Document Type : Research Paper

Authors

1 Materials Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 Departement of Physics., Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia.

Abstract

 
Using bioactive and biocompatible coatings to biofunctionalized metallic implant surfaces for enhanced bone regeneration while resisting bacterial infection has attracted materials scientists' interest. Bio-metallic Ti-25Zr disc sample was prepared using powder metallurgy and then coated using an electrospinning method to form a nanocomposite fiber as a coating layer over the surface of the metal alloy substrate. Three nano-compounds (Nano-hydroxyapatite, Nano-Titanium dioxide, Nano-strontium titanite) were added individually to the Polycaprolactone/Chitosan blend to prepare the electrospinning solutions. The results show a significant improvement in biocompatibility for the coated samples after seven days of (MC3T3-E1) cell culture. Cell viability percentages were significantly higher for the coated samples compared to uncoated ones, with values of PCL/Chitosan/nHA (HA1) has 239.45±17.95%, PCL/Chitosan/nSrTiO3 (SR1)  has170.09±8.12%, and PCL/Chitosan/nTiO2 (TI1)  has 117.19±19.42%, while bare Ti-25Zr has 80.52±1.97%. Cell proliferation also shows a remarkable increase with time for coated samples, and the enhancement reaches 197.76% for (HA1), 111.38% (SR1), and 45.81 % (TI1) in comparison with (bare Ti-25Zr). For the antibacterial test, no inhibition zone for the control sample (bare Ti-25Zr) was observed, while the coated samples showed a suitable and comparable inhibition zone. The coating procedure is simple and inexpensive, and composite nano-fiber has high biocompatibility and promise in orthodontic and orthopedic bone regeneration.

Graphical Abstract

Highlights

  • Bio-metallic Ti-25Zr sample was prepared using powder metallurgy.
  • Ti-25Zr alloy was coated using an electrospinning method to form a Nano-composite coating film.
  • The coated sample significantly improves cell activity and resists bacterial infection.

Keywords

Main Subjects

  1. Das, V. Saxena, A. Bhardwaj, S. Rabha, L.M. Pandey, P. Dobbidi, Microstructural, interfacial, biological and electrical activity in sputtered Hydroxyapatite-Barium strontium titanate bilayered thin films, Surf. Interfaces, 31 (2022) 102063. https://doi.org/10.1016/j.surfin.2022.102063
  2. Al-Hassani, F. Al-Hassani, M. Najim, Effect of polymer coating on the osseointegration of CP-Ti dental implant, AIP Conf. Proc., 1968 (2018) 030022. https://doi.org/10.1063/1.5039209
  3. S. Al-Hassani, Effect of laser pulses on ion release behavior of Ti-base alloys, AIP Conf. Proc., 2190 (2019) 020030. https://doi.org/10.1063/1.5138516
  4. Wang, Z. Wu, J. Lan, Y. Li, L. Xie, X. Huang, A. Zhang, H. Qiao, X. Chang, H. Lin, H. Zhang, T. Li, Y. Huang, Surface modification of titanium implants by silk fibroin/Ag co-functionalized strontium titanate nanotubes for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration, Surf. Coatings. Technol., 405 (2021) 126700. https://doi.org/10.1016/j.surfcoat.2020.126700
  5. M. Khashan, M. Khashan, A. Mutaib, Editor Notes and instructions, (2021) 26–27.
  6. Sahoo, A. Sinha, V. K. Balla, M. Das, Synthesis, characterization, and bioactivity of SrTiO3-incorporated titanium coating, J. Mater. Res., 33 (2018) 2087–2095. https://doi.org/10.1557/jmr.2018.99
  7. Zuo, L. Yu, J. Lin, Y. Yang, Q. Fei, Properties improvement of titanium alloys scaffolds in bone tissue engineering: a literature review, Ann. Transl. Med., 9 (2021) 1259. https://doi.org/10.21037/atm-20-8175
  8. S. Al-Hassani and F. J. Al-Hassani, Effect of Dual Surface Activation on the Surface Roughness of Titanium Dental Implant, Surface Treatments View project modules and bounded linear operators View project Effect of Dual Surface Activation on the Surface Roughness of Titanium Dental Implant,J. Nat. Sci. Res., Www.Iiste.Org ISSN. 7 (2017)35-44.
  9. Shen, W. Hu, L. Ping, C. Liu, L. Yao1, Z. Deng, G. Wu, Antibacterial and Osteogenic Functionalization of Titanium With Silicon/Copper-Doped High-Energy Shot Peening-Assisted Micro-Arc Oxidation Technique, 8 (2020). https://doi.org/10.3389/fbioe.2020.573464
  10. Alt, Antimicrobial coated implants in trauma and orthopaedics–A clinical review and risk-benefit analysis, 48 (2017) 599–607. https://doi.org/10.1016/j.injury.2016.12.011
  11. Wang, A. Bian, F. Jia, J. Lan, H. Yang, K. Yan, L. Xie, H. Qiao, X. Chang, H. Lin, H. Zhang, Y. Huang, Dual-functional strontium titanate nanotubes designed based on fusion peptides simultaneously enhancing anti-infection and osseointegration, Biomater. Adv., 133 (2022) 112650. https://doi.org/10.1016/j.msec.2022.112650
  12. Swain, C. Bowen, T. Rautray, Dual response of osteoblast activity and antibacterial properties of polarized strontium substituted hydroxyapatite—Barium strontium titanate composites with controlled strontium substitution, J. Biomed. Mater. Res. - Part A., 109 (2021) 2027–2035.
  13. Tranquillo, F. Bollino, Surface modifications for implants lifetime extension: An overview of sol-gel coatings, Coatings. 10 (2020) 589. https://doi.org/10.3390/COATINGS10060589
  14. R. Jabur, Antibacterial activity and heavy metal removal efficiency of electrospun medium molecular weight chitosan/nylon-6 nanofibre membranes, Biomed. Mater., 13 (2018) 015010 . https://doi.org/10.1088/1748-605X/aa9256
  15. Y. Jasim, M.A. Najim, A.R. Jabur, Improving the mechanical properties of (chitosan/polyurethane) electrospun blend scaffold used for skin regeneration, AIP Conf. Proc., 2123 (2019) 020042. https://doi.org/10.1063/1.5116969
  16. R. Jabur, E.S. Al-Hassani, A.M. Al-Shammari, M.A. Najim, A.A. Hassan, A.A. Ahmed, Evaluation of Stem Cells Growth on Electrospun Polycaprolactone (PCL) Scaffolds Used for Soft Tissue Applications, Energy Procedia, 119 (2017) 61–71. https://doi.org/10.1016/j.egypro.2017.07.048
  17. de Cassan, A. Becker, B. Glasmacher, Y. Roger, A. Hoffmann, T.R. Gengenbach, C.D. Easton, R. Hänsch, H. Menzel, Blending chitosan-g-poly(caprolactone) with poly(caprolactone) by electrospinning to produce functional fiber mats for tissue engineering applications, J. Appl. Polym. Sci., 137 (2020) 48650.
  18. Soleymani, R. Emadi, S. Sadeghzade, F. Tavangarian, Applying baghdadite/PCL/chitosan nanocomposite coating on AZ91 magnesium alloy to improve corrosion behavior, bioactivity, and biodegradability, Coatings. 9 (2019) 789. https://doi.org/10.3390/coatings9120789
  19. Al-Khateeb, E.S. Al-hassani, A.R. Jabur, Metallic Implant Surface Activation through Electrospinning Coating of Nanocomposite Fiber for Bone Regeneration, Int. J. Biomater., 2023 (2023) 1332814. https://doi.org/10.1155/2023/1332814
  20. Beig, U. Liaqat, M. Niazi, I. Douna, M. Zahoor, M. Niazi, Current challenges and innovative developments in hydroxyapatite-based coatings on metallic materials for bone implantation: A review, Coatings. 10 (2020) 1249. https://doi.org/10.3390/coatings10121249
  21. Nhlapo, T.C. Dzogbewu, O. Smidt, Nanofiber Polymers for Coating Titanium-Based Biomedical Implants, Fibers. 10 (2022) 36. https://doi.org/10.3390/fib10040036
  22. Sun, H. Liu, X.Y. Sun, W. Xia, C. Deng, In vitro and in vivo study on the osseointegration of magnesium and strontium ion with two different proportions of mineralized collagen and its mechanism, J. Biomater. Appl., 36 (2021) 528–540.
  23. Tariverdian, A. Behnamghader, P. B. Milan, H. B. Bafrooei, M. Mozafari, 3D-printed barium strontium titanate-based piezoelectric scaffolds for bone tissue engineering, Ceram. Int., 45 (2019) 14029–14038. https://doi.org/10.1016/j.ceramint.2019.04.102
  24. R. Jabur, M.A. Najim, S.A.A. Al-Rahman, Study the effect of flow rate on some physical properties of different polymeric solutions, J. Phys. Conf. Ser., 1003 (2018) 012069. https://doi.org/10.1088/1742-6596/1003/1/012069
  25. Wang, W. Ruan, J. Liu, T. Zhang, H. Yang, J. Ruan, Microstructure, mechanical properties, and preliminary biocompatibility evaluation of binary Ti–Zr alloys for dental application, J. Biomater. Appl., 33 (2019) 766–775. https://doi.org/10.1177/0885328218811052
  26. Takahashi, M. Kikuchi, O. Okuno, Grindability of dental cast Ti-Zr alloys, Mater. Trans., 50 (2009) 859–863. https://doi.org/10.2320/matertrans.MRA2008403
  27. Jiang, C. Zhou, Y. Zhao, F. He, X. Wang, Development and properties of dental Ti–Zr binary alloys, J. Mech. Behav. Biomed. Mater., 112 (2020) 104048. https://doi.org/10.1016/j.jmbbm.2020.104048
  28. Zhang, L. Wang, Y. Bai, X. Lin, L. Peng, H. Chen, Experimental and theoretical analysis of a closed loop two-phase thermosiphon under various states for latent heat storage, Energy Reports. 6 (2020) 1–7. https://doi.org/10.1016/j.egyr.2019.09.005
  29. Yan, J. Tan, D. Wang, J. Qiu, X. Liu, Surface alloyed Ti–Zr layer constructed on titanium by Zr ion implantation for improving physicochemical and osteogenic properties, Prog. Nat. Sci. Mater. Int., 30 (2020) 635–641. https://doi.org/10.1016/j.pnsc.2020.09.006
  30. Matuła, G. Dercz, M. Zubko, J. Maszybrocka, J. J. Suliga, S. Golba, I. Jendrzejewska, Microstructure and porosity evolution of the ti–35zr biomedical alloy produced by elemental powder metallurgy, Mater., 13 (2020) 4539. https://doi.org/10.3390/ma13204539
  31. M. Ghorbani, B. Kaffashi, P. Shokrollahi, S. Akhlaghi, M.S. Hedenqvist, Effect of hydroxyapatite nano-particles on morphology, rheology and thermal behavior of poly(caprolactone)/chitosan blends, Mater. Sci. Eng. C ., 59 (2016) 980–989. https://doi.org/10.1016/j.msec.2015.10.076
  32. Yin, L. Xu, Batch preparation of electrospun polycaprolactone/chitosan/aloe vera blended nanofiber membranes for novel wound dressing, Int. J. Biol. Macromol., 160 (2020) 352–363. https://doi.org/10.1016/j.ijbiomac.2020.05.211
  33. Bolaina-Lorenzo, C. Martinez-Ramos, M. Monleón-Pradas, W. Herrera-Kao, J. V. Cauich-Rodriguez, J.M. Cervantes-Uc, Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: Physicochemical characterization and Schwann cell biocompatibility, Biomed. Mater. 12 (2016). https://doi.org/10.1088/1748-605x/12/1/015008
  34. C. Wu, J. Jiang, E.I. Meletis, Microstructure of BaCO3 and BaTiO3 coatings produced on titanium by plasma electrolytic oxidation, Appl. Surf. Sci., 506 (2020) 144858. https://doi.org/10.1016/j.apsusc.2019.144858
  35. Gazińska, A. Krokos, M. Kobielarz, M. Włodarczyk, P. Skibińska, B. Stępak, A. Antończak, M. Morawiak, P. Płociński, K. Rudnicka, Influence of hydroxyapatite surface functionalization on thermal and biological properties of poly(L-lactide)-and poly(l-lactide-co-glycolide)-based composites, Int. J. Mol. Sci., 21 (2020) 1–21. https://doi.org/10.3390/ijms21186711
  36. S. Chougala, M.S. Yatnatti, R.K. Linganagoudar, R.R. Kamble, J.S. Kadadevarmath, A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells, J. Nano- Electron. Phys., 9 (2017)  04005. https://doi.org/10.21272/jnep.9(4).04005.
  37. S. Hanafy, W.M. Desoky, E.M. Hussein, N.H. El-Shaer, M. Gomaa, A.A. Gamal, M.A. Esawy, O.W. Guirguis, Biological applications study of bio-nanocomposites based on chitosan/TiO2 nanoparticles polymeric films modified by oleic acid, J. Biomed. Mater. Res. - Part A. 109 (2021) 232–247. https://doi.org/10.1002/jbm.a.37019
  38. M. Anaya-Esparza, J.M. Ruvalcaba-Gómez, C.I. Maytorena-Verdugo, N. González-Silva, R. Romero-Toledo, S. Aguilera-Aguirre, A. Pérez-Larios, E. Montalvo-González, Chitosan-tio2: A versatile hybrid composite, Materials (Basel). 13 (2020) 811. https://doi.org/10.3390/ma13040811
  39. Prodana, C.E. Nistor, A.B. Stoian, D. Ionita, C. Burnei, Dual nanofibrous bioactive coatings on TiZr implants, Coatings. 10 (2020) 526. https://doi.org/10.3390/COATINGS10060526
  40. Li, Q. Xiao, R. McNaughton, L. Han, L. Zhang, Y. Wang, Y. Yang, Nanoengineered porous chitosan/CaTiO3 hybrid scaffolds for accelerating Schwann cells growth in peripheral nerve regeneration, Colloids Surf. B Biointerfaces, 158 (2017) 57–67. https://doi.org/10.1016/j.colsurfb.2017.06.026
  41. M. Jin, N. Sultana, S. Baba, S. Hamdan, A.F. Ismail, Porous PCL/Chitosan and nHA/PCL/chitosan scaffolds for tissue engineering applications: Fabrication and evaluation, J. Nanomater. 2015 (2015). https://doi.org/10.1155/2015/357372
  42. Zhu, W. Gu, H. Li, W. Zou, H. Liu, Y. Zhang, Q. Wu, Z. Fu, Y. Lu, Enhancing the photocatalytic hydrogen production performance of SrTiO3 by coating with a hydrophilic poloxamer, Appl. Surf. Sci., 528 (2020) 146837. https://doi.org/10.1016/j.apsusc.2020.146837
  43. Qiao, Q. Zou, C. Yuan, X. Zhang, S. Han, Z. Wang, X. Bu, H. Tang, Y. Huang, Composite coatings of lanthanum-doped fluor-hydroxyapatite and a layer of strontium titanate nanotubes: fabrication, bio-corrosion resistance, cytocompatibility and osteogenic differentiation, Ceram. Int., 44 (2018) 16632–16646. https://doi.org/10.1016/j.ceramint.2018.06.090
  44. Kolathupalayam Shanmugam, S. Rangaraj, K. Subramani, S. Srinivasan, W.K. Aicher, R. Venkatachalam, Biomimetic TiO2-chitosan/sodium alginate blended nanocomposite scaffolds for tissue engineering applications, Mater. Sci. Eng. C., 110 (2020) 110710. https://doi.org/10.1016/j.msec.2020.110710
  45. M. Farag, W.M. Abd-Allah, H.Y.A. Ahmed, Study of the dual effect of gamma irradiation and strontium substitution on bioactivity, cytotoxicity, and antimicrobial properties of 45S5 bioglass, J. Biomed. Mater. Res. - Part A. 105 (2017) 1646–1655. https://doi.org/10.1002/jbm.a.36035
  46. Ge, C. Ren, Y. Ding, G. Chen, X. Lu, K. Wang, F. Ren, M. Yang, Z. Wang, J. Li, X. An, B. Qian, Y. Leng, Micro/nano-structured TiO2 surface with dual-functional antibacterial effects for biomedical applications, Bioact. Mater., 4 (2019) 346–357. https://doi.org/10.1016/j.bioactmat.2019.10.006
  47. L. Hariani, M. Muryati, M. Said, S. Salni, Synthesis of nano-hydroxyapatite from snakehead (Channa striata) fish bone and its antibacterial properties, Key Eng. Mater., 840 (2020) 293–299. https://doi.org/10.4028/www.scientific.net/kem.840.293
  48. Chen, S. Al-Bayatee, Z. Khurshid, A. Shavandi, P. Brunton, J. Ratnayake, Hydroxyapatite in oral care products—a review, Materials (Basel). 14 (2021) 4865. https://doi.org/10.3390/ma14174865
  49. Chang, H. Xiang, Z. Yao, S. Yang, M. Tu, X. Zhang, B. Yu, Strontium-substituted calcium sulfate hemihydrate/hydroxyapatite scaffold enhances bone regeneration by recruiting bone mesenchymal stromal cells, J. Biomater. Appl., 35 (2020) 97–107. https://doi.org/10.1177/0885328220915816
  50. Zhao, T. Liu, X. Li, Q. Cui, X. Wang, K. Song, D. Ge, Protein adsorption on TiO2 nanostructures and its effects on surface topography and bactericidal performance, Appl. Surf. Sci., 576 (2022) 151779. https://doi.org/10.1016/j.apsusc.2021.151779