowers and Characterization of Their Optical Properties,  Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22 (2018) 397-401.‏
  50. S. Zimbovskii, B. R. Churagulov, A. N. Baranov, Hydrothermal synthesis of Cu2O films on the surface of metallic copper in a NaOH solution, Inorg. Mater., 55 (2019) 582-585.‏ https://doi.org/10.1134/s0020168519060177
  51. Chen, K. Cui, Z. Hai, W. Kuang, L. Wang, J. Zhang, X. Tian, Hydrothermal synthesis of Cu2O with morphology evolution and its effect on visible-light photocatalysis, Mater. Lett., 297 (2021) 129921.‏ https://doi.org/10.1016/j.matlet.2021.129921
  52. Seidler, V. Landgraf, L. Vieira, D. Van Opdenbosch, S. R. Waldvogel, Novel cuprous oxide morphologies using amino acids and carboxylic acids as structure directing agents in a simple hydrothermal method, Mater. Lett., 292 (2021) 129553, https://doi.org/10.1016/j.matlet.2021.129553
  53. H. Lam, N. T. N. Truong, C. T. T. Thuy, Tamboli, M. S., A. M. Tamboli, J. Jung, J. H. Jung, Fabrication and Characterization of the Broccoli-like Structured CuO Thin Films Synthesized by a Facile Hydrothermal Method and Its Photoelectrochemical Water Splitting Application, Metals, 12 (2022) 484.‏ https://doi.org/10.3390/met12030484
  54. Hu, S. Dai, Dye-sensitized Solar Cells, Boston: De Gruyter , Berlin , 2022.‏ https://doi.org/10.1515/9783110344363
  55. Ozga, J. Kaszewski, A. Seweryn, P. Sybilski, M. Godlewski, B. S. Witkowski, Ultra-fast growth of copper oxide (II) thin films using hydrothermal method,  Mater. Sci. Semicond. Process., 120 (2020) 105279.‏ https://doi.org/10.1016/j.mssp.2020.105279
  56. Liu, Q. Song, H. Xie, Z. Ning, Influence of pH on Hydrothermal Synthesis of Photoactive Cu2O Films in an Acetate Solution, Int. J. Electrochem. Sci., 17 (2022) .‏ https://doi.org/10.20964/2022.06.62
  57. Gerbreders, M. Krasovska, E. Sledevskis, A. Gerbreders, I. Mihailova, E. Tamanis, A. Ogurcovs, Hydrothermal synthesis of ZnO nanostructures with controllable morphology change, CrystEngComm, 22 (2020) 1346-1358.‏ https://doi.org/10.1039/C9CE01556F