Document Type : Research Paper


1 Applied Science Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia. Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia. Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis, Malaysia.


Graphene nanofilms were deposited by the spray coating method at different concentrations (0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 g) and prepared at 120°C. The prepared nanofilms were characterized in terms of their structural, morphological, optical, and electrical properties. The results confirm the formation of high-purity and high-crystallinity graphene nanofilms with a layered nanosheet morphology. The X-ray diffraction pattern shows the presence of pure graphene with (002) crystal planes. SEM Images show that the intended graphene films are symmetrical with few wrinkles on their surface. The graphene films show semi-transparent behavior with a maximum transmission of 50%. Raman spectroscopy shows that the relative intensity, position, and shape of the G and 2D Raman peaks change with the number of graphene layers. The electrical conductivity increases with temperature, and the conductivity can be further increased depending on the metal or metal oxide functionalization. The electrical conductivity of the graphene film deposited at a concentration of 0.3 g was significantly higher than the values reported for other concentrations. The results of this study suggest that the physical and electrical properties of spray-coated graphene films can be optimized by controlling the solution concentration, which could have potential applications in transparent conductive films.

Graphical Abstract


  • High-quality graphene Nanofilm has been deposited
  • Graphene film nanostructure Layer by Layer was fabricated and characterized
  • Due to its applications in advanced technologies considerable focus has been attached to the synthesis of graphene films


Main Subjects

[1] A. AlShammari,  M. M. Halim,  F. K. Yam,  N. H. Al-Hardan,  N. H. M. Kaus, K. Umar, and M. N. M Ibrahim, The effect of substrate temperatures on the structural and conversion of thin films of reduced graphene oxide, Phys. B Condens. Matter, 572 (2019) 296-301.‏
[2] L. M. Malard,  M. A. Pimenta, G. Dresselhaus,  and M. S. Dresselhaus,  Raman spectroscopy in graphene, Phys. Rep., 473 (2009) 51-87.‏
[3] W. W. Liu,  S. P. Chai,  A. R. Mohamed,  and U. Hashim,  Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments, J. Ind. Eng. Chem., 20 (2014) 1171-1185.
[4] R. R. Nair,  P. Blake,  A. N. Grigorenko, K. S. Novoselov,  T. J. Booth,  T. Stauber, and A. K. Geim,  ,Fine structure constant defines visual transparency of graphene, Science, 320 (2008) 1308-1308.‏
[5] B. Seger, P. V. Kamat, Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells, J. Phys. Chem. C, 113 (2009) 7990-7995.‏
[6] W. Cai,  Y. Zhu,  X. Li,  R. D. Piner,  and R. S. Ruoff,  Large area few-layer graphene/graphite films as transparent thin conducting electrodes, Appl. Phys. Lett., 95 (2009) 123115.‏
[7] X. Li,  Y. Zhu,  W. Cai,  M. Borysiak,  B. Han,  D. Chen,  and R. S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes, Nano Lett., 9 (2009) 4359-4363.‏
[8] G. Nandamuri,  S. Roumimov,  and  R.Solanki,  Chemical vapor deposition of graphene films, Nanotechnology, 21 (2010) 145604.‏
[9] R. R. Nair, P. Blake,  J. R. Blake,  R. Zan,  S. Anissimova, U. Bangert, T. Latychevskaia, Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy, Appl. Phys. Lett., 97 (2010) 153102.
[10] L. M. Viculis, J. J. Mack,  O. M. Mayer,  H. T. Hahn,  and R. B. Kaner,  Intercalation and exfoliation routes to graphite nanoplatelets, J. Mater. Chem., 15 (2005) 974-978.‏
[11] C. Nethravathi,  E. A. Anumol,  M. Rajamathi, and  N. Ravishankar,  Highly dispersed ultrafine Pt and PtRu nanoparticles on graphene: formation mechanism and electrocatalytic activity,  Nanoscale, 3 (2011) 569-571.‏
[12] J. Liu, S. Fu,  B. Yuan, Y. Li,  and Z. Deng,  Toward a universal adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide, J. Am. Chem. Soc., 132 (2010) 7279-7281.‏
[13] N. J. Bell, Y. H. Ng,  A. Du, H. Coster, S. C. Smith,  and R. Amal,  Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite, J. Phys. Chem. C, 115 (2011) 6004-6009.‏
[14] G. Lu,  K. Yu,  L. E. Ocola,  and J. Chen,  Ultrafast room temperature NH3 sensing with positively gated reduced graphene oxide field-effect transistors, Chem. Commun., 47 (2011) 7761-7763.
[15] X. Huang, N. Hu, R. Gao, Y. Yu, Y.Wang, Reduced graphene oxide–polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing, J. Mater. Chem., 22 (2012) 22488-22495.‏
[16] P. A. Russo, N. Donato, S. G. Leonardi,  S. Baek,  D. E. Conte,  G. Neri,  and N. Pinna,  Room‐temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide,  Angew. Chem. Int. Ed., 51 (2012) 11053-11057.‏
[17] F. Miao,  S. Wijeratne, Y. Zhang,  U. C. Coskun,  W. Bao,  and C. N Lau, Phase-coherent transport in graphene quantum billiards, science, 317 (2007) 1530-1533.
[18] S. Adam,  E. H. Hwang,  E. Rossi,  and S. D. Sarma, Theory of charged impurity scattering in two-dimensional graphene, Solid State Commun., 149 (2009) 1072-1079.‏
[19] R. M. Obodo,  I. Ahmad,  and F. I. Ezema,  Introductory chapter: graphene and its applications, In: Graphene and Its Derivatives-Synthesis and Applications. Intechopen, 2019.
[20] J. S. Bunch,  S. S. Verbridge,  J. S. Alden,  A. M. Van Der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Impermeable atomic membranes from graphene sheets,  Nano Lett., 8 (2008) 2458-2462.‏
[21] X. Wang, and L. Zhang, Green and facile production of high-quality graphene from graphite by the combination of hydroxyl radical and electrical exfoliation,  RSC Adv., 8 (2018) 40621-40631.‏
[22] M. S. Poorali,  and M. M. Bagheri-Mohagheghi, Effect of the graphene doping level on the electrical and optical properties of indium tin oxide (ITO) films prepared by spray pyrolysis, J. Mater. Sci. Mater. Electron., 27 (2016) 10411-10420.‏
[23] L. M. Malard,  M. A. Pimenta, G. Dresselhaus,  and  M. S Dresselhaus,  Raman spectroscopy in graphene, Phys. Rep., 473 (2009) 51-87.‏
[24] A. C. Ferrari,  J. C. Meyer,  V. Scardaci,  C. Casiraghi, M. Lazzeri,  F. Mauri, and A. K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97 (2006) 187401.
[25] F. Rashiddy Wong,  A. Ahmed Ali, K. Yasui, and A. M. Hashim, Seed/catalyst-free growth of gallium-based compound materials on graphene on insulator by electrochemical deposition at room temperature, Nanoscale Res. Lett., 10 (2015) 1-10.
[26] X. Ma,  and H. Zhang, Fabrication of graphene films with high transparent conducting characteristics, Nanoscale Res. Lett., 8 (2013) 1-6.