Document Type : Review Paper

Authors

1 Ministry of Science and Technology, Baghdad- Iraq.

2 Membrane Technology Research Unit, Chemical Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

3 Mechanical and Aerospace Engineering Dept., Monash University, Clayton, VIC 3800, Australia

4 Chemical Engineering Dept., Faculty of Engineering, Mutah University, P.O. Box 7, Karak, 61710, Jordan.

5 Institute on Membrane Technology, National Research Council (ITM-CNR), 87030 Rende (CS), Italy.

Abstract

Radioactive waste poses significant risks to human health and the environment due to the emission of gamma rays, beta particles, and alpha particles from natural or artificial radioactive elements. This paper reviews the essential sources of radioactive waste, their potential risks to humans and the environment, their classification depending on their chemical, physical, and radiological features, and the treatment techniques utilized to prevent them from leaking into the environment. In addition, the current study focuses on using membranes exclusively and membrane technologies in the remediation of radioactive liquid wastes. The use of pressure-driven membrane technologies, such as reverse osmosis, nanofiltration, ultrafiltration, and microfiltration, is particularly emphasized. Additionally, the use of nanomaterials like titanium dioxide, zinc oxide, silica, alumina, silver oxide, zeolite, copper ferrocyanides, and carbon nanotubes embedded with membranes to improve their effectiveness and enhance their applicability decreases the risks associated with radioactive contamination via modifying membrane properties including flow rate, the result of rejecting radioactive particles dissolved or suspended in contaminated water, hydrophobic and hydrophilic membrane's ability and among other properties. Moreover, incorporating nanoparticles into reinforced membranes enhances the mechanics of nanocomposite membrane surfaces via processes like adsorption and ion exchange with various radioactive ions. Besides increasing nanocomposite membranes' performance in reducing the hazardous radionuclides effects, it modifies membrane properties, such as enhancing antibacterial capabilities, antifouling, mechanical stability, and thermal stability. The article review also discusses hybrid pressure-driven membrane processes in disposing of radionuclides generated in nuclear power plants, hospitals, research facilities, and decontamination projects to protect human health and the environment.

Graphical Abstract

Highlights

  • Review of advances in liquid radioactive waste processing using membrane technology
  • Membrane processes show enormous potential in radioactive science and technology
  • Focus on nanoparticle materials for removing hazardous isotopes from liquid wastes

Keywords

Main Subjects

  1. J. Koppel et al., Current understanding and research needs for ecological risk assessments of naturally occurring radioactive materials (NORM) in subsea oil and gas pipelines, J. Environ. Radioact., 241 (2022) 106774. https://doi.org/10.1016/j.jenvrad.2021.106774
  2. Coupannec , Optimization and Comparison of Radioanalytical Methods for the Determination of Radium and Other Alpha-Emitting Radionuclides in Process Water Samples from the Oil & Gas Industry, Colorado State University, 2022.
  3. Chang, K. et al. 2023. Design of Radioactive Waste Classification and Detection System for Nuclear Facility Decommissioning,In: Liu, C. (eds) Proceedings of the 23rd Pacific Basin Nuclear Conference, Volume 1. PBNC 2022. Springer Proceedings in Physics, vol. 283,pp.1085–1094. Springer, Singapore.. https://doi.org/10.1007/978-981-99-1023-6_91
  4. Linsley, International standards related to the classification and deregulation of radioactive waste, Health Phys., 91 (2006) 470–478. https://doi.org/10.1097/01.HP.0000234673.59745.eb
  5. I. Ojovan, Nuclear waste disposal, Encyclopedia, 3 (2023) 419–429. https://doi.org/10.3390/encyclopedia3020028
  6. O. A. Rahman, H. A. Ibrahium, and Y. T. Hung, Liquid radioactive wastes treatment: a review, Water, 3 (2011) 551–565. https://doi.org/10.3390/w3020551
  7. Luhar et al., Solidification/Stabilization Technology for Radioactive Wastes Using Cement: An Appraisal, Materials, 16 (2023) 954. https://doi.org/10.3390/ma16030954
  8. Kumar, B. Kumar, and D. Singh, Radioactive waste management, Hazardous waste management, Elsevier, 289–301, 2022.
  9. Tochaikul, A. Phattanasub, P. Khemkham, K. Saengthamthawee, N. Danthanavat, and N. Moonkum, Radioactive waste treatment technology: A review, Kerntechnik, 87 (2022) 208–225. https://doi.org/10.1515/kern-2021-1029
  10. K. Pabby et al., Radioactive waste processing using membranes: State of the art technology, challenges, and perspectives, Sep. Purif. Rev., 51 (2022) 143–173. https://doi.org/10.1080/15422119.2021.1878221
  11. Nabakhtiani, I. Giorgadze, and M. I. Ojovan, IAEA-Assisted Treatment of Liquid Radioactive Waste at the Saakadze Site in Georgia, Processes, 9 (2021) 1679. https://doi.org/10.3390/pr9091679
  12. K. Pabby, Membrane techniques for treatment in nuclear waste processing: global experience, Membr. Technol., 2008 (2008) 9–13. https://doi.org/10.1016/S0958-2118(08)70233-7
  13. Zakrzewska-Trznadel, Radioactive waste processing: advancement in pressure driven processes and current world scenario, Handb. Membr. Sep. Chem. Pharm. Biotechnol. Appl. CRC Press. Boca Rat. (FL), USA, 2008.
  14. Ramachandhran and B. M. Misra, Studies on the radiolytic degradation of cellulose acetate membranes, J. Appl. Polym. Sci., 30 (1985) 35–43. https://doi.org/10.1002/app.1985.070300103
  15. Ramachandhran and B. M. Misra, Studies on the radiation stability of ion exchange membranes, J. Appl. Polym. Sci., 32 (1986) 5743–5747. https://doi.org/10.1002/app.1986.070320707
  16. G. Chmielewski and M. Harasimowicz, Influence of gamma and electron irradiation on transport properties of ultrafiltration membranes, Nukleonika, 37 (1992) 61–70.
  17. G. Chmielewski and M. Harasimowicz, Influence of gamma and electron radiation on transport properties of nanofiltration and hyperfiltration membranes, Nukleonika, 42 (1997) 857–861.
  18. Zakrzewska-Trznadel and M. Harasimowicz, Removal of radionuclides by membrane permeation combined with complexation, Desalination, 144 (2002) 207–212. https://doi.org/10.1016/S0011-9164(02)00313-2
  19. Zakrzewska-Trznadel and M. Khayet, Membranes in nuclear science and technology: membrane modification as a tool for performance improvement, in Membrane Modification: Technology and Applications, CRC Press Taylor & Francis Group Boca Raton, pp. 1–19.
  20. Yu, X. Zhang, F. Li, and X. Zhao, Poly (vinyl pyrrolidone) modified poly (vinylidene fluoride) ultrafiltration membrane via a two-step surface grafting for radioactive wastewater treatment, Sep. Purif. Technol., 194 (2018) 404–409. https://doi.org/10.1016/j.seppur.2017.10.051
  21. Ding, L. Zhang, Y. Li, and L. Hou, Fabrication of a novel polyvinylidene fluoride membrane via binding SiO2 nanoparticles and a copper ferrocyanide layer onto a membrane surface for selective removal of cesium, J. Hazard. Mater., 368 (2019) 292–299. https://doi.org/10.1016/j.jhazmat.2019.01.065
  22. Nazari and A. Abdelrasoul, Impact of Membrane Modification and Surface Immobilization Techniques on the Hemocompatibility of Hemodialysis Membranes: A Critical Review, Membranes, 12 (2022) 1063. https://doi.org/10.3390/membranes12111063
  23. -F. Zhao, P.-B. Zhang, J. Sun, C.-J. Liu, L.-P. Zhu, and Y.-Y. Xu, Electrolyte-responsive polyethersulfone membranes with zwitterionic polyethersulfone-based copolymers as additive, J. Memb. Sci., 510 (2016) 306–313. https://doi.org/10.1016/j.memsci.2016.03.006
  24. G. Wenten, P. T. P. Aryanti, K. Khoiruddin, A. N. Hakim, and N. F. Himma, Advances in polysulfone-based membranes for hemodialysis, J. Membr. Sci. Res., 2 (2016) 78–89. https://doi.org/10.22079/jmsr.2016.19155
  25. Fuks, A. Miśkiewicz, and G. Zakrzewska-Kołtuniewicz, Sorption-Assisted Ultrafiltration Hybrid Method for Treatment of the Radioactive Aqueous Solutions, Chemistry, 4 (2022) 1076–1091. https://doi.org/10.3390/chemistry4030073
  26. A. Alsarayreh, T. K. Abbas, S. O. Alaswad, and A. D. Bajoga, Remove Liquid Radioactive Wastes Utilizing Nanofiltration, Ultrafiltration, and Microfiltration Membranes, Eng. Technol. J., 40 (2022) 1231–1259. https://doi.org/10.30684/etj.2022.134025.1218
  27. Fuks, Leon, Agnieszka Miśkiewicz, and Grażyna Zakrzewska-Kołtuniewicz. Sorption-assisted ultrafiltration hybrid method for treatment of the radioactive aqueous solutions. Chemistry, 4 (2022) 1076-1091. https://doi.org/10.3390/chemistry4030073
  28. Liu et al., A State-of-the-Art Review of Radioactive Decontamination Technologies: Facing the Upcoming Wave of Decommissioning and Dismantling of Nuclear Facilities, Sustainability, 14 (2022) 4021. https://doi.org/10.3390/su14074021
  29. A. Kurniawan et al., Technological solutions for long-term storage of partially used nuclear waste: A critical review, Ann. Nucl. Energy, 166 (2022) 108736. https://doi.org/10.1016/j.anucene.2021.108736
  30. M. Krall, A. M. Macfarlane, and R. C. Ewing, Nuclear waste from small modular reactors, Proc. Natl. Acad. Sci., 119 (2022) e2111833119. https://doi.org/10.1073/pnas.2111833119
  31. I. Ojovan and H. J. Steinmetz, Approaches to Disposal of Nuclear Waste, Energies, 15 (2022) 7804. https://doi.org/10.3390/en15207804
  32. Mallevialle, P. E. Odendaal, and M. R. Wiesner, Water treatment membrane processes. American Water Works Association, 1996.
  33. Radjenović, M. Petrović, and D. Barceló, Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment, Water Res., 43 (2009) 831–841. https://doi.org/10.1016/j.watres.2008.11.043
  34. Mavrov and E. Bélières, Reduction of water consumption and wastewater quantities in the food industry by water recycling using membrane processes, Desalination, 131 (2000) 75–86. https://doi.org/10.1016/S0011-9164(00)90008-0
  35. F. Alsalhy, R. S. Almukhtar, and H. A. Alani, Oil refinery wastewater treatment by using membrane bioreactor (MBR), Arab. J. Sci. Eng., 41 (2016) 2439–2452. https://doi.org/10.1007/s13369-015-1881-9
  36. Karkooti, A. Z. Yazdi, P. Chen, M. McGregor, N. Nazemifard, and M. Sadrzadeh, Development of advanced nanocomposite membranes using graphene nanoribbons and nanosheets for water treatment, J. Memb. Sci., 560 (2018) 97–107. https://doi.org/10.1016/j.memsci.2018.04.034
  37. Elimelech and W. A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717. https://doi.org/10.1126/science.1200488
  38. Buckley et al., Application of membrane technologies for liquid radioactive waste processing, IAEA-TRS No. 431. 2004. 145 p, 2004.
  39. M. Colvin, R. C. Roberts, and M. K. Williams, Summary of the ultrafiltration, reverse osmosis, and adsorbents project, Unknown, 1983.
  40. Ulbricht, Advanced functional polymer membranes, Polymer, 47 (2006) 2217–2262. https://doi.org/10.1016/j.polymer.2006.01.084
  41. Lee, Z. Wu, and K. Li, Advances in ceramic membranes for water treatment, in Advances in membrane technologies for water treatment, Elsevier, pp. 43–82, 2015. https://doi.org/10.1016/B978-1-78242-121-4.00002-2
  42. G. Chmielewski, M. Harasimowicz, and G. Zakrzewska-Trznadel, Membrane technologies for liquid radioactive waste treatment, Czechoslov. J. Phys., 49 (1999) 979–985. https://doi.org/10.1007/s10582-999-1027-y
  43. Zakrzewska-Trznadel, Advances in membrane technologies for the treatment of liquid radioactive waste, Desalination, 321 (2013) 119–130. https://doi.org/10.1016/j.desal.2013.02.022
  44. Hilal, M. Khayet, and C. J. Wright, Membrane modification: Technology and applications. CRC press, 2012.
  45. J. Macnaughton, J. K. McCulloch, K. Marshall, and R. J. Ring, Application of nanofiltration to the treatment of uranium mill effluents, 2002.
  46. Andalaft, R. Vega, M. Correa, R. Araya, and P. Loyola, Zeta potential control in decontamination with inorganic membranes and inorganic adsorbents, 1997.
  47. R. Cave, O. Butler, J. M. Cook, M. S. Cresser, L. M. Garden, and D. L. Miles, Environmental analysis, J. Anal. At. Spectrom., 15 (2000) 181–235. https://doi.org/10.1039/A900079H
  48. M. V. Hoek and V. V Tarabara, Encyclopedia of membrane science and technology, vol. 3. Wiley Online Library, 2013.
  49. G. Fane, R. Wang, and Y. Jia, Membrane technology: past, present and future, in Membrane and desalination technologies, Springer, pp. 1–45, 2011.
  50. A. Lundy and I. Cabasso, Analysis and construction of multilayer composite membranes for the separation of gas mixtures, Ind. Eng. Chem. Res., 28 (1989) 742–756.
  51. E. Kesting, Synthetic polymeric membranes: a structural perspectives, 1985.
  52. C. Porter, Handbook of industrial membrane technology, 1989.
  53. Garrett, Reverse osmosis applications to low-level radioactive waste, Westinghouse Hanford Co., Richland, WA (USA), 1990.
  54. Š. Bártová, P. Kůs, M. Skala, and K. Vonková, Reverse osmosis for the recovery of boric acid from the primary coolant at nuclear power plants, Nucl. Eng. Des., 300 (2016) 107–116. https://doi.org/10.1016/j.nucengdes.2016.01.018
  55. T. Bourns, L. P. Buckley, and K. A. Burrill, Development of techniques for radwaste systems in CANDU power stations, Atomic Energy of Canada Ltd., 1979.
  56. H. Wilson, Effective liquid waste processing utilizing membrane technologies, in Proc. EPRI Int. Low Level Waste Conf, 2000.
  57. P. Buckley, S. K. Sen Gupta, and J. A. Slade, Treatment of low-level radioactive waste liquid by reverse osmosis, American Society of Mechanical Engineers, New York, NY (United States), 1995.
  58. K. Sengupta and L. P. Buckley, Bitumen immobilization of aqueous radwaste by thin-film evaporation, Atomic Energy of Canada Ltd., 1996.
  59. R. Herald and R. C. Roberts, Development of ultrafiltration and inorganic adsorbents for reducing volumes of low-level and intermediate-level liquid waste, April--June 1978, Mound Facility, Miamisburg, OH (USA), 1978.
  60. Mizutani, Ion exchange membranes with preferential permselectivity for monovalent ions, J. Memb. Sci., 54 (1990) 233–257. https://doi.org/10.1016/S0376-7388(00)80612-2
  61. Miller, Comparison of advanced filtration systems at Diablo Canyon, in Proc. 2001 ASME/EPRI Radwaste Workshop (Orlando, USA), EPRI, Palo Alto, CA, 2001.
  62. Mulhern, Death, taxes... and RO membrane fouling, Water Technol., 18 (1995) 66–69.
  63. Backus, J. W. Kubarewicz, T. J. Liang, W. G. Light, M. D. Naughton, and G. F. Palina, Radwaste evaporator pretreatment by ultra-filtration, Trans. Am. Nucl. Soc.;(United States), 39, no. CONF-811103-, 1981.
  64. A. Kichik, M. N. Maslova, A. A. Svitzov, and N. F. Culeshov, Method for complex treatment of laundry liquid radioactive wastes by ultrafiltration, At Energ, 63 (1987) 130–134.
  65. Jiang, Z. Fang, Zhi Liu, Xinyi Huang, Hua Wei, and Cui-Yun Yu. Application of membrane distillation for purification of radioactive liquid. Clean. Eng. Technol. 12 (2023) 100589. https://doi.org/10.1016/j.clet.2022.100589
  66. Abbas and N. Al-Bastaki, Performance decline in brackish water Film Tec spiral wound RO membranes, Desalination, 136 (2001) 281–286. http://dx.doi.org/10.1016/S0011-9164(01)00191-6
  67. Tan and G. Tapsell, Operation of a membrane pilot plant for ANSTO effluent, WM. Tuscon, AZ, 2004.
  68. Harries, L. Dimitrovski, K. Hart, and D. Levins, Radioactive waste management at ANSTO-managing current and historic wastes, 2001.
  69. G. Chmielewski, M. Harasimowicz, B. Tyminski, G. Zakrzewska-Trznadel, W. Tomczak, and A. Cholerzynski, Tri-step reverse osmosis installation for concentration liquid radioactive wastes; Trojstopniowa instalacja RO do zatezania cieklych odpadow promieniotworczych, 2001.
  70. Choi, J. Jegal, W. Kim, and H. Choi, Incorporation of multiwalled carbon nanotubes into poly (vinyl alcohol) membranes for use in the pervaporation of water/ethanol mixtures, J. Appl. Polym. Sci., 111 (2009) 2186–2193. https://doi.org/10.1002/app.29222
  71. Thierens, A. Vral, M. Barbé, B. Aousalah, and L. De Ridder, A cytogenetic study of nuclear power plant workers using the micronucleus-centromere assay, Mutat. Res. Toxicol. Environ. Mutagen., 445 (1999) 105–111. https://doi.org/10.1016/s1383-5718(99)00134-5
  72. Raff and R.-D. Wilken, Removal of dissolved uranium by nanofiltration, Desalination, 122 (1999) 147–150. https://doi.org/10.1016/S0011-9164(99)00035-1
  73. -D. Hwang et al., Effect of precipitation and complexation on nanofiltration of strontium-containing nuclear wastewater, Desalination, 147 (2002) 289–294. http://dx.doi.org/10.1016/S0011-9164(02)00554-4
  74. Gaubert et al., Selective strontium removal from a sodium nitrate aqueous medium by nanofiltration-complexation, Sep. Sci. Technol., 32 (1997) 585–597. https://doi.org/10.1080/01496399708003217
  75. Chitry, R. Garcia, L. Nicod, J. Gass, C. Madic, and M. Lemaire, Separation of gadolinium (III) and lanthanum (III) by nanofiltration-complexation in aqueous medium, J. Radioanal. Nucl. Chem., 240 (1999) 931–934. https://doi.org/10.1007/BF02349876
  76. Sorin, S. Pellet-Rostaing, A. Favre Reguillon, G. Bernier, J. M. Adnet, and M. Lemaire, Lanthanides (III)/Actinides (III) separation by nano-filtration-complexation, 2004.
  77. Chitry et al., Cesium/sodium separation by nanofiltration-complexation in aqueous medium, Sep. Sci. Technol., 36 (2001) 1053–1066. https://doi.org/10.1081/SS-100103636
  78. A. Maddah, A. S. Alzhrani, M. Bassyouni, M. H. Abdel-Aziz, M. Zoromba, and A. M. Almalki, Evaluation of various membrane filtration modules for the treatment of seawater, Appl. Water Sci., 8 (2018) 1–13. https://doi.org/10.1007/s13201-018-0793-8
  79. M. Warsinger et al., A review of polymeric membranes and processes for potable water reuse, Prog. Polym. Sci., 81 (2018) 209–237. https://doi.org/10.1016/j.progpolymsci.2018.01.004
  80. P. R. Thanu, M. Zhao, Z. Han, and M. Keswani, Fundamentals and applications of sonic technology, Dev. Surf. Contam. Clean. Appl. Clean. Tech., pp. 1–48, 2019.
  81. Zhang et al., Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials, J. Mater. Chem. A, 1 (2013) 3101–3111. https://doi.org/10.1039/C2TA01415G
  82. D. Peeva, N. Million, and M. Ulbricht, Factors affecting the sieving behavior of anti-fouling thin-layer cross-linked hydrogel polyethersulfone composite ultrafiltration membranes, J. Memb. Sci., 390 (2012) 99–112. http://dx.doi.org/10.1016/j.memsci.2011.11.025
  83. Hou, J. Xing, X. Dong, J. Zheng, and S. Li, Integrated antimicrobial and antifouling ultrafiltration membrane by surface grafting PEO and N-chloramine functional groups, J. Colloid Interface Sci., 500 (2017) 333–340. https://doi.org/10.1016/j.jcis.2017.04.028
  84. -X. Low et al., Enhancement of the antifouling properties and filtration performance of poly (ethersulfone) ultrafiltration membranes by incorporation of nanoporous titania nanoparticles, Ind. Eng. Chem. Res., 54 (2015) 11188–11198. http://dx.doi.org/10.1021/acs.iecr.5b03147
  85. Susanto and M. Ulbricht, Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives, J. Memb. Sci., 327 (2009) 125–135. https://doi.org/10.1016/j.memsci.2008.11.025
  86. M. Telford, M. James, L. Meagher, and C. Neto, Thermally cross-linked PNVP films as antifouling coatings for biomedical applications, ACS Appl. Mater. Interfaces, 2 (2010) 2399–2408. https://doi.org/10.1021/am100406j
  87. [Q. Qin et al., Microfiltration membranes prepared from poly (N-vinyl-2-pyrrolidone) grafted poly (vinylidene fluoride) synthesized by simultaneous irradiation, J. Memb. Sci., 427 (2013) 303–310. https://doi.org/10.1016/j.memsci.2012.09.059
  88. Ma, F. Shi, J. Ma, M. Wu, J. Zhang, and C. Gao, Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes, Desalination, 272 (2011) 51–58. https://doi.org/10.1016/j.desal.2010.12.054
  89. Wang, T. Yu, C. Zhao, and Q. Du, Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by adding polyvinylpyrrolidone, Fibers Polym., 10 (2009) 1–5. https://doi.org/10.1007/s12221-009-0001-4
  90. -F. Zhao et al., Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive, J. Colloid Interface Sci., 448 (2015) 380–388. https://doi.org/10.1007/s12221-009-0001-4
  91. Farahbakhsh, S. S. Adham, and D. W. Smith, Monitoring the integrity of low‐pressure membranes, Journal‐American Water Work. Assoc., 95 (2003) 95–107. https://doi.org/10.1002/j.1551-8833.2003.tb10390.x
  92. Judd and B. Jefferson, Membranes for industrial wastewater recovery and re-use. Elsevier, 2003.
  93. M. Chew, M. K. Aroua, M. A. Hussain, and W. M. Z. W. Ismail, Evaluation of ultrafiltration and conventional water treatment systems for sustainable development: an industrial scale case study, J. Clean. Prod., 112 (2016) 3152–3163. http://dx.doi.org/10.1016%2Fj.jclepro.2015.10.037
  94. Son, H. Kim, J. Jung, S. Jo, and H. Choi, Influence of extreme concentrations of hydrophilic pore-former on reinforced polyethersulfone ultrafiltration membranes for reduction of humic acid fouling, Chemosphere, 179 (2017) 194–201. https://doi.org/10.1016/j.chemosphere.2017.03.101
  95. Lipnizki, Cross-flow membrane applications in the food industry, Membr. Technol. Membr. Food Appl., 3 (2010) 1–24.
  96. Vatsha, J. C. Ngila, and R. M. Moutloali, Preparation of antifouling polyvinylpyrrolidone (PVP 40K) modified polyethersulfone (PES) ultrafiltration (UF) membrane for water purification, Phys. Chem. Earth, Parts A/B/C, 67 (2014) 125–131. http://dx.doi.org/10.1016/j.pce.2013.09.021
  97. Barnier, Ultrafiltration treatment of laundry liquid wastes from a nuclear research center, in Low and intermediate level radioactive waste management, 1989.
  98. G. Chmielewski and M. Harasimowicz, Application of ultrafiltration and complexation to the treatment of low-level radioactive effluents, Sep. Sci. Technol., 30 (1995) 1779–1789. https://doi.org/10.1080/01496399508010376
  99. W. Cumming, G. H. Williams, R. G. Gutman, and C. G. Davison, Development of a Combined Precipitation and Ultrafiltration Processes and its Application to the Treatment of Low Active Wastes, Manag. Low Intermed. Lev. Radioaet ive Wastes 1988, p. 228, 1989.
  100. Miśkiewicz, A. Nowak, J. Pałka, and G. Zakrzewska-Kołtuniewicz, Liquid Low-Level Radioactive Waste Treatment Using an Electrodialysis Process, Membranes, 11 (2021) 324. https://doi.org/10.3390/membranes11050324
  101. V. S. Rao, B. Paul, K. B. Lal, S. V Narasimhan, and J. Ahmed, Effective removal of cesium and strontium from radioactive wastes using chemical treatment followed by ultra filtration, J. Radioanal. Nucl. Chem., 246 (2000) 413–418. https://doi.org/10.1023/A:1006771918337
  102. Bisset, H. Jacobs, N. Koshti, P. Stark, and A. Gopalan, Synthesis and metal ion complexation properties of a novel polyethyleneimine N-methylhydroxamic acid water soluble polymer, React. Funct. Polym., 55 (2003) 109–119. https://doi.org/10.1016/S1381-5148(02)00199-2
  103. Zakrzewska-Trznadel, Radioactive solutions treatment by hybrid complexation–UF/NF process, J. Memb. Sci., 225 (2003) 25–39. https://doi.org/10.1016/S0376-7388(03)00261-8
  104. S. Kedari, S. S. Pandit, and S. C. Tripathi, Extraction of Am (III) from aqueous nitrate solutions into micellar pseudo phase of anionic or non-ionic surfactant and separation by ultrafiltration, J. Memb. Sci., 341 (2009) 122–130. https://doi.org/10.1016/j.memsci.2009.06.027
  105. Singhal, R. Karpe, K. Muthe, and A. Reddy, Plutonium-239+ 240 selectivity for pseudo-colloids of iron in subsurface aquatic environment having elevated level of dissolved organic carbon, J. Radioanal. Nucl. Chem., 280 (2009) 141–148. https://doi.org/10.1007/s10967-008-7390-5
  106. A. Svittsov, S. B. Khubetsov, and K. Volchek, Membrane treatment of liquid wastes from radiological decontamination operations, Water Sci. Technol., 64 (2011) 854–860. https://doi.org/10.2166/wst.2011.629
  107. T. H. Dang, C.-W. Li, and K.-H. Choo, Comparison of low-pressure reverse osmosis filtration and polyelectrolyte-enhanced ultrafiltration for the removal of Co and Sr from nuclear plant wastewater, Sep. Purif. Technol., 157 (2016) 209–214. https://doi.org/10.1016/j.seppur.2015.11.019
  108. Zhang, L. Niu, F. Li, X. Zhao, and H. Hu, Enhanced rejection of cations by low-level cationic surfactant during ultrafiltration of low-level radioactive wastewater, Sep. Purif. Technol., 175 (2017) 314–320. https://doi.org/10.1016/j.seppur.2016.11.052
  109. W. Hooper and R. M. Sellers, Activity removal from liquid waste streams by seeded ultrafiltration, in Recent Developments in Ion Exchange, Springer, 1990, pp. 135–149. https://doi.org/10.1007/978-94-009-0777-5_14
  110. Antus, E. Elter, F. Feil, Z. Nagy, and I. Pálmai, Radioactive Waste Management At Paks Npp–Current Status and Future. 2021.
  111. of the E. Communities, Research and Development on Radioactive Waste Management and Storage: Second Annual Progress Report of the European Community Programme, 1980-1984, vol. 8272. Taylor & Francis, 1982.
  112. Santucci, Historical Waste Retrieval and Clean-up Operations at Nuclear facility no. 56, at the Cadarache Nuclear Research Centre,” American Nuclear Society, 555 North Kensington Avenue, La Grange Park …, 2008.
  113. M. Smith, P. Todd, and C. N. Bowman, Hyperbranched chelating polymers for the polymer-assisted ultrafiltration of boric acid, Sep. Sci. Technol., 34 (1999) 1925–1945. https://doi.org/10.1081/SS-100100747
  114. A. Vanderberg, T. M. Foreman, M. Attrep, J. R. Brainard, and N. N. Sauer, Treatment of heterogeneous mixed wastes: enzyme degradation of cellulosic materials contaminated with hazardous organics and toxic and radioactive metals, Environ. Sci. Technol., 33 (1999) 1256–1262. https://doi.org/10.1021/es9804262
  115. Ramachandhran, S. Samanta, and B. Misra, Radiocerium separation behavior of ultrafiltration membranes, J. Radioanal. Nucl. Chem., 237 (1998) 121–124. https://doi.org/10.1007/BF02386673
  116. P. Kryvoruchko, L. Y. Yurlova, I. D. Atamanenko, and B. Y. Kornilovich, Ultrafiltration removal of U (VI) from contaminated water, Desalination, 162 (2004) 229–236. https://doi.org/10.1016/S0011-9164(04)00046-3
  117. Singh and M. K. Purkait, 2019, Microfiltration membranes, in Membrane separation principles and applications, Elsevier, pp. 111–146. https://doi.org/10.1016/B978-0-12-812815-2.00004-1
  118. Bendixen, S. Losert, C. Adlhart, M. Lattuada, and A. Ulrich, Membrane–particle interactions in an asymmetric flow field flow fractionation channel studied with titanium dioxide nanoparticles, J. Chromatogr. A, 1334 (2014) 92–100. https://doi.org/10.1016/j.chroma.2014.01.066
  119. Yong et al., Treatment of the wastewater containing low-level 241Am using flocculation-microfiltration process, Sep. Purif. Technol., 40 (2004) 183–189. https://doi.org/10.1016/j.seppur.2004.02.009
  120. Zhao, T. Wang, D. Zhang, X. Liu, and Y. Fu, Treatment of low-level wastewater of Pu using coagulation and microfiltration technological process, J. Nucl. Radiochem., 29 (2007) 113–117.
  121. -P. Zhang, P. Gu, J. Zhao, D. Zhang, and Y. Deng, Research on the treatment of liquid waste containing cesium by an adsorption–microfiltration process with potassium zinc hexacyanoferrate, J. Hazard. Mater., 167 (2009) 1057–1062. https://doi.org/10.1016/j.jhazmat.2009.01.104
  122. -G. Cao, P. Gu, J. Zhao, D. Zhang, and Y. Deng, Removal of strontium from an aqueous solution using co-precipitation followed by microfiltration (CPMF), J. Radioanal. Nucl. Chem., 285 (2010) 539–546. https://doi.org/10.1007/s10967-010-0564-y
  123. A. Weerasekara, K.-H. Choo, and S.-J. Choi, Metal oxide enhanced microfiltration for the selective removal of Co and Sr ions from nuclear laundry wastewater, J. Memb. Sci., 447 (2013) 87–95.
  124. Xu, P. Gu, G. Zhang, and X. Wang, Investigation of coagulation as a pretreatment for microfiltration in cesium removal by copper ferrocyanide adsorption, J. Radioanal. Nucl. Chem., 313 (2017) 435–444. https://doi.org/10.1007/s10967-017-5337-4
  125. Wu, G. Zhang, Q. Wang, and P. Gu, Removal of strontium from liquid waste using a hydraulic pellet co-precipitation microfiltration (HPC-MF) process, Desalination, 349 (2014) 31–38. https://doi.org/10.1016/j.desal.2014.06.020
  126. Dulama, M. Pavelescu, N. Deneanu, and C. N. Dulama, Application of indigenous inorganic sorbents in combination with membrane technology for treatment of radioactive liquid waste from decontamination processes, Radiochim. Acta, 98 (2010) 413–420. https://doi.org/10.1524/ract.2010.1739
  127. Chen, Y. Zhang, J. Liu, H. Zhang, and K. Wang, Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions, Chem. Eng. J., 210 (2012) 298–308. https://doi.org/10.1016/j.cej.2012.08.100
  128. F. Alsalhy, F. H. Al-Ani, A. E. Al-Najar, and S. I. A. Jabuk, A study of the effect of embedding ZnO-NPs on PVC membrane performance use in actual hospital wastewater treatment by membrane bioreactor, Chem. Eng. Process. Intensif., 130 (2018) 262–274. https://doi.org/10.1016/j.cep.2018.06.019
  129. F. Alsalhy, J. M. Ali, A. A. Abbas, A. Rashed, B. Van der Bruggen, and S. Balta, Enhancement of poly (phenyl sulfone) membranes with ZnO nanoparticles, Desalin. Water Treat., 51 (2013) 6070–6081. https://doi.org/10.1080/19443994.2013.764487
  130. H. Al-Ani, Q. F. Alsalhy, R. S. Raheem, K. T. Rashid, and A. Figoli, Experimental investigation of the effect of implanting tio2-nps on pvc for long-term uf membrane performance to treat refinery wastewater, Membranes, 10 (2020) 77. https://doi.org/10.3390/membranes10040077
  131. Rezakazemi, K. Shahidi, and T. Mohammadi, Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes, Int. J. Hydrogen Energy, 37 (2012) 14576–14589. https://doi.org/10.1016/j.ijhydene.2012.06.104
  132. Yurekli, Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes, J. Hazard. Mater., 309 (2016) 53–64. https://doi.org/10.1016/j.jhazmat.2016.01.064
  133. J. Kadhim, F. H. Al-Ani, M. Al-Shaeli, Q. F. Alsalhy, and A. Figoli, Removal of dyes using graphene oxide (GO) mixed matrix membranes, Membranes, 10 (2020) 366. https://doi.org/10.3390/membranes10120366
  134. R. Abdullah, K. M. Shabeed, A. B. Alzubaydi, and Q. F. Alsalhy, Novel photocatalytic polyether sulphone ultrafiltration (UF) membrane reinforced with oxygen-deficient Tungsten Oxide (WO2. 89) for Congo red dye removal, Chem. Eng. Res. Des., 177 (2022) 526–540. https://doi.org/10.1016/j.cherd.2021.11.015
  135. M. Aljumaily et al., PVDF-co-HFP/superhydrophobic acetylene-based nanocarbon hybrid membrane for seawater desalination via DCMD, Chem. Eng. Res. Des., 138 (2018) 248–259. https://doi.org/10.1016/j.cherd.2018.08.032
  136. A. Mustafa, A. A. Mohammed, N. A. Hashim, Q. F. Alsalhy, D. Rasel, and F. S. Mjalli, Embedded high-hydrophobic CNMs prepared by CVD technique with PVDF-co-HFP membrane for application in water desalination by DCMD, Desalin. Water Treat., 142 (2019) 37–48. https://doi.org/10.5004/dwt.2019.23431
  137. J. Jamed, A. Alhathal Alanezi, and Q. F. Alsalhy, Effects of embedding functionalized multi-walled carbon nanotubes and alumina on the direct contact poly (vinylidene fluoride-co-hexafluoropropylene) membrane distillation performance, Chem. Eng. Commun., 206 (2019) 1035–1057. https://doi.org/10.1080/00986445.2018.1542302
  138. M. Aljumaily et al., Superhydrophobic nanocarbon‐based membrane with antibacterial characteristics, Biotechnol. Prog., 36 (2020) e2963. https://doi.org/10.1002/btpr.2963
  139. J. Sadiq et al., Comparative study of embedded functionalised MWCNTs and GO in Ultrafiltration (UF) PVC membrane: Interaction mechanisms and performance, Int. J. Environ. Anal. Chem., pp. 1–22, 2020.
  140. Jalal Sadiq, K. M. Shabeeb, B. I. Khalil, and Q. F. Alsalhy, Effect of embedding MWCNT-g-GO with PVC on the performance of PVC membranes for oily wastewater treatment, Chem. Eng. Commun., 207 (2020) 733–750. https://doi.org/10.1080/00986445.2019.1618845
  141. M. Ali et al., Fabrication of Gum Arabic-Graphene (GGA) Modified Polyphenylsulfone (PPSU) Mixed Matrix Membranes: A Systematic Evaluation Study for Ultrafiltration (UF) Applications, Membranes, 11 (2021) 542. https://doi.org/10.3390/membranes11070542
  142. D. Al-Araji, F. H. Al-Ani, and Q. F. Alsalhy, Polyethyleneimine (PEI) grafted silica nanoparticles for polyethersulfone membranes modification and their outlooks for wastewater treatment-a review, Int. J. Environ. Anal. Chem., (2021) 1–25. https://doi.org/10.1080/03067319.2021.1931163
  143. Wang and S. Zhuang, Removal of cesium ions from aqueous solutions using various separation technologies, Rev. Environ. Sci. Bio/Technology, 18 (2019) 231–269. https://doi.org/10.1007/s11157-019-09499-9
  144. K. Lee, D. S. Yang, W. Oh, and S.-J. Choi, Copper ferrocyanide functionalized core–shell magnetic silica composites for the selective removal of cesium ions from radioactive liquid waste, J. Nanosci. Nanotechnol., 16 (2016) 6223–6230. https://doi.org/10.1166/jnn.2016.10886
  145. -R. Chen et al., Prussian blue (PB) granules for cesium (Cs) removal from drinking water, Sep. Purif. Technol., 143 (2015) 146–151. https://doi.org/10.1016/j.seppur.2015.01.040
  146. Delchet et al., Extraction of radioactive cesium using innovative functionalized porous materials, Rsc Adv., 2 (2012) 5707–5716. http://dx.doi.org/10.1039/c2ra00012a
  147. E. Osmanlioglu, Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey, J. Hazard. Mater., 137 (2006) 332–335. https://doi.org/10.1016/j.jhazmat.2006.02.013
  148. Fatima, N. Djamel, A. Samira, and B. Mahfoud, Modelling and adsorption studies of removal uranium (VI) ions on synthesised zeolite NaY, Desalin. Water Treat., 51 (2013) 5583–5591. https://doi.org/10.1080/19443994.2013.769756
  149. E. Mahmoud, G. M. Nabil, and S. M. T. Elweshahy, Novel NTiO2-chitosan@ NZrO2-chitosan nanocomposite for effective adsorptive uptake of trivalent gadolinium and samarium ions from water, Powder Technol., 378 (2021) 246–254. http://dx.doi.org/10.1016/j.powtec.2020.09.058
  150. Nakai et al., Evaluation of adsorption properties for Cs and Sr selective adsorbents-13171, WM2013 Conference, Environ.Sci.Chem., 24-28, 2013, Phoenix, Arizona, USA
  151. Kaewmee, J. Manyam, P. Opaprakasit, G. T. T. Le, N. Chanlek, and P. Sreearunothai, Effective removal of cesium by pristine graphene oxide: Performance, characterizations and mechanisms, RSC Adv., 7 (2017) 38747–38756. https://doi.org/10.1039/C7RA04868H
  152. Zhang, Z. Hu, X. Cui, W. Yao, T. Duan, and W. Zhu, Capture of Cs+ and Sr2+ from aqueous solutions by using Cr doped TiO2 Nanotubes, J. Nanosci. Nanotechnol., 17 (2017) 3943–3950. http://dx.doi.org/10.1166/jnn.2017.13085
  153. Yavari, Y. Huang, and S. Ahmadi, Adsorption of cesium (I) from aqueous solution using oxidized multiwall carbon nanotubes, J. Radioanal. Nucl. Chem., 287 (2011) 393–401. https://doi.org/10.1007/s10967-010-0909-6
  154. Ding, Z. Zhang, R. Chen, and T. Cai, Selective removal of cesium by ammonium molybdophosphate–polyacrylonitrile bead and membrane, J. Hazard. Mater., 324 (2017) 753–761. https://doi.org/10.1016/j.jhazmat.2016.11.054
  155. K. Abbas, K. T. Rashid, and Q. F. Alsalhy, NaY zeolite-polyethersulfone-modified membranes for the removal of cesium-137 from liquid radioactive waste, Chem. Eng. Res. Des., 179 (2022) 535–548. https://doi.org/10.1016/j.cherd.2022.02.001