Document Type : Research Paper


1 Department of Industrial and Process Chemistry Higher Institute of Applied Science and Technology of Gabes Tunisia University of Gabes Omar Ibn. ElKhattab St. 6029 Gabes, Tunisia

2 Higher Institute of Applied Sciences and Technology of Gabes, University of Gabes, 6072 Gabes, Tunisia

3 Société Donyatek, Faladiè, rue 720, Porte 148, Bamako - Mali


This study aimed to investigate the effects of phosphogypsum addition on ceramic membrane properties. In this regard, clay and phosphogypsum were characterized using FTIR and laser particle sizer. The ceramic paste was prepared by incorporating varying amounts of phosphogypsum (10 to 50%), followed by molding using a semidry-pressing process at 10 bars pressure and sintering temperature at 900°C. The raw materials and prepared membranes were analyzed using FTIR, laser particle size, contact angle, porosity, and mechanical strength to evaluate the properties of the resulting ceramic membranes. The study showed that as the amount of phosphogypsum increased from 10% to 50%, the membrane's hydrophilicity significantly increased, while its mechanical strength decreased by 35% and porosity increased by 26%. Moreover, the permeability of distilled water also showed a significant increase of 67% when the amount of phosphogypsum was increased from 10% to 50%.These observations suggest that phosphogypsum can significantly influence ceramic membrane properties, which may have implications for its use in various membrane applications. The findings of this research contribute to our understanding of the potential use of phosphogypsum as a valuable material for ceramic membrane production, with important implications for sustainable waste management practices. Future studies can focus on exploring the suitability of these ceramics for various applications and their environmental impact.

Graphical Abstract


  • Possibility of use of phosphogypsum as additive in ceramic membrane
  • Effects of phosphogypsum on ceramic membrane properties.
  • Adding of phosphogypsum leads to increased hydrophilicity, decreased mechanical strength, and increased porosity of ceramic membranes.
  • phosphogypsum has the potential to significantly affect ceramic membrane properties and its use in various membrane applications.


Main Subjects

[1] S. Zhang, L. Shen, H. Deng, Q. Liu, X. You, J. Yuan, Z. Jiang, S. Zhang, Ultrathin membranes for separations: a new era driven by advanced nanotechnology, Adv. Mater. 34 (2022) 2108457.
[2] A. Zrelli, B. Chaouchi, S. Gabsi, Impact of the feed concentration on the permeate flux of the solar vacuum membrane distillation equipped with helically coiled fibers, in: 2014 5th Int. Renew. Energy Congr. IREC, IEEE, 2014: pp. 1–5.
[3] A. Zrelli, B. Chaouachi, Modeling and simulation of a vacuum membrane distillation plant coupled with solar energy and using helical hollow fibers, Braz. J. Chem. Eng. 36 (2019) 1119–1129.
[4] L. Chen, T. Maqbool, G. Nazir, C. Hou, Y. Xu, Y. Yang, X. Zhang, Peroxymonosulfate activated by composite ceramic membrane for the removal of pharmaceuticals and personal care products (PPCPs) mixture: Insights of catalytic and noncatalytic oxidation, Water Res. 229 (2023) 119444.
[5] M. Szwast, D. Polak, W. Arciszewska, I. Zielińska, Novel PVDF-PEG-CaCO3 Membranes to Achieve the Objectives of the Water Circular Economy by Removing Pharmaceuticals from the Aquatic Environment, Membranes. 13 (2023) 44.
[6] K. Götze, R. Haseneder, V. Herdegen, ACHEMA 2022: Membranes and Membrane Processes, Chem. Ing. Tech. (n.d.).
[7] F.E.B. Coelho, G. Magnacca, V. Boffa, V.M. Candelario, M. Luiten-Olieman, W. Zhang, From ultra to nanofiltration: A review on the fabrication of ZrO2 membranes, Ceram. Int. (2023).
[8] A. Cassano, C. Conidi, E. Drioli, A comprehensive review of membrane distillation and osmotic distillation in agro-food applications, J. Membr. Sci. Res. 6 (2020) 304–318.
[9] S.K. Hubadillah, M.R. Jamalludin, M.H.D. Othman, M.R. Adam, A novel bio-ceramic hollow fibre membrane based hydroxyapatite derived from Tilapia fish bone for hybrid arsenic separation/adsorption from water, Mater. Today Proc. (2023).
[10] U. Baig, M. Faizan, A. Waheed, A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation, Adv. Colloid Interface Sci. (2022) 102635.
[11] P. Jarvis, I. Carra, M. Jafari, S.J. Judd, Ceramic vs polymeric membrane implementation for potable water treatment, Water Res. 215 (2022) 118269.
[12] N.M.A. Omar, M.H.D. Othman, Z.S. Tai, T.A. Kurniawan, T. El-badawy, P.S. Goh, N.H. Othman, M.A. Rahman, J. Jaafar, A.F. Ismail, Bottlenecks and recent improvement strategies of ceramic membranes in membrane distillation applications: A review, J. Eur. Ceram. Soc. (2022).
[13] D. Rashad, S.K. Amin, M. Mansour, H.A. Abdallah, A systematic literature review of ceramic membranes applications in water treatment, Egypt. J. Chem. 65 (2022) 497–512.
[14] A. Zrelli, J. Debaya, A. Doucoure, B. Chaouachi, Applications of Helical Versus Straight Hollow Fiber Membranes: A, Eng. Technol. J. 41 (2023) 03.
[15] A. Zrelli, Solar membrane distillation: use of a helically coiled fiber, Distill. Innov. Appl. Model. (2017) 203.
[16] A. Zrelli, A. Bessadok, Q. Alsalhy, Important parameters of ceramic membranes derived from oasis waste and its application for car wash wastewater treatment, J. Membr. Sci. Res. 8 (2022).
[17] A. Samadi, L. Gao, L. Kong, Y. Orooji, S. Zhao, Waste-derived low-cost ceramic membranes for water treatment: Opportunities, challenges and future directions, Resour. Conserv. Recycl. 185 (2022) 106497.
[18] M.A. Baih, H. Saffaj, K. Aziz, A. Bakka, H. Zidouh, R. Mamouni, N. Saffaj, Statistical optimization of the elaboration of ceramic membrane support using Plackett-Burman and response surface methodology, Mater. Today Proc. 52 (2022) 128–136.
[19] B. Achiou, H. Elomari, M. Ouammou, A. Albizane, J. Bennazha, A. Aaddane, S.A. Younssi, I.E.A. El Hassani, Study of added starch on characteristics of flat ceramic microfiltration membrane made from natural Moroccan pozzolan, J Mater Env. Sci. 9 (2018) 1013–1021.
[20] M. Yousefi, M. Abbasi, M. Akrami, M. Sillanpää, Pre-Treatment and Turbidity Reduction of Sea Waters Using New Composite Ceramic Microfiltration Membranes with Iron Oxide Additive, Water. 14 (2022) 3475.
[21] H. Li, C. Li, H. Jia, G. Chen, S. Li, K. Chen, C.-A. Wang, L. Qiao, Facile fabrication of cordierite-based porous ceramics with magnetic properties, J. Adv. Ceram. 11 (2022) 1583–1595.
[22] D. Das, N. Kayal, M.D. de M. Innocentini, Permeability behavior and wastewater filtration performance of mullite bonded porous SiC ceramic membrane prepared using coal fly ash as sintering additive, Trans. Indian Ceram. Soc. 80 (2021) 186–192.
[23] M. Al-Shaeli, R.A. Al-Juboori, S. Al Aani, B.P. Ladewig, N. Hilal, Natural and recycled materials for sustainable membrane modification: Recent trends and prospects, Sci. Total Environ. (2022) 156014.
[24] A. Bounaga, A. Alsanea, K. Lyamlouli, C. Zhou, Y. Zeroual, R. Boulif, B.E. Rittmann, Microbial transformations by sulfur bacteria can recover value from phosphogypsum: A global problem and a possible solution, Biotechnol. Adv. (2022) 107949.
[25] N. Phanija, R.V.P. Chavali, Solidification/stabilization of copper-contaminated soil using phosphogypsum, Innov. Infrastruct. Solut. 6 (2021) 1–11.
[26] R. El Zrelli, L. Rabaoui, R.H. Roa-Ureta, N. Gallai, S. Castet, M. Grégoire, N. Bejaoui, P. Courjault-Radé, Economic impact of human-induced shrinkage of Posidonia oceanica meadows on coastal fisheries in the Gabes Gulf (Tunisia, Southern Mediterranean Sea), Mar. Pollut. Bull. 155 (2020) 111124.
[27] H. Majdoubi, R. Makhlouf, Y. Haddaji, M. Nadi, S. Mansouri, N. Semllal, M. Oumam, B. Manoun, J. Alami, H. Hannache, Valorization of phosphogypsum waste through acid geopolymer technology: synthesis, characterization, and environmental assessment, Constr. Build. Mater. 371 (2023) 130710.
[28] S. Meskini, A. Samdi, H. Ejjaouani, T. Remmal, Valorization of phosphogypsum as a road material: Stabilizing effect of fly ash and lime additives on strength and durability, J. Clean. Prod. 323 (2021) 129161.
[29] S. Meskini, T. Remmal, H. Ejjaouani, A. Samdi, Formulation and optimization of a phosphogypsum–fly ash–lime composite for road construction: A statistical mixture design approach, Constr. Build. Mater. 315 (2022) 125786.
[30] A. Anagnostopoulos, M. Navarro, A. Ahmad, Y. Ding, G. Gaidajis, Valorization of phosphogypsum as a thermal energy storage material for low temperature applications, J. Clean. Prod. 342 (2022) 130839.
[31] H. Ajari, A. Zrelli, B. Chaouachi, M. Pontié, Preparation and Characterization of Hydrophobic Flat Sheet Membranes Based on a Recycled Polymer, Int. Polym. Process. 34 (2019) 376–382.
[32] A. Zrelli, W. Elfalleh, A. Ghorbal, B. Chaouachi, Valorization of date palm wastes by lignin extraction to be used for the improvement of polymeric membrane characteristics, Period. Polytech. Chem. Eng. 66 (2022) 70–81.
[33] N.R. Rakhimova, R. Rakhimov, V. Morozov, A. Eskin, Calcined low-grade clays as sources for zeolite containing material, Period. Polytech. Civ. Eng. 65 (2021) 204–214.
[34] J.C.T. Rezende, V.H.S. Ramos, H.A. Oliveira, R.M.P.B. Oliveira, E. Jesus, Removal of Cr (VI) from aqueous solutions using clay from Calumbi geological formation, N. Sra. Socorro, SE State, Brazil, in: Mater. Sci. Forum, Trans Tech Publ, 2018: pp. 1–6.
[35] S. Louati, S. Baklouti, B. Samet, Geopolymers based on phosphoric acid and illito-kaolinitic clay, Adv. Mater. Sci. Eng. 2016 (2016).
[36] M. Edraki, M. Sheydaei, D. Zaarei, A. Salmasifar, B. Azizi, Protective Nanocomposite Coating Based on Ginger Modified Clay and Polyurethane: Preparation, Characterization and Evaluation Anti-Corrosion and Mechanical Properties, Polym. Sci. Ser. B. (2022) 1–9.
[37] S. Thomas, A.A. Shumilova, E.G. Kiselev, S.V. Baranovsky, A.D. Vasiliev, I.V. Nemtsev, A.P. Kuzmin, A.G. Sukovatyi, R.P. Avinash, T.G. Volova, Thermal, mechanical and biodegradation studies of biofiller based poly-3-hydroxybutyrate biocomposites, Int. J. Biol. Macromol. 155 (2020) 1373–1384.
[38] F.E. Torun, R. Kısacıkoğlu, Investigation of lead removal from aqueous solutions using modified natural clay: Kinetics and thermodynamics approaches, Bull. Chem. Soc. Ethiop. 37 (2023) 231–244.
[39] F. Zhao, B. Mu, T. Zhang, C. Dong, Y. Zhu, L. Zong, A. Wang, Synthesis of biochar/clay mineral nanocomposites using oil shale semi-coke waste for removal of organic pollutants, Biochar. 5 (2023) 7.
[40] K. Agayr, H. Chanouri, B. Achiou, R. Benhida, K. Khaless, Study on the kinetics of the conversion of Moroccan phosphogypsum into X2SO4 (X= Na, NH4), J. Mater. Cycles Waste Manag. 24 (2022) 2015–2029.
[41] S. Zemni, M. Hajji, M. Triki, A. M’nif, A.H. Hamzaoui, Study of phosphogypsum transformation into calcium silicate and sodium sulfate and their physicochemical characterization, J. Clean. Prod. 198 (2018) 874–881.
[42] B. Bouargane, M.G. Biyoune, A. Mabrouk, A. Bachar, B. Bakiz, H. Ait Ahsaine, S. Mançour Billah, A. Atbir, Experimental investigation of the effects of synthesis parameters on the precipitation of calcium carbonate and portlandite from Moroccan phosphogypsum and pure gypsum using carbonation route, Waste Biomass Valorization. 11 (2020) 6953–6965.
[43] N. Mechi, M. Ammar, M. Loungou, E. Elaloui, Thermal study of Tunisian phosphogypsum for use in reinforced plaster, Br J Appl Sci Technol. 16 (2016) 1–10.
[44] I. Hammas-Nasri, S. Elgharbi, M. Ferhi, K. Horchani-Naifer, M. Férid, Investigation of phosphogypsum valorization by the integration of the Merseburg method, New J. Chem. 44 (2020) 8010–8017.
[45] C.A. Yanu, J.M. Sieliechi, M.B. Ngassoum, Optimization of ceramic paste viscosity use for the elaboration of tubular membrane support by extrusion and its application, J. Mater. Sci. Chem. Eng. 8 (2020) 1.
[46] S. Khemakhem, A. Larbot, R.B. Amar, New ceramic microfiltration membranes from Tunisian natural materials: application for the cuttlefish effluents treatment, Ceram. Int. 35 (2009) 55–61.
[47] H. Aloulou, H. Bouhamed, R.B. Amar, S. Khemakhem, New ceramic microfiltration membrane from Tunisian natural sand: Application for tangential waste water treatment, Desalin Water Treat. 78 (2017) 41–48.
[48] K. Gao, F. Wang, M. Zhang, J. Zhang, D. Jiao, Q. Xu, J. Guan, X. Zhang, Z. Liu, Z. Zhang, High-strength and multi-functional gypsum with unidirectionally porous architecture mimicking wood, Chem. Eng. J. Adv. 7 (2021) 100114.
[49] C. Drouet, A. Leriche, S. Hampshire, M. Kashani, A. Stamboulis, M. Iafisco, A. Tampieri, 2 - Types of ceramics: Material class, in: P. Palmero, F. Cambier, E. De Barra (Eds.), Adv. Ceram. Biomater., Woodhead Publishing, 2017.
[50] J.M. Khatib, L. Wright, P.S. Mangat, Effect of fly ash–gypsum blend on porosity and pore size distribution of cement pastes, Adv. Appl. Ceram. 112 (2013) 197–201.
[51] M.C. da Silva, H. de L. Lira, R. do C. de O. Lima, N.L. de Freitas, Effect of sintering temperature on membranes manufactured with clays for textile effluent treatment, Adv. Mater. Sci. Eng. 2015 (2015).
[52] F.A.M. Rahim, M.Z. Noh, M.W.A. Rashid, J.J. Mohamed, M.A.A.M. Nor, Preparation and characterization of ceramic membrane by using palm fibers as pore forming agent, in: AIP Conf. Proc., AIP Publishing LLC, 2019: p. 020056.