Document Type : Review Paper

Authors

1 Mechanical Engineering Dept., Ecole National ingenious Sfax-ENIS, Tunisia.

2 Electromechanical Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

Abstract

As far as thermal insulation is concerned, phase change materials (PCM) have a very good potential to be excellent insulation materials due to their thermal properties like low thermal conductivity and high latent heat. The researchers started to incorporate the walls and windows with PCM to reduce the internal surface temperature and indoor temperature of the room. This paper focuses on double and triple-glazed windows’ thermal performance, different filling insulation materials, ventilation windows, and thermochromic glazing. In addition, a detailed discussion on the effect of changing the thickness and the thermal characteristics of the PCM and its influence on the internal surface temperature, temperature time lag, and other parameters such as total energy transmitted and indoor temperature. Previous studies have shown that including PCM in triple-glazed windows decreases the temperature of the inner surface by 2.7°C and 5.5°C compared to double-glazed windows with PCM and triple-glazed windows. Utilizing ventilation during summer nights saves 46% on cooling energy. By using two different PCM melting temperatures, the maximum interior and surface temperatures are reduced by 6°C. The integrated PCM blind system prevented the room occupants from being exposed to direct sunlight. Finally, additional recommendations were made based on the identified research needs.

Graphical Abstract

Highlights

  • The research provides a comprehensive review of PCM composite as an insulator in double and triple windows.
  • The implementation of composite PCM is found to enable a significant decrease in inside surface temperature.
  • The study highlights the effectiveness of blinds as an efficient means of controlling the amount of daylight.

Keywords

Main Subjects

  1. Akeiber, P. Nejat, M.Z.A. Majid, M.A. Wahid, A review on phase change material (PCM) for sustainable passive cooling in building envelopes, Renew. Sust. Energ. Rev., 60 (2016) 1470-1497. https://doi.org/10.1016/j.rser.2016.03.036
  2. Kuznik, D. David, K. Johannes, J.J .Roux, A review on phase change materials integrated in building walls, Renew. Sust. Energ. Rev., 15 (2011) 379–391. https://doi.org/10.1016/j.rser.2010.08.019
  3. Abd Razak, A.C.K. Zhe, M.M.A.B. Abdullah, Z .Yahya, S. Junaidi, K. Muhamad, N.A.M. Mortar‏, Paraffin as a phase change material in concrete for enhancing thermal energy storage, IOP Conf. Ser. Mater. Sci. Eng., 743, 2020, 012012. https://doi.org/10.1088/1757-899X/743/1/012012
  4. Rodriguez-Ubinas, L. Ruiz-Valero, S. Vega, Applications of Phase Change Material in highly energy-efficient houses, Energy Build., 50 (2012) 49-62. https://doi.org/10.1016/j.enbuild.2012.03.018
  5. M. Hasnain, Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques, Energy Build., 39 (1998) 1127–1138. https://doi.org/10.1016/S0196-8904(98)00025-9
  6. Ahangari ,M. Maerefat, An innovative PCM system for thermal comfort improvement and energy demand reduction in building under different climate conditions, Sustain. Cities Soc., 44 (2019) 120–129. https://doi.org/10.1016/j.scs.2018.09.008
  7. A. Lakhdari, S. Chikh, A. Campo, Analysis of the thermal response of a dual phase change material embedded in a multi-layered building envelope, Appl. Therm. Eng., 179 (2020) 115502. https://doi.org/10.1016/j.applthermaleng.2020.115502
  8. Jia, X. Geng, F. Liu, Y. Gao, Thermal Behavior Improvement of Hollow Sintered Bricks integrated with Both Thermal Insulation Material (TIM) and Phase-Change Material (PCM). 2021, Case Stud. Therm. Eng., 25 (2021) 100938. https://doi.org/10.1016/j.csite.2021.100938
  9. Arkar , S. Medved, Free cooling of a building using PCM heat storage integrated into the ventilation system, Sol. Energy, 81 (2007) 1078-1087. https://doi.org/10.1016/j.solener.2007.01.010
  10. M. Khudhair ,M. M. Farid, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials, Energy Conv. Manag., 45 (2004) 263-275. https://doi.org/10.1016/S0196-8904(03)00131-6
  11. Stritih, V.Butala‏, Energy saving in building with PCM cold storage, Int. J. Energy Res., 31 (2007) 1532–1544. https://doi.org/10.1002/er.1318
  12. Beiranvand, M.R. Mohaghegh, Energy analysis and simulation of PCM enhanced building envelopes in commercial buildings. a case study, Energy Stor., 3 (2021) e246.  https://doi.org/10.1002/est2.246
  13. Kawaguchi, H. Sakai, N. Sheng, A Kurniawan, Microencapsulation of Zn-Al alloy as a new phase change material for middle-high-temperature thermal energy storage applications, Appl. Energy, 276 (2020) 115487. https://doi.org/10.1016/j.apenergy.2020.115487
  14. Dobri, A. Tsiantis, T.D. Papathanasiou, Investigation of transient heat transfer in multi-scale PCM composites using a semi-analytical model, Int. J. Heat Mass Transf., 175 (2021) 121389. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121389
  15. Li, G. Sun, K. Zou, X. Zhang, Experimental research on the dynamic thermal performance of a novel triple-pane building window filled with PCM, Sustain. Cities Soc., 27 (2016) 15-22. https://doi.org/10.1016/j.scs.2016.08.014
  16. Liu, Y. Zheng, D. Li, H. Qi, X. Liu, A Model to Determine Thermal Performance of a Non-ventilated Double Glazing Unit with PCM and Experimental Validation, Procedia Eng., 157 (2016) 293-300. https://doi.org/10.1016/j.proeng.2016.08.369
  17. Liu, Y.Wu, Y. Zhu, D. Li, L. Ma, Experimental investigation of optical and thermal performance of a PCM-glazed unit for building applications, Energy Build., 158 (2018) 794-800. https://doi.org/10.1016/j.enbuild.2017.10.069
  18. M. Hashim , H.A. Hoshi, Energy Saving in Power Consumption by Using Double Glazing Windows in Iraq, Eng.Technol. J., 36 (2018) 1002-1007. https://doi.org/10.30684/etj.36.9A.10
  19. Li, K. Zou, G. Sun, X. Zhang, Simulation research on the dynamic thermal performance of a novel triple-glazed window filled with PCM, Sustain. Cities Soc., 40 (2018) 266-273. https://doi.org/10.1016/j.scs.2018.01.020
  20. M. Jalil ,S. M. Salih., Analysis of Thermal and Insulation Performance of Double-Glazed Window Doped with Paraffin Wax, Eng.Technol. J., 38 (2020) 383-393. https://doi.org/10.30684/etj.v38i3A.448
  21. M. Jalil, S. M. Salih., Experimental and numerical investigation of paraffin wax as thermal insulator in a double-glazed window, J. Energy Storage , 35 (2021) 102173, https://doi.org/10.1016/j.est.2020.102173
  22. M. Bolteya, M.A. Elsayad, A.M. Belal, Thermal efficiency of PCM filled double glazing units in Egypt, Ain Shams Eng. J., 12 (2021) 1523–1534. https://doi.org/10.1016/j.asej.2020.12.004
  23. Ravasio, R.K .Calay, R .Riise, Simplified Thermal Performance Evaluation of a PCM-Filled Triple-Glazed Window under Arctic Climate Conditions, Energies, 14 (2021) 8068.https://doi.org/10.3390/en14238068
  24. Wei, G. Li, S.T. Ruan, H. Qi, Dynamic coupled heat transfer and energy conservation performance of multilayer glazing window filled with phase change material in summer day, J. Energy Storage, 49 (2022) 104183. https://doi.org/10.1016/j.est.2022.104183
  25. F.L. King, P.N. Rao, A .Sivakumar, V.K. Mamidi, Thermal performance of a double-glazed window integrated with a phase change material (PCM), Mater. Today: Proc., 50 (2022) 1516–1521. https://doi.org/10.1016/j.matpr.2021.09.099
  26. Rodriguez-Ake, J. Xamán, I. Hernández-López, Numerical study and thermal evaluation of a triple glass window under Mexican warm climate conditions, Energy, 239 (2022) 122075.https://doi.org/10.1016/j.energy.2021.122075
  27. Zhang, Z. Liu, P. Wang, B. Li, Performance evaluation of a novel rotatable dynamic window integrated with a phase change material and a vacuum layer, Energy Conv. Manag., 272 (2022) 116333. https://doi.org/10.1016/j.enconman.2022.116333
  28. Wang, C. Zhang, S. Zhang, Y. Zhou, M. Arıcı, Characteristics of PCMs-filled double glazing unit under fire: A detailed thermal structural analysis, J. Build. Eng., 65 (2023) 105672. https://doi.org/10.1016/j.jobe.2022.105672
  29. Li, Y. Wu, C. Liu, G. Zhang, M. Arıcı, Energy investigation of glazed windows containing Nano-PCM in different seasons, Energy Convers. Manag., 172 (2018) 119–128. https://doi.org/10.1016/j.enconman.2018.07.015
  30. Berardi , S. Soudian, Experimental investigation of latent heat thermal energy storage using PCMs with different melting temperatures for building retrofit, Energy Build., 185 (2019) 180-195. https://doi.org/10.1016/j.enbuild.2018.12.016
  31. Zhang, Z. Wang, D. Li, Y. Wu, M .Arıcı, Seasonal thermal performance analysis of glazed window filled with paraffin including various nanoparticles, Int. J. Energy Res., 44 (2020) 3008-3019. https://doi.org/10.1002/er.5129
  32. Liu, Y. Lyu, C. Li, J. Li, K. Zhuo, H. Su, Thermal performance testing of triple-glazing water flow window in cooing operation, Sol. Energy, 2018 (2021) 108–116. https://doi.org/10.1016/j.solener.2021.02.048
  33. Zhang, W. Hu, D. Li, C. Zhang, M. Arıcı, Ç. Yıldız, Energy efficiency optimization of PCM and aerogel-filled multiple glazing windows, Energy, 222 (2021) 119916. https://doi.org/10.1016/j.energy.2021.119916
  34. N .Kaushik, P. Saravanakumar, .S Dhanasekhar, Thermal analysis of a double-glazing window using a Nano-Disbanded Phase Changing Material (NDPCM), Mater. Today: Proc., 62 (2022) 1702–1707. https://doi.org/10.1016/j.matpr.2021.11.537
  35. Yang, D. Li, R. Yang, Y. Ma, X. Tong, Y. Wu, Comprehensive performance evaluation of double-glazed windows containing hybrid nanoparticle-enhanced phase change material, Appl. Therm. Eng., 223 (2023) 119976. https://doi.org/10.1016/j.applthermaleng.2023.119976
  36. De Gracia, L. Navarro, A. Castell, Á. Ruiz-Pardo, Experimental study of a ventilated facade with PCM during winter period, Energy Build., 58 (2013) 324-332. https://doi.org/10.1016/j.enbuild.2012.10.026
  37. Wang, Y. Chen, J. Zhou, Dynamic modeling of the ventilated double skin façade in hot summer and cold winter zone in China, Build. Environ., 106 (2016) 365-377. https://doi.org/10.1016/j.buildenv.2016.07.012
  38. Liu, P.K.Heiselberg, O.K. Larsen, L. Mortensen, J. Rose, Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort, Energy Procedia, 132 (2017) 478- 483. https://doi.org/10.1016/j.egypro.2017.09.660.
  39. Hu, R. Guo, P.K. Heiselberg, Performance and control strategy development of a PCM enhanced ventilated window system by a combined experimental and numerical study, Renew. Energ., 155 (2020) 134-152. https://doi.org/10.1016/j.renene.2020.03.137
  40. Hu, P.K. Heiselberg, R. Guo, Ventilation cooling/heating performance of a PCM enhanced ventilated window - an experimental study, Energy Build., 214 (2020) 109903. https://doi.org/10.1016/j.enbuild.2020.109903
  41. Prabhakar, M. Saffari, A. de Gracia, L.F. Cabeza, Improving the energy efficiency of passive PCM system using controlled natural ventilation, Energy Build., 228 (2020) 110483.https://doi.org/10.1016/j.enbuild.2020.110483
  42. Tao, H. Zhang, D. Huang, C. Fan, J. Tu, L. Shi, Ventilation performance of a naturally ventilated double skin façade with low-e glazing, Energy, 229 (2021) 120706. https://doi.org/10.1016/j.energy.2021.120706
  43. M. Alawadhi, Using phase change materials in window shutter to reduce the solar heat gain, Energy Build., 47 (2012) 421-429. https://doi.org/10.1016/j.enbuild.2011.12.009
  44. Silva, R. Vicente, F. Rodrigues, A. Samagaio, Performance of a window shutter with phase change material under summer Mediterranean climate conditions, Appl. Therm. Eng., 84 (2015) 246-256. https://doi.org/10.1016/j.applthermaleng.2015.03.059
  45. Silva, R. Vicente, F. Rodrigues, A. Samagaio, Development of a window shutter with phase change materials: Full scale outdoor experimental approach, Energy Build., 88 (2015) 110-121. https://doi.org/10.1016/j.enbuild.2014.11.053
  46. Li, J. Darkwa, G. Kokogiannakis, W. Su, Phase change material blind system for double skin façade integration: System development and thermal performance evaluation, Appl. Energy, 252 (2019) 113376. https://doi.org/10.1016/j.apenergy.2019.113376
  47. Li, J. Darkwa, W. Su, Investigation on Thermal Performance of an Integrated Phase Change Material Blind System for Double Skin Façade Buildings, Energy Procedia, 158 (2019) 5116-5123. https://doi.org/10.1016/j.egypro.2019.01.688
  48. Li, Y. Wu, G. Zhang, M. Arıcı, C. Liu, F. Wang, Influence of glazed roof containing phase change material on indoor thermal environment and energy consumption, Appl. Energy, 222 (2018) 343–350. https://doi.org/10.1016/j.apenergy.2018.04.015
  49. Li, B. Wang, Q. Li, C. Liu, M. Arıcı, Y. Wu, A numerical model to investigate non-gray photothermal characteristics of paraffin-containing glazed windows, Sol. Energy, 194 (2019) 225-238. https://doi.org/10.1016/j.solener.2019.10.073
  50. Jiang, B. Liu, X. Zhang, T. Zhang, D. Li, L. Ma, Energy performance of window with PCM frame, Sustain. Energy Technol. Assess., 145 (2021) 101109. https://doi.org/10.1016/j.seta.2021.101109
  51. M. Abbas, J.M .Jalil, S.T .Ahmed, Experimental and numerical investigation of PCM capsules as insulation materials inserted into a hollow brick wall, Energy Build., 246 (2021) 111127. https://doi.org/10.1016/j.enbuild.2021.111127
  52. Abbas, J.M. Jalil, S.T. Ahmed‏, Experimental Investigation of The Optimal Location of PCM Capsules in a Hollow Brick Wall, Eng.Technol. J., 39 (2021) 846-858. https://doi.org/10.30684/etj.v39i5A.1980
  53. A. Liu, J. Hou, Y. Chen, Z. Liu, T. Zhang, Q. Zeng, Effectiveness assessment of different kinds/configurations of phase-change materials (PCM) for improving the thermal performance of lightweight building walls in summer and winter, Renew. Energ., 202 (2023) 721-735. https://doi.org/10.1016/j.renene.2022.12.009
  54. Soudian, U. Berardi, N. Laschuk, Development and thermal-optical characterization of a cementitious plaster with phase change materials and thermochromic paint, Sol. Energy, 205 (2020) 282-291. https://doi.org/10.1016/j.solener.2020.05.015
  55. Jin, X. Long, R. Liang, Numerical analysis on the thermal performance of PCM-integrated thermochromic glazing systems, Energy Build., 257 (2022) 111734. https://doi.org/10.1016/j.enbuild.2021.111734
  56. Imghoure, N. Belouaggadia, M. Ezzine, R. Lbibb, Evaluation of phase change material and thermochromic layers in a “smart wall” in different climates for improving thermal comfort in a building, J.Build. Eng., 56 (2022) 104755. https://doi.org/10.1016/j.jobe.2022.104755
  57. Ma, D. Li, R. Yang, S. Zhang, M. Arıcı, C. Liu, Energy and daylighting performance of a building containing an innovative glazing window with solid-solid phase change material and silica aerogel integration, Energy Conv. Manag., 271 (2022) 116341. https://doi.org/10.1016/j.enconman.2022.116341
  58. Ji, X. Li, Numerical analysis on the energy performance of the PCMs-integrated thermochromic coating building envelopes, Build. Environ., 233 (2023) 110113. https://doi.org/10.1016/j.buildenv.2023.110113
  59. Oliver, Thermal characterization of gypsum boards with PCM included: Thermal energy storage in buildings through latent heat, J. Energy Build., 48 (2012) 1-7. https://doi.org/10.1016/j.enbuild.2012.01.026
  60. S. Oda, S.E. Najim, J.M. Jalil, Experimental Study of Thermal Performance of a Solar Collector Combined with Paraffin Wax as Phase Change Material PCM, Int. J. Eng. Res. Technol., 6 (2017) 108-113.
  61. S. Oda, S.E. Najim, J.M. Jalil, The Numerical Investigation of the Solar Collector Evacuated Tube Combined with Thermosyphon and Paraffin Wax as PCM, Int. J. Innov. Res. Sci. Eng. Technol., 6 (2017) 18472-18483. http://dx.doi.org/10.15680/IJIRSET.2017.0609153
  62. R. Abdulmunem , J. M. Jalil, Indoor investigation and numerical analysis of PV cells temperature regulation using coupled PCM/Fins, Int. J. Heat Technol., 36 (2018) 1212-1222. https://doi.org/10.18280/ijht.360408
  63. M. Salih, J.M. Jalil, S.E. Najim‏, Double-Pass Solar air Heater (DP-SAH) utilizing Latent Thermal Energy Storage (LTES), IOP Conf. Ser.: Mater. Sci. Eng., 518 (2019) 032038. https://doi.org/10.1088/1757-899X/518/3/032038
  64. E. Moon , H. T. Kim, Evaluation of thermal performance through development of a PCM-based thermal storage control system integrated unglazed transpired collector in experimental pig barn, Sol. Energy, 194 (2019) 856-870. https://doi.org/10.1016/j.solener.2019.11.009
  65. H. Suffer, J.M. Jalil, H.A. Hasan‏, Numerical Investigation of PCM Thermal Storage in Water Solar Collector, J. Adv. Res. Fluid Mech. Therm. Sci., 66 (2020) 164-78. https://www.akademiabaru.com/submit/index.php/arfmts/article/view/2816
  66. M .Jalil, H. S. Mahdi, A.S. Allawy, Cooling performance investigation of PCM integrated into heat sink with nano particles addition, J. Energy Storage., 55 (2022) 105466.https://doi.org/10.1016/j.est.2022.105466
  67. Zhou, J. Cai, T. Zhang, L. Xu, Q. Li, H. Ren, Z. Shi, Performance analysis on the concentrated photovoltaic /thermal air collector with phase change material and vacuum double-glazing for temperature regulation, Renew. Energ., 207 (2023) 27-39. https://doi.org/10.1016/j.renene.2023.03.012