Document Type : Research Paper


1 Materials Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 Departement of Physics., Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia.


Using bioactive and biocompatible coatings to biofunctionalized metallic implant surfaces for enhanced bone regeneration while resisting bacterial infection has attracted materials scientists' interest. Bio-metallic Ti-25Zr disc sample was prepared using powder metallurgy and then coated using an electrospinning method to form a nanocomposite fiber as a coating layer over the surface of the metal alloy substrate. Three nano-compounds (Nano-hydroxyapatite, Nano-Titanium dioxide, Nano-strontium titanite) were added individually to the Polycaprolactone/Chitosan blend to prepare the electrospinning solutions. The results show a significant improvement in biocompatibility for the coated samples after seven days of (MC3T3-E1) cell culture. Cell viability percentages were significantly higher for the coated samples compared to uncoated ones, with values of PCL/Chitosan/nHA (HA1) has 239.45±17.95%, PCL/Chitosan/nSrTiO3 (SR1)  has170.09±8.12%, and PCL/Chitosan/nTiO2 (TI1)  has 117.19±19.42%, while bare Ti-25Zr has 80.52±1.97%. Cell proliferation also shows a remarkable increase with time for coated samples, and the enhancement reaches 197.76% for (HA1), 111.38% (SR1), and 45.81 % (TI1) in comparison with (bare Ti-25Zr). For the antibacterial test, no inhibition zone for the control sample (bare Ti-25Zr) was observed, while the coated samples showed a suitable and comparable inhibition zone. The coating procedure is simple and inexpensive, and composite nano-fiber has high biocompatibility and promise in orthodontic and orthopedic bone regeneration.

Graphical Abstract


  • Bio-metallic Ti-25Zr sample was prepared using powder metallurgy.
  • Ti-25Zr alloy was coated using an electrospinning method to form a Nano-composite coating film.
  • The coated sample significantly improves cell activity and resists bacterial infection.


Main Subjects

  1. Das, V. Saxena, A. Bhardwaj, S. Rabha, L.M. Pandey, P. Dobbidi, Microstructural, interfacial, biological and electrical activity in sputtered Hydroxyapatite-Barium strontium titanate bilayered thin films, Surf. Interfaces, 31 (2022) 102063.
  2. Al-Hassani, F. Al-Hassani, M. Najim, Effect of polymer coating on the osseointegration of CP-Ti dental implant, AIP Conf. Proc., 1968 (2018) 030022.
  3. S. Al-Hassani, Effect of laser pulses on ion release behavior of Ti-base alloys, AIP Conf. Proc., 2190 (2019) 020030.
  4. Wang, Z. Wu, J. Lan, Y. Li, L. Xie, X. Huang, A. Zhang, H. Qiao, X. Chang, H. Lin, H. Zhang, T. Li, Y. Huang, Surface modification of titanium implants by silk fibroin/Ag co-functionalized strontium titanate nanotubes for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration, Surf. Coatings. Technol., 405 (2021) 126700.
  5. M. Khashan, M. Khashan, A. Mutaib, Editor Notes and instructions, (2021) 26–27.
  6. Sahoo, A. Sinha, V. K. Balla, M. Das, Synthesis, characterization, and bioactivity of SrTiO3-incorporated titanium coating, J. Mater. Res., 33 (2018) 2087–2095.
  7. Zuo, L. Yu, J. Lin, Y. Yang, Q. Fei, Properties improvement of titanium alloys scaffolds in bone tissue engineering: a literature review, Ann. Transl. Med., 9 (2021) 1259.
  8. S. Al-Hassani and F. J. Al-Hassani, Effect of Dual Surface Activation on the Surface Roughness of Titanium Dental Implant, Surface Treatments View project modules and bounded linear operators View project Effect of Dual Surface Activation on the Surface Roughness of Titanium Dental Implant,J. Nat. Sci. Res., Www.Iiste.Org ISSN. 7 (2017)35-44.
  9. Shen, W. Hu, L. Ping, C. Liu, L. Yao1, Z. Deng, G. Wu, Antibacterial and Osteogenic Functionalization of Titanium With Silicon/Copper-Doped High-Energy Shot Peening-Assisted Micro-Arc Oxidation Technique, 8 (2020).
  10. Alt, Antimicrobial coated implants in trauma and orthopaedics–A clinical review and risk-benefit analysis, 48 (2017) 599–607.
  11. Wang, A. Bian, F. Jia, J. Lan, H. Yang, K. Yan, L. Xie, H. Qiao, X. Chang, H. Lin, H. Zhang, Y. Huang, Dual-functional strontium titanate nanotubes designed based on fusion peptides simultaneously enhancing anti-infection and osseointegration, Biomater. Adv., 133 (2022) 112650.
  12. Swain, C. Bowen, T. Rautray, Dual response of osteoblast activity and antibacterial properties of polarized strontium substituted hydroxyapatite—Barium strontium titanate composites with controlled strontium substitution, J. Biomed. Mater. Res. - Part A., 109 (2021) 2027–2035.
  13. Tranquillo, F. Bollino, Surface modifications for implants lifetime extension: An overview of sol-gel coatings, Coatings. 10 (2020) 589.
  14. R. Jabur, Antibacterial activity and heavy metal removal efficiency of electrospun medium molecular weight chitosan/nylon-6 nanofibre membranes, Biomed. Mater., 13 (2018) 015010 .
  15. Y. Jasim, M.A. Najim, A.R. Jabur, Improving the mechanical properties of (chitosan/polyurethane) electrospun blend scaffold used for skin regeneration, AIP Conf. Proc., 2123 (2019) 020042.
  16. R. Jabur, E.S. Al-Hassani, A.M. Al-Shammari, M.A. Najim, A.A. Hassan, A.A. Ahmed, Evaluation of Stem Cells Growth on Electrospun Polycaprolactone (PCL) Scaffolds Used for Soft Tissue Applications, Energy Procedia, 119 (2017) 61–71.
  17. de Cassan, A. Becker, B. Glasmacher, Y. Roger, A. Hoffmann, T.R. Gengenbach, C.D. Easton, R. Hänsch, H. Menzel, Blending chitosan-g-poly(caprolactone) with poly(caprolactone) by electrospinning to produce functional fiber mats for tissue engineering applications, J. Appl. Polym. Sci., 137 (2020) 48650.
  18. Soleymani, R. Emadi, S. Sadeghzade, F. Tavangarian, Applying baghdadite/PCL/chitosan nanocomposite coating on AZ91 magnesium alloy to improve corrosion behavior, bioactivity, and biodegradability, Coatings. 9 (2019) 789.
  19. Al-Khateeb, E.S. Al-hassani, A.R. Jabur, Metallic Implant Surface Activation through Electrospinning Coating of Nanocomposite Fiber for Bone Regeneration, Int. J. Biomater., 2023 (2023) 1332814.
  20. Beig, U. Liaqat, M. Niazi, I. Douna, M. Zahoor, M. Niazi, Current challenges and innovative developments in hydroxyapatite-based coatings on metallic materials for bone implantation: A review, Coatings. 10 (2020) 1249.
  21. Nhlapo, T.C. Dzogbewu, O. Smidt, Nanofiber Polymers for Coating Titanium-Based Biomedical Implants, Fibers. 10 (2022) 36.
  22. Sun, H. Liu, X.Y. Sun, W. Xia, C. Deng, In vitro and in vivo study on the osseointegration of magnesium and strontium ion with two different proportions of mineralized collagen and its mechanism, J. Biomater. Appl., 36 (2021) 528–540.
  23. Tariverdian, A. Behnamghader, P. B. Milan, H. B. Bafrooei, M. Mozafari, 3D-printed barium strontium titanate-based piezoelectric scaffolds for bone tissue engineering, Ceram. Int., 45 (2019) 14029–14038.
  24. R. Jabur, M.A. Najim, S.A.A. Al-Rahman, Study the effect of flow rate on some physical properties of different polymeric solutions, J. Phys. Conf. Ser., 1003 (2018) 012069.
  25. Wang, W. Ruan, J. Liu, T. Zhang, H. Yang, J. Ruan, Microstructure, mechanical properties, and preliminary biocompatibility evaluation of binary Ti–Zr alloys for dental application, J. Biomater. Appl., 33 (2019) 766–775.
  26. Takahashi, M. Kikuchi, O. Okuno, Grindability of dental cast Ti-Zr alloys, Mater. Trans., 50 (2009) 859–863.
  27. Jiang, C. Zhou, Y. Zhao, F. He, X. Wang, Development and properties of dental Ti–Zr binary alloys, J. Mech. Behav. Biomed. Mater., 112 (2020) 104048.
  28. Zhang, L. Wang, Y. Bai, X. Lin, L. Peng, H. Chen, Experimental and theoretical analysis of a closed loop two-phase thermosiphon under various states for latent heat storage, Energy Reports. 6 (2020) 1–7.
  29. Yan, J. Tan, D. Wang, J. Qiu, X. Liu, Surface alloyed Ti–Zr layer constructed on titanium by Zr ion implantation for improving physicochemical and osteogenic properties, Prog. Nat. Sci. Mater. Int., 30 (2020) 635–641.
  30. Matuła, G. Dercz, M. Zubko, J. Maszybrocka, J. J. Suliga, S. Golba, I. Jendrzejewska, Microstructure and porosity evolution of the ti–35zr biomedical alloy produced by elemental powder metallurgy, Mater., 13 (2020) 4539.
  31. M. Ghorbani, B. Kaffashi, P. Shokrollahi, S. Akhlaghi, M.S. Hedenqvist, Effect of hydroxyapatite nano-particles on morphology, rheology and thermal behavior of poly(caprolactone)/chitosan blends, Mater. Sci. Eng. C ., 59 (2016) 980–989.
  32. Yin, L. Xu, Batch preparation of electrospun polycaprolactone/chitosan/aloe vera blended nanofiber membranes for novel wound dressing, Int. J. Biol. Macromol., 160 (2020) 352–363.
  33. Bolaina-Lorenzo, C. Martinez-Ramos, M. Monleón-Pradas, W. Herrera-Kao, J. V. Cauich-Rodriguez, J.M. Cervantes-Uc, Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: Physicochemical characterization and Schwann cell biocompatibility, Biomed. Mater. 12 (2016).
  34. C. Wu, J. Jiang, E.I. Meletis, Microstructure of BaCO3 and BaTiO3 coatings produced on titanium by plasma electrolytic oxidation, Appl. Surf. Sci., 506 (2020) 144858.
  35. Gazińska, A. Krokos, M. Kobielarz, M. Włodarczyk, P. Skibińska, B. Stępak, A. Antończak, M. Morawiak, P. Płociński, K. Rudnicka, Influence of hydroxyapatite surface functionalization on thermal and biological properties of poly(L-lactide)-and poly(l-lactide-co-glycolide)-based composites, Int. J. Mol. Sci., 21 (2020) 1–21.
  36. S. Chougala, M.S. Yatnatti, R.K. Linganagoudar, R.R. Kamble, J.S. Kadadevarmath, A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells, J. Nano- Electron. Phys., 9 (2017)  04005.
  37. S. Hanafy, W.M. Desoky, E.M. Hussein, N.H. El-Shaer, M. Gomaa, A.A. Gamal, M.A. Esawy, O.W. Guirguis, Biological applications study of bio-nanocomposites based on chitosan/TiO2 nanoparticles polymeric films modified by oleic acid, J. Biomed. Mater. Res. - Part A. 109 (2021) 232–247.
  38. M. Anaya-Esparza, J.M. Ruvalcaba-Gómez, C.I. Maytorena-Verdugo, N. González-Silva, R. Romero-Toledo, S. Aguilera-Aguirre, A. Pérez-Larios, E. Montalvo-González, Chitosan-tio2: A versatile hybrid composite, Materials (Basel). 13 (2020) 811.
  39. Prodana, C.E. Nistor, A.B. Stoian, D. Ionita, C. Burnei, Dual nanofibrous bioactive coatings on TiZr implants, Coatings. 10 (2020) 526.
  40. Li, Q. Xiao, R. McNaughton, L. Han, L. Zhang, Y. Wang, Y. Yang, Nanoengineered porous chitosan/CaTiO3 hybrid scaffolds for accelerating Schwann cells growth in peripheral nerve regeneration, Colloids Surf. B Biointerfaces, 158 (2017) 57–67.
  41. M. Jin, N. Sultana, S. Baba, S. Hamdan, A.F. Ismail, Porous PCL/Chitosan and nHA/PCL/chitosan scaffolds for tissue engineering applications: Fabrication and evaluation, J. Nanomater. 2015 (2015).
  42. Zhu, W. Gu, H. Li, W. Zou, H. Liu, Y. Zhang, Q. Wu, Z. Fu, Y. Lu, Enhancing the photocatalytic hydrogen production performance of SrTiO3 by coating with a hydrophilic poloxamer, Appl. Surf. Sci., 528 (2020) 146837.
  43. Qiao, Q. Zou, C. Yuan, X. Zhang, S. Han, Z. Wang, X. Bu, H. Tang, Y. Huang, Composite coatings of lanthanum-doped fluor-hydroxyapatite and a layer of strontium titanate nanotubes: fabrication, bio-corrosion resistance, cytocompatibility and osteogenic differentiation, Ceram. Int., 44 (2018) 16632–16646.
  44. Kolathupalayam Shanmugam, S. Rangaraj, K. Subramani, S. Srinivasan, W.K. Aicher, R. Venkatachalam, Biomimetic TiO2-chitosan/sodium alginate blended nanocomposite scaffolds for tissue engineering applications, Mater. Sci. Eng. C., 110 (2020) 110710.
  45. M. Farag, W.M. Abd-Allah, H.Y.A. Ahmed, Study of the dual effect of gamma irradiation and strontium substitution on bioactivity, cytotoxicity, and antimicrobial properties of 45S5 bioglass, J. Biomed. Mater. Res. - Part A. 105 (2017) 1646–1655.
  46. Ge, C. Ren, Y. Ding, G. Chen, X. Lu, K. Wang, F. Ren, M. Yang, Z. Wang, J. Li, X. An, B. Qian, Y. Leng, Micro/nano-structured TiO2 surface with dual-functional antibacterial effects for biomedical applications, Bioact. Mater., 4 (2019) 346–357.
  47. L. Hariani, M. Muryati, M. Said, S. Salni, Synthesis of nano-hydroxyapatite from snakehead (Channa striata) fish bone and its antibacterial properties, Key Eng. Mater., 840 (2020) 293–299.
  48. Chen, S. Al-Bayatee, Z. Khurshid, A. Shavandi, P. Brunton, J. Ratnayake, Hydroxyapatite in oral care products—a review, Materials (Basel). 14 (2021) 4865.
  49. Chang, H. Xiang, Z. Yao, S. Yang, M. Tu, X. Zhang, B. Yu, Strontium-substituted calcium sulfate hemihydrate/hydroxyapatite scaffold enhances bone regeneration by recruiting bone mesenchymal stromal cells, J. Biomater. Appl., 35 (2020) 97–107.
  50. Zhao, T. Liu, X. Li, Q. Cui, X. Wang, K. Song, D. Ge, Protein adsorption on TiO2 nanostructures and its effects on surface topography and bactericidal performance, Appl. Surf. Sci., 576 (2022) 151779.