Document Type : Review Paper

Authors

Electromechanical Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

Abstract

Despite water covering more than two-thirds of the planet, improving potable water production technologies is a significant issue because of the increased demand for treated water. Solar desalination presents a simple, costless energy and friendly technology which utilizes solar energy and gives great incentive to decrease pollution effects produced by burning fossil fuels. In order to address the global drinking water shortage, particularly in rural and distant locations, this technique can be employed to give pure water to people using a solar still, which in many respects, is one of the most significant feasible uses of solar energy and perfect source of fresh water. However, due to the low productivity of conventional solar still, numerous experiments have been done to increase the daily output of solar stills by employing numerous active strategies to produce far more evaporation and condensation than a simple standard-type distiller. This work highlights the recent methods used for enhancing water productivity and their roles in augmentation productivity, performance, and thermal effectiveness of various solar distiller designs based on previous studies. Future suggestions based on identified research needs were made. This review is considered a reference guide to focus on the most efficient techniques.

Graphical Abstract

Highlights

  • A summary of the many variables influencing the performance of different solar still designs is given
  • Solar radiation is the aspect that most affects how well solar stills work
  • A potential research agenda is presented for solar distillers

Keywords

Main Subjects

  1. N.,world Population Prospects: The 2019 Revision, 2019. https://doi.org/10.18356/15994a82-en 
  2. H. Al-Fatlawi, M. Karrabi, G. Abukhanafer , A. AL Samlan, Removal of nitrate from contaminated groundwater using Solar membrane distillation, Eng. Technol. J., 37C (2019). https://doi.org/10.30684/etj.37.3C.4  
  3. A.Eidan , A. AlSahlani , A. Q. Ahmed , M. Al-fahham , J. M. Jalil, Improving the performance of heat pipe-evacuated tube solar collector experimentally by using Al2O3 and CuO/acetone nanofluids, Sol. Energy, 173 (2018) 780-788. https://doi.org/10.1016/j.solener.2018.08.013
  4. H. Alawee, H. A. Dhahad , T.A. Mohamed, An experimental study on improving the performance of a double slope solar still. In The 7th International Conference on Sustainable Agriculture for Food, Energy Ind. Reg. Global Context, ICSAFEI, 2015.
  5. M.Shalaby, E. El-Bialy , A. A. El-Sebaii, An experimental investigation of a v-corrugated absorber single-basin solar still using PCM, Desalination, 398 (2016) 247-255. https://doi.org/10.1016/j.desal.2016.07.042                                  
  6. Sharon, K. S.Reddy, A review of solar energy driven desalination technologies, Renewable Sustainable Energy Rev., 41 (2015). 1080-1118. https://doi.org/10.1016/j.rser.2014.09.002 
  7. V. Kumar, R.Kasturi Bai, Performance study on solar still with enhanced condensation, Desalination,  230 (2008) 51-61. https://doi.org/10.1016/j.desal.2007.11.015
  8. P. Davim, Modern mechanical engineering, Berlin, Heidelberg, Springer Berlin Heidelberg, (2014). https://doi.org/10.5860/choice.51-6774 
  9. M.El-Maghlany, An approach to optimization of double slope solar still geometry for maximum collected solar energy, Alexandria Eng. J., 54 (2015). 823-828. https://doi.org/10.1016/j.aej.2015.06.010 
  10. S.Nafey, M.Abdelkader, A. Abdelmotalip, A. A. Mabrouk, Parameters affecting solar still productivity,  Energy Convers. Manage., 41 (2000) 1797-1809.  https://doi.org/10.1016/s0140-6701(01)80468-9 
  11. K.Singh, G. N.Tiwari , P. B. Sharma, Emran Khan, Optimization of orientation for higher yield of solar still for a given location, Energy Convers. Manage., 36 (1995) 175-181. https://doi.org/10.1016/0890-4332(94)90048-5 
  12. G. HarrisP. K. NagarajanT. ArunkumarE. KannanR. Sathyamurthy, Enhancing the solar still yield by increasing the surface area of water-A review, Environ. Prog. Sustainable Energy, 35 (2016) 815-822.  https://doi.org/10.1002/ep.12280
  13. Abdallah, O. O. Badran, Sun tracking system for productivity enhancement of solar still, Desalination, 220 (2008) 669-676. https://doi.org/10.1016/j.desal.2007.02.047 
  14. Shoeibi, H. Kargarsharifabad, N. Rahbar, G. Khosravi, An integrated solar desalination with evacuated tube heat pipe solar collector and new wind ventilator external condenser, Sustainable Energy Technol. Assess., 50 (2022) 101857. https://doi.org/10.1016/j.seta.2021.101857.
  15. N.Shoeibi, S. A. Mirjalily, H.Kargarsharifabad, M. Khiadani, H. Panchal, A comprehensive review on performance improvement of solar desalination with applications of heat pipes, Desalination, 540 (2022) 115983. https://doi.org/10.1016/j.desal.2022.115983
  16. Shoeibi, S. A. Mirjalily H. Kargarsharifabad,H. PanchalR. Dhivagar, Comparative study of double-slope solar still, hemispherical solar still, and tubular solar still using Al2O3/water film cooling: a numerical study and CO2 mitigation analysis, Environ. Sci. Pollut. Res., 29 (2022) 65353-65369. https://doi.org/10.1007/s11356-022-20437-1
  17. Shoeibi, M.Saemian, M.Khiadani, H. Kargarsharifabad, S.A. Agha, Influence of PV/T waste heat on water productivity and electricity generation of solar stills using heat pipes and thermoelectric generator: An experimental study and environmental analysis, Energy Convers. Manage., 276 (2023) 116504. https://doi.org/10.1016/j.enconman.2022.116504  
  18. ShoeibiN. RahbarA. A. Esfahlani& H. Kargarsharifabad, Energy matrices, economic and environmental analysis of thermoelectric solar desalination using cooling fan,  J. Therm. Anal. Calorim., 147 (2022) 9645-9660. https://doi.org/10.1007/s10973-022-11217-7
  19. S.B. Jahromi, V. Kalantar, H.S.Akhijahani, H. Kargarsharifabad, Recent progress on solar cabinet dryers for agricultural products equipped with energy storage using phase change materials, J. Energy Storage, 51 (2022) 104434. https://doi.org/10.1016/j.est.2022.104434.
  20. K.Patel, D.Singh, G.L. Devnani , S. Sinha and  D. Singh, Potable water production via desalination technique using solar still integrated with partial cooling coil condenser, Sustainable Energy Technol. Assess., 43 (2021) 100927. https://doi.org/10.1016/j.seta.2020.100927
  21. H.Abed, H.A.Hoshi and M. H. Jabal ,Experimental investigation of modified solar still coupled with high-frequency ultrasonic vaporizer and phase change material capsules, Case Stud. Therm. Eng., 28 (2021) 101531. https://doi.org/10.1016/j.csite.2021.101531
  22. Ghandourah, H.Panchal, O.Fallatah, H.M. Ahmed, E.B. Moustafa and A.H. Elsheikh, Performance enhancement and economic analysis of pyramid solar still with corrugated absorber plate and conventional solar still: A case study, Case Stud. Therm. Eng., 35 (2022) 101966. https://doi.org/10.1016/j.csite.2022.101966
  23. E.Kabeel, K.Harby, M. Abdelgaied and A. Eisa, Performance of the modified tubular solar still integrated with cylindrical parabolic concentrators, Sol. Energy, 204 (2020) 181-189. https://doi.org/10.1016/j.solener.2020.04.080
  24. M.Omara, W. H.Alawee, S.A. Mohammed, H. A. Dhahad, A. S. Abdullah and  F. A. Essa , Experimental study on the performance of pyramid solar still with novel convex and dish absorbers and wick materials, J. Cleaner Prod., 373 (2022) 133835. https://doi.org/10.1016/j.jclepro.2022.133835
  25. M. SivaramS. D. Kumar,M. PremalathaT. Sivasankarand  A. Arunagiri, Experimental and numerical study of stepped solar still integrated with a passive external condenser and its application, Environ. Dev. Sustainability, 23 (2021) 2143-2171. https://doi.org/10.1007/s10668-020-00667-4
  26. Taamneh, M. M. Taamneh, Performance of pyramid-shaped solar still: Experimental study, Desalination, 291 (2021) 65-68. https://doi.org/10.1016/j.desal.2012.01.026
  27. A. Forster Rajand S. J. Sekhar , Investigation of energy and exergy performance on a small-scale refrigeration system with PCMs inserted between coil and wall of the evaporator cabin, J. Therm. Anal. Calorim., 136 (2019) 355-365. https://doi.org/10.1007/s10973-018-7785-7 
  28. J. Akeiber,S. E. Hosseini, M. A. Wahid, H. M. Hussen and A.T. Mohammad, Phase change materials-assisted heat flux reduction: Experiment and numerical analysis, Energies, 9 (2016) 30. https://doi.org/10.3390/en9010030 
  29. Sarbu and C. Sebarchievici, A comprehensive review of thermal energy storage, Sustainability, 10 (2018) 191. https://doi.org/10.18690/978-961-286-052-3.14 
  30. Panchal and P. K. Shah, Investigation on solar stills having floating plates, Int. J. Energy Environ. Eng., 3 (2012) 1-5. https://doi.org/10.1186/2251-6832-3-8 
  31. K.Srivastavaand S. K. Agrawal,  Experimental and theoretical analysis of single sloped basin type solar still consisting of multiple low thermal inertia floating porous absorbers,  Desalination, 311 (2013) 198-205. http://dx.doi.org/10.1016/j.desal.2012.11.035  
  32. M. Younes , A.S. Abdullah , F.A. Essa , Z.M. Omara , M.I. Amro , Enhancing the wick solar still performance using half barrel and corrugated absorbers, Process Saf. Environ. Prot., 150 (2021) 440-452 https://doi.org/10.1016/j.psep.2021.04.036 
  33. Nehar, T. Rahman, S. S. Tuly, M. S. Rahman, M. R. I. Sarker and M. R. A. Beg, Thermal performance analysis of a solar still with different absorber plates and external copper condenser, Groundwater Sustainable Dev., 17 (2022) 100763.https://doi.org/10.1016/j.gsd.2022.100763 
  34. K. Matrawy, A. S. Alosaimy and A. F. Mahrous, Modeling and experimental study of a corrugated wick type solar still: comparative study with a simple basin type, Energy Convers. Manage., 105 (2015) 1261-1268. https://doi.org/10.1016/j.enconman.2015.09.006 
  35. E. Kabeel and M. Abdelgaied, Enhancement of pyramid-shaped solar stills performance using a high thermal conductivity absorber plate and cooling the glass cover, Renewable Energy, 146 (2020) 769-775.      https://doi.org/10.1016/j.renene.2019.07.020 
  36. K. Kaviti, V. R. Naike, A. S. Ram, S. Hussain and A. A. Kumari, Energy and exergy analysis of double slope solar still with aluminium truncated conic fins, Mater. Today Proc., 45 (2021) 5387-5394 https://doi.org/10.1016/j.matpr.2021.02.047 
  37. E.Kabeel, W.M. El-Maghlany , M. Abdelgaied and M.M. Abdel-Aziz, Performance enhancement of pyramid-shaped solar stills using hollow circular fins and phase change materials, J. Energy Storage, 31 (2020) 101610. https://doi.org/10.1016/j.est.2020.101610 
  38. M.Alaian, E.A.Elnegiry, A.M. Hamed, Experimental investigation on the performance of solar still augmented with pin-finned wick, Desalination, 379 (2016) 10-15. https://doi.org/10.1016/j.desal.2015.10.010 
  39. K.Sonker, J. P. Chakraborty, A. Sarkar , R. K. Singh, Solar distillation using three different phase change materials stored in a copper cylinder, Energy Rep., 5 (2019) 1532-1542. https://doi.org/10.1016/j.egyr.2019.10.023 
  40. E.Kabeel , R.Sathyamurthy, A. M.Manokar, S.W. Sharshir, F.A. Essa, A.H. Elshiekh, Experimental study on tubular solar still using Graphene Oxide Nano particles in Phase Change Material (NPCM's) for fresh water production,  J. Energy Storage, 28 (2020) 101204.  https://doi.org/10.1016/j.est.2020.101204                                                                    
  41. Hedayati-Mehdiabadi, F.Sarhaddi, F. Sobhnamayan, Exergy performance evaluation of a basin-type double-slope solar still equipped with phase-change material and PV/T collector, Renewable Energy, 145 (2020) 2409-2425. https://doi.org/10.1016/j.renene.2019.07.160 
  42. Abu-Arabi, M.Al-harahsheh , M. Ahmad and M. Hasan, Theoretical modeling of a glass-cooled solar still incorporating PCM and coupled to flat plate solar collector, J. Energy Storage, 29 (2020) 101372. https://doi.org/10.1016/j.est.2020.101372 
  43. A.Eidan, S. E.Najim and J. M. Jalil , An experimental and a numerical investigation of HVAC system using thermosyphon heat exchangers for sub-tropical climates,  Appl. Therm. Eng., 114 (2017) 693-703. http://dx.doi.org/10.1016/j.applthermaleng.2016.12.027
  44. A. Aboud, H.A. Hussein and A. H. Numan , Effect of Temperature and Humidity Factors on Water Production Using Solar Energy with Smart Controlling,  Eng.Technol. J., 40 (2022) 241-248. https://doi.org/10.30684/etj.v40i1.2282  
  45. Bhargva, M.Sharma, A.Yadav, N. K.l Batra and R.K. Behl, Productivity Augmentation of a Solar Still with Rectangular Fins and Bamboo Cotton Wick, J. Solar Energy Res., 8 (2023) 1410-1416. https://doi.org/10.22059/jser.2023.356414.1279
  46. Karthikeyan, and A.Natarajan., Factors influencing the performance and productivity of solar stills-A review,  Desalination, 435 (2018) 181-187. https://doi.org/10.1016/j.desal.2017.09.031 
  47. M.Jalil, H.S. Mahdi , A.S. Allawy, Cooling performance investigation of PCM integrated into heat sink with nano particles addition,  J. Energy Storage, 55 (2022) 105466. https://doi.org/10.1016/j.est.2022.105466
  48. M.Abbas, J.M. Jalil, S. T. Ahmed, Experimental and numerical investigation of PCM capsules as insulation materials inserted into a hollow brick wall, Energy Build.,  246 (2021) 111127. https://doi.org/10.1016/j.enbuild.2021.111127
  49. M.Salih, J.M.Jalil , S.E. Najim, Experimental and numerical analysis of double-pass solar air heater utilizing multiple capsules PCM, Renewable Energy, 143  (2019) 1053-1066. https://doi.org/10.1016/j.renene.2019.05.050
  50. M Abbas , J. M Jalil and S. T Ahmed, Experimental Investigation of Phase Change Material as an Insulator in Hollow Brick Wall, IOP Conf. Ser.: Mater. Sci. Eng. IOP, 1094 (2021) 012065. https://doi.org/10.1088/1757-899x/1094/1/012065 
  51. M. Abbas, J.M. Jalil, S. T. Ahmed, Numerical investigation of using PCM with and without nano addition as insulation material in a hollow brick wall, AIP Conf. Proc., 2386, 080018. https://doi.org/10.1063/5.0066822
  52. M. Jaliland S. M. Salih, The optimum thickness of paraffin wax insulator filling a double glazed window, IOP Conf. Ser.: Mat. Sci. Eng.,765 (2020) 012022. https://doi.org/10.1088/1757-899x/765/1/012022 
  53. Elashmawy, M.Alhadri, Mohamed M.Z. Ahmed, Enhancing tubular solar still performance using novel PCM-tubes, Desalination, 500 (2021) 114880.  https://doi.org/10.1016/j.desal.2020.114880 
  54. Srinivas, G. AVSSKS, Influence of Operating Parameters on Pyramid Solar Still with Phase Change Material (PCM),  Int. J. Renewable Energy Res., 11 ( 2021) 1338-1353. https://doi.org/10.20508/ijrer.v11i3.12237.g8268 
  55. H. Alawee, S.A. Mohammed, H. A. Dhahad , F.A. Essa, Z.M. Omara, A.S. Abdullah,Performance analysis of a double-slope solar still with elevated basin—comprehensive study,  Desalin. Water Treat., 223 (2021) 13-25. https://doi.org/10.5004/dwt.2021.27125 
  56. E.Kabeel, M.A. Teamah, M. Abdelgaied , G. B. Abdel Aziz, Modified pyramid solar still with v-corrugated absorber plate and PCM as a thermal storage medium,  J. Cleaner Prod., 161 (2017) 881-887.  https://doi.org/10.1016/j.jclepro.2017.05.195
  57. E.Kabeel, G.B. Abdelaziz and E.M. El-Said, Experimental investigation of a solar still with composite material heat storage: energy, exergy and economic analysis, J. Cleaner Prod., 231 (2019) 21-. https://doi.org/10.1016/j.jclepro.2019.05.200
  58. W.Sharshir, M.A.Omara, G.Elsisi , A. Joseph, A.W. Kandeal , A. Ali , G. Bedair, Thermo-economic performance improvement of hemispherical solar still using wick material with V-corrugated basin and two different energy storage materials,  Sol. Energy, 249 (2023) 336-352. https://doi.org/10.1016/j.solener.2022.11.038  
  59. Dhivagar, S. Shoeibi, S.M.Parsa , S.Hoseinzadeh , H. Kargarsharifabad and M. Khiadani, Performance evaluation of solar still using energy storage biomaterial with porous surface: An experimental study and environmental analysis,  Renewable Energy, 206 (2023) 879-889. https://doi.org/10.1016/j.renene.2023.02.097 
  60. Jahanpanah, S.J.Sadatinejad, A.Kasaeian, M.H. Jahangir, H.Sarrafha,Experimental investigation of the effects of low-temperature phase change material on single-slope solar still,  Desalination, 499 (2021) 114799.  https://doi.org/10.1016/j.desal.2020.114799.
  61. Gholizadeha, A.Farzi, Performance improvement of the single slope solar still using sand. J. Sol. Energy Res., 5 (2020) 560-567.
  62. H. Rasheed, Solar Desalination by Using Phase Change Material (PCM), J. Mech. Eng. Res. Dev. 44 (2021) 240-248.
  63. J. Jaber, Q. A. Rishak and Q.A. Abed, Using PCM, an Experimental Study on Solar Stills Coupled with and without a Parabolic Trough Solar Collector, Basrah J. Eng. Sci., 21(2021) 45-52. http://dx.doi.org/10.33971/bjes.21.2.7
  64. S.A. Toosi, H.R.Goshayeshi and S. Zeinali, Experimental investigation of stepped solar still with phase change material and external condenser,  J. Energy Storage, 40  (2021) 102681. https://doi.org/10.1016/j.est.2021.102681
  65. M.A.Saeed, D.M. Hachim and H. G. Hameed, Numerical investigation for single slope solar still performance with optimal amount of nano-PCM,  J. Adv. Res. Fluid Mech. Therm. Sci., 63 (2019) 302-316. http://dx.doi.org/10.13140/RG.2.2.22254.97609
  66. Namshad, K. R. Ayush, K. C. Salih, A. James, S. Ahammed, H.Vayalilakath & P. U. Suneesh, Performance Analysis of Flat and Rippled Wick-Inverted V-Type Solar Still Integrated with Drip System in Kerala Climatic Conditions, Int. Scholarly Res. Notices, 2013. https://doi.org/10.1155/2013/126234
  67. Sebastian, S.Thomas, Influence of providing a three-layer spectrally selective floating absorber on passive single slope solar still productivity under tropical conditions,  Energy, 214 (2019) 118848. https://doi.org/10.1016/j.energy.2020.118848.
  68. S.Yousef, H. Hassan , S. Kodama, H. Sekiguchi , An experimental study on the performance of single slope solar still integrated with a PCM-based pin-finned heat sink, Energy Procedia, 156 (2019) 100-104. https://doi.org/10.1016/j.egypro.2018.11.102
  69. H. Alawee, H. A. Dhahad, T.A . Mohamed, An experimental study on improving the performance of a double slope solar still, The 7th Int. Conf. Sustainable Agric. Food, Energy Ind. Reg. Global Context, ICSAFEI., 2015.
  70. Bhattacharyya, Solar stills for desalination of water in rural households,  Int. J. Environ. Sustainability, 2 (2013). https://doi.org/10.24102/ijes.v2i1.326                                                  
  71. T.Mahdi, B.E.Smith , A.O. Sharif, An experimental wick-type solar still system: Design and construction, Desalination, 267 (2011) 233-238. https://doi.org/10.1016/j.desal.2010.09.032 
  72. SamuelHansen, C. S.Narayanan, K. K. Murugavel, Performance analysis on inclined solar still with different new wick materials and wire mesh,  Desalination, 358 (2015) 1-8. https://doi.org/10.1016/j.desal.2014.12.006 
  73. Sakthivel, S.Shanmugasundaram , T. Alwarsamy ,An experimental study on a regenerative solar still with energy storage medium—Jute cloth, Desalination, 264 (2010) 24-31. https://doi.org/10.1016/j.desal.2010.06.074 
  74. Prakash , R.Jayaprakash and S. Kumar, Experimental analysis of pyramid wick-type solar still, Int. J. Sci. Eng. Res., 7 (2016) 1797-1804.
  75. Pal, P.Yadav, R. Dev, D. Singh, Performance analysis of modified basin type double slope multi–wick solar still, Desalination, 422 (2017) 68-82. https://doi.org/10.1016/j.desal.2017.08.009 
  76. I.Dawood, J.M.Jalil, M. K. Ahmed, Investigation of a novel window solar air collector with 7-moveable absorber plates, Energy, 257 (2022) 124829. https://doi.org/10.1016/j.energy.2022.124829
  77. M. Salih , A.H. Jassim and J. M. Jalil, Numerical modelling and investigation of a wavy absorbent solar collector, AIP Conf. Proc., 2415, 020006, 2022. https://doi.org/10.1063/5.0093114
  78. M. Jalil, M. K. Ahmedand Hussein A. Idan ,Experimental and Numerical Study of a New Corrugated and Packing Solar Collector, IOP Conf. Ser.: Mat. Sci. Eng., 765 , 012026, 2020. https://doi.org/10.1088/1757-899X/765/1/012026
  79. S.Abdullah, Z.M. Omara , F.A. Essa, M.M. Younes, S. Shanmugan, Mohamed Abdelgaied, M.I. Amro, A.E. Kabeel, W.M. Farouk, Improving the performance of trays solar still using wick corrugated absorber, nano-enhanced phase change material and photovoltaics-powered heaters, J. Energy Storage, 40 (2021) 102782. https://doi.org/10.1016/j.est.2021.102782 
  80. U. Suneesh, J. Paul, R. Jayaprakash, S. Kumar & D. Denkenberger, Augmentation of distillate yield in “V”-type inclined wick solar still with cotton gauze cooling under regenerative effect, Cogent Eng., 3 (2016) 1202476. https://doi.org/10.1080/23311916.2016.1202476
  81. E.Kabeel, Performance of solar still with a concave wick evaporation surface, Energy, 34 (2009) 1504-1509.https://doi.org/10.1016/j.energy.2009.06.050
  82. V.Modi, J.G. Modi, Performance of single-slope double-basin solar stills with small pile of wick materials, Appl. Therm. Eng., 149 (2019) 723-730. https://doi.org/10.1016/j.applthermaleng.2018.12.071 
  83. Saravanan, M. Murugan, Performance evaluation of square pyramid solar still with various vertical wick materials–an experimental approach, Therm. Sci. Eng. Prog., 19 (2020) 100581. https://doi.org/10.1016/j.tsep.2020.100581 
  84. W.Sharshir , M.A. Eltawil, A.M. Algazzar, R.Sathyamurthy , A.W. Kandeal, Performance enhancement of stepped double slope solar still by using nanoparticles and linen wicks: energy, exergy and economic analysis,  Appl. Therm. Eng., 174 (2020) 115278.  https://doi.org/10.1016/j.applthermaleng.2020.115278 
  85. W. Sharshir, G. Peng, A. H. Elsheikh, M. A. Eltawil, M. R. Elkadeem,H. Dai and N.Yang, Influence of basin metals and novel wick-metal chips pad on the thermal performance of solar desalination process,  J. Cleaner Prod., 248 (2020) 119224. https://doi.org/10.1016/j.jclepro.2019.119224 
  86. W.Sharshir, G. Peng , A.H. Elsheikh , M.A. Eltawil, M.R. Elkadeem, H. Dai , J. Zang and N. Yang, Performance evaluation of single slope solar still augmented with sand-filled cotton bags, J. Energy Storage, 25 (2019) 100888.  https://doi.org/10.1016/j.est.2019.100888 
  87. K. Singh, C. Ramji, P. Ganeshan,V. Mohanavel, T. Balasundaram,V. Vignesh Kumar, B. Balasubramanian, P. Ramshankar, A. Ramesh,and S. Thanappan, Performance Analysis of Solar Still by Using Octagonal-Pyramid Shape in the Solar Desalination Techniques, Int. J. Photoenergy , 2023. https://doi.org/10.1155/2023/4705193
  88. Agrawal, R.S.Rana, Theoretical and experimental performance evaluation of single-slope single-basin solar still with multiple V-shaped floating wicks,  Heliyon, 5 (2019) e01525. https://doi.org/10.1016/j.heliyon.2019.e01525 
  89. A.Essa, A.S. Abdullah ,Improving the performance of tubular solar still using rotating drum–Experimental and theoretical investigation,  Process Saf. Environ. Prot.,148 (2021) 579-589.  https://doi.org/10.1016/j.psep.2020.11.039 
  90. M. Ahmed & G. A. Ibrahim, Performance evaluation of a conventional solar still with different types and layouts of wick materials, Perform. Eval., 6 (2016). https://doi.org/10.1109/sege.2016.7589505 
  91. Rajan, K. Mathappan, G.somamasundaram and S. Kumar, Design of Low Density Polyethylene Hemispherical with Wick Solar Still for Arid Regions. J. Arid Land Stud., 26 (2016), 107-110. https://doi.org/10.14976/jals.26.3_107
  92. Seralathan, G. C. Reddy, S. Sathish, A. Muthuram, J. A. Dhanraj, N. Lakshmaiya and C. Sirisamphanwong, Performance and exergy analysis of an inclined solar still with baffle arrangements, Heliyon, 9 (2023). https://doi.org/10.1016/j.heliyon.2023.e14807
  93. W.Sharshir, Y.M.Ellakany and M.A. Eltawil, Exergoeconomic and environmental analysis of seawater desalination system augmented with nanoparticles and cotton hung pad, J. Cleaner Prod., 248 (2020) 119180. https://doi.org/10.1016/j.jclepro.2019.119180 
  94. W.Sharshir, M.R.Elkadeem and A. Meng, Performance enhancement of pyramid solar distiller using nanofluid integrated with v-corrugated absorber and wick: an experimental study,  Appl. Therm. Eng., 168 (2020) 114848. https://doi.org/10.1016/j.applthermaleng.2019.114848 
  95. S. Abdullah, Z. M. Omara, H. B. Bacha and M. M.Younes, Employing convex shape absorber for enhancing the performance of solar still desalination system,  J. Energy Storage, 47 (2022) 103573. https://doi.org/10.1016/j.est.2021.103573 
  96. S. Hansen, C. S.Narayanan and K. K.Murugavel, Performance analysis on inclined solar still with different new wick materials and wire mesh, Desalination, 358 (2015) 1-8. https://doi.org/10.1016/j.desal.2014.12.006 
  97. A. Hammoodi, H. A. Dhahad, W. H. Alawee, Z. M. Omara , F. A. Essa, A. S. Abdullah, M. I. Amro, Effects of Magnetic Field on the Performance of Solar Distillers: A Review Study, Eng. Technol. J., 40 (2023) 121-131. https://doi.org/10.30684/etj.2022.134576.1240 
  98. H. S. AL-Zaedy, Experimental Study on Enhancement of Single-Basin Solar Still Using Dye Solutions, Eng. Technol. J., 30 (2012). https://doi.org/10.30684/etj.30.18.1
  99. Z. Farge, K. F.Sultan and A.M. Ahmed, Experimental study of the performance water distillation device by using solar energy, Eng. Technol. J., 35 (2017) 653-659. https://doi.org/10.30684/etj.35.6a.14 
  100. W. Sharshir, M. Salman, S. M. El-Behery, M. A. Halim and G. B. Abdelaziz, Enhancement of solar still performance via wet wick, different aspect ratios, cover cooling, and reflectors,  Int. J. Energy Environ. Eng., 12 (2021) 517-530. https://doi.org/10.1007/s40095-021-00386-0
  101. B.Abdelaziz, A. M.Algazzar , E. M. S. El-Said, A.M.Elsaid, S. W. Sharshir , A. E. Kabeel and S. M. El-Behery, Performance enhancement of tubular solar still using nano-enhanced energy storage material integrated with v-corrugated aluminum basin, wick, and nanofluid,  J. Energy Storage, 41 (2021) 102933. https://doi.org/10.1016/j.est.2021.102933 
  102. A.Essa, Z.M. Omara , A. S. Abdullah, A. E. Kabeel, G. B. Abdelaziz, Enhancing the solar still performance via rotating wick belt and quantum dots nanofluid, Case Stud. Therm. Eng., 27 (2021) 101222. https://doi.org/10.1016/j.csite.2021.101222 
  103. M. S.El-Said, M. A.Dahab, M. Abdelgaleel , G. Bedair, Productivity augmentation of a solar distiller utilizing a wire mesh absorber with a pulsed flow regime,  Desalination, 548 (2023) 116276. https://doi.org/10.1016/j.desal.2022.116276
  104. Shoeibi , M. Saemian , H. Kargarsharifabad, S. Hosseinzade , N.Rahbar , M.Khiadani , M.M. Rashidi, A review on evaporation improvement of solar still desalination using porous material,  Int. Commun. Heat Mass Transfer, 138 (2022) 106387. https://doi.org/10.1016/j.icheatmasstransfer.2022.106387
  105. DhivagarS. ShoeibiH. KargarsharifabadM. H. AhmadiM. Sharifpur, Performance enhancement of a solar still using magnetic powder as an energy storage medium‐exergy and environmental analysis, Energy Sci. Eng., 10 (2022) 3154-3166. https://doi.org/10.1002/ese3.1210