Document Type : Review Paper


1 Mechanical Engineering Dept., Ecole National Ingenious, Route Soukra Km 3.5 B.P 1173-3038 Sfax, Tunis.

2 Electromechanical Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.


The cooling of solar photovoltaic (PV) cells is reviewed in this study. The critical analysis aims to increase PV cell life span and electrical efficiency. To improve the caliber of future studies, this paper examines the implications of earlier studies as well as technical specifics for optimization. Additionally, some of the benefits and drawbacks of various cooling methods are explored. The PV cells cool rate and the PV system's jet impingement cooling technology in PV systems are more effective than any conventional PV cooling systems. Phase change material (PCM) is one of the effective methods used to cool PV cells, as it supporting PV cell cooling in both hot and cold environmental circumstances is beneficial. PCM is appropriate for the cooling application of PV cells due to the requirement of local temperature variation. Many researches and experiences on a different ways of cooling PV collector had been studied to analyze the behavior of PVT systems. Jet and Nanoparticles with PCM are the main ways of cooling and will be discussed in this paper. Lastly, future recommendations based on identified research gaps were suggested. In future work, it is recommended to use jet impingement cooling with PCM together for the PVT system. The proposed system integrates two types of the cooling system with a PV system, the advantage of using jet impingement cooling can result in low average cell temperature for PV cells, and PCM as storage energy with Nanoparticles to enhance the thermal conductive of PCM.

Graphical Abstract


  • Jet impingement cooling and PCM are effective methods to enhance solar (PV) cell performance.
  • PCM as storage energy with Nanoparticles to enhance the thermal con ductive of PCM.
  • The integration of jet impingement cooling with PCM and Nanoparticles shows improving PV system efficiency


Main Subjects

  1. Royne, C J. Dey and D. R. Mills, Cooling of photovoltaic cells under concentrated illumination: a critical review, Sol. Energy Mater. Sol. Cells, 86 (2005) 451-483.
  2. A. Brideau, and M. R. Collins, Development and validation of a hybrid PV/Thermal air based collector model with impinging jets, Sol. Energy, 104 (2014) 234-246.
  3. T. Chow, A review on photovoltaic/thermal hybrid solar technology, Appl. Energy, (2010) 365-379.
  4. M. Choo, and W. Wei, Salt hydrates as phase change materials for photovoltaics thermal management, Energy Sci. Eng., 10 (2022) 1630-1642.
  5. Jurčević, S. Nižetić, D. Čoko, M. Arıcı, A. T. Hoang, E. Giama, and A. Papadopoulos, Techno-economic and environmental evaluation of photo voltaic-thermal collector design with porkfatas phase change material,  Energy, 254 (2022) 124284.
  6. E. Kabeel, M. Abdelgaied, R. Sathyamurthy, and A. Kabeel, A comprehensive review of technologies used to improve the performance of PV systems in a view of cooling mediums, reflectors design, spectrum splitting, and economic analysis, Environ. Sci. Pollut. Res., 86 (2021) 7955-7980.
  7. L. Tariq, H. M. Ali, M. A. Akram, M. M. Janjua, and M. Ahmadlouydarab, Nanoparticles enhanced phase change materials (NePCMs)-A recent review, Appl. Therm. Eng., 176 (2020) 115305.
  8. Ma, Z Li, and J. Zhao, Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection, Renewable Sustainable Energy Rev., 116 (2019) 109406.
  9. K. Khudhair, F. Hatem; D. M. Ridha, Enhancement of Thermal Storage Properties of Phase Change Material by Using Metallic Swarf, Eng. Technol. J., 36, A (2018) 586-595.
  10. Belusko, W. Saman, W., & Bruno, F, Performance of jet impingement in unglazed air collectors, Sol. Energy, 82 (2008) 389-398.
  11. Barrau, J. Rosell, D. Chemisana, L. Tadrist, and M. Ibáñez, Effect of a hybrid jet impingement/micro-channel cooling device on the performance of densely packed PV cells under high concentration, Sol. Energy 85 (2011) 2655-2665.
  12. Chauhan and N. S. Thakur, Heat transfer and friction factor correlations for impinging jet solar air heater, Exp. Therm Fluid Sci., 44 (2013) 760-767.
  13. A. Brideau, and Collins, M.R. Experimental model validation of a hybrid PV/thermal air based collector with impinging jets. Energy Procedia., 30 (2012) 44-54.
  14. M. Aboghrara, B. T. H. T. Baharudin, M. A. Alghoul, Nor Mariah Adam, A. A. Hairuddin, and Husam A. Hasan, Performance analysis of solar air heater with jet impingement on corrugated absorber plate, Case Stud. Therm. Eng., 10 (2017) 111- 120.
  15. Soni and S.N. Singh, Experimental analysis of geometrical parameters on the performance of an inline jet plate solar air heater, Sol. Energy, 148 (2017) 149-156.
  16. M. Matheswaran, T. V. Arjunan, and D. Somasundaram, Analytical investigation of solar air heater with jet impingement using energy and exergy analysis, Sol. Energy 141 (2018) 25-37.
  17. Hai, Mansir, I.B., Alshuraiaan, B., Abed, A.M., Ali, H.E., Dahari, M. and Albalawi, H. Numerical investigation on the performance of a solar air heater (SAH) using inclined impinging jets on absorber plate with parallel and crossing orientation of nozzles, Case Stud. Therm. Eng., 45 (2023) 102913.
  18. Yadav and R. P. Saini, Numerical investigation on the performance of a solar air heater using jet impingement with absorber plate a solar air heater using jet impingement with absorber plate , Sol. Energy, 208 (2020) 236-248.
  19. Kumar, S. Kumar, R. Nadda,  K.   Kumar,   and V. Goel,Thermo-hydraulic efficiency and correlation development of an indoor designed jet impingement solar thermal collector roughened with discrete multi-arc ribs, Renewable   Energy, 189 (2022) 1259-1277.
  20. J. Jalil, M. K. Ahmed, and H. A. Idan, Experimental and Numerical Study of a New Corrugated and Packing Solar Collector, In IOP Conf. Ser.: Mat. Sci. Eng., 765 (2020) 012026. IOP Publishing.
  21. M. Matheswaran, Arjunan, T.V., Muthusamy, S., Natrayan, L., Panchal, H., Subramaniam, S., Khedkar, N.K., El-Shafay, A.S. and Sonawane, C. A case study on thermo-hydraulic performance of jet plate solar air heater (JPSAH) using response surface methodology, Case Stud. Therm. Eng., 34 (2022) 101983.
  22. E. Kabeel, M. Abdelgaied, and M. Mahgoub, The performance of a modified solar still using hot air injection and PCM, Desalination, 379 (2016) 102-107.
  23. Rajvikram, Leoponraj, S., Ramkumar, S., Akshaya, H. and Dheeraj, A., Experimental investigation on the abasement of operating temperature in solar photovoltaic panel using PCM and aluminium, Sol. Energy, 188 (2019) 327-338.
  24. Zhao, Tao M., Z. Li, and A. Song, Year- round performance analysis of a photovoltaic panel coupled with phase change material, Appl. Energy, 245 (2019) 51-64.
  25. Simón-Allué, I. Guedea,   R.  Villén,   and   G.   Brun, Experimental study of Phase Change Material influence on different   models   of   Photovoltaic-Thermal   collectors,  Sol.   Energy, 190 (2019) 1-9.
  26. M. Salih., Jalil, J. M. and S. Najim, Artificial Solar Simulator of an (Air-PCM) Double-Pass Solar Collector,4 th Sci. Int. Conf. -Najaf, 1570530075, 2019.
  27. A. Akram, Thermal Storage Efficiency Enhancement for Solar Air Heater Using a Combined SHSm and PCM Cylindrical Capsules System: Experimental Investigation, Eng. Technol. J., 34, A (2016) 999-1011.
  28. R. Abdulmunem and J. M. Jalil, Indoor investigation and numerical analysis of PV cells temperature regulation using coupled PCM/Fins, Int. J. Heat Technol., 36 (2018) 1212-1222.
  29. Bayrak, H. F. Oztop, and F.Selimefendigil, Experimental study for the application of different cooling techniques in photovoltaic (PV) panels, Energy Convers. Manag., 212 (2020) 112789.
  30. B. Zohra, Riad, A. and Alhamany, A. Optimizing the conception of hybrid PV/PCM by optimizing the heat transfer at the contact interface and by integrating two types of PCM, Results in Engineering, 16 (2022) 100614.
  31. S. Abdelrazik, R. Saidur, and F. A. Al-Sulaiman, Thermal regulation and performance  assessment   of   a   hybrid photovoltaic/thermal system using  different  combinations  of  Nano- enhanced  phase  change  materials,  Sol. Energy Mat. Sol. Cells, 210 (2020) 110645.
  32. M. Elsheniti, M.  A.  Hemedah,  M.  M.  Sorour, and W.M. El-Maghlany, Novel enhanced conduction model for predicting performance of a PV panel cooled by PCM, Energy Convers. Manag., 205 (2020) 112456.
  33. Groulx, P. H. Biwole, and M. Bhouri, Phase change heat transfer in a rectangular enclosure as a function of inclination and fin placement, Int. J. Therm. Sci. 151 (2020) 106260.
  34. P. Singh, A. Kumar, and O. P. Singh, systems, Effect of natural convection and thermal  storage  system  on the electrical and  thermal  performance  of  a  hybrid  PV-T/PCM, Mat. Today: Proc., 39 (2020) 1899-1904.
  35. S. Kumar, S. Revanth, D. S., P. S. Kumar, and  P. Surya, Experimental investigation of improving the energy conversion efficiency of PV cell by integrating with PCM, Mat. Today: Proc., 37 (2021) 712-716.
  36. Kazemian, A. Taheri, A.  Sardarabadi,  T.  Ma, M.  Passandideh-Fard,  and  J.  Peng, Energy, exergy and environmental analysis of glazed and unglazed PVT system integrated with phase change material: An experimental approach, Sol. Energy, 201 (2020) 178-189.
  37. A. Ahmed, M. Kh. Kadhim, Numerical Investigation of Energy Storage in Packed Bed of Cylindrical Capsules of PCM, Eng. Technol. J., 32 (2014) 494-510.
  38. Gholami and Gorji, M. Experimental study for the use of Na2SO4. 10H2O as a PCM with fixed blades for temperature and efficiency parameters of photovoltaic panel, Case Stud. Therm., (2023) 1032.
  39. H. Amalu and O. A. Fabunmi, Thermal control of crystalline silicon photovoltaic (c-Si PV) module using Docosane phase change material (PCM) for improved performance, Sol. Energy, 232 (2022) 203-221.
  40. R. Safaei, H.R. Goshayeshi, and I. Chaer, Solar still efficiency enhancement by using graphene oxide/paraffin nano-pcm, Energies, 12 (2002).
  41. Saadoon, I. A. Hasan, M. J. Mohammed, Preparing Nanofluids (Al2O3) for Enhancement Performance of Photovoltaic, Eng. Technol. J., 39 (2021) 1445-1453.
  42. T. Murtadha; H. M. Salih; A. D.Salman, Experimental and Numerical Study of Closed Loop Solar Chimney Assisted with PCM and CFM as Thermal Energy Storage Collector, Eng. Technol. J., 34 (2016) 2450-2463.
  43. Xu, C. Zhang, N. Wang, Z. Qu, and S. Zhang, Experimental study on the performance of a solar photovoltaic/thermal system combined with   phase   change   material,  Sol. Energy, 198 (2020) 202-211.
  44. B. Kazanci, M. Skrupskelis, P. Sevela, G.K.  Pavlov, and  B.W  Olesen, Sustainable heating, cooling and ventilation of a plus-energy house via photovoltaic/thermal panels, Energy Build, (2014) 122–129.
  45. H. Al-Waeli, K. Sopian, H.A. Kazem, and M.T. Chaichan, Photovoltaic solar thermal (PV/T) collectors past, present and future, Appl. Eng. Res., (2017) 10757–10765.
  46. Sardarabadi, M. Passandideh-Fard, M.-J. Maghrebi, and M Ghazikhani, Experimental study of using both zno/water nanofluid and phase change material (pcm) in photovoltaic thermal systems, Energy Mater. Sol. Cell, (2016) 62–69.
  47. H. Al-Waeli, H.A. Kazem, M.T. Chaichan, and K Sopian, Experimental investigation of using nano-pcm/nanofluid on a photovoltaic thermal system (PVT): Technical and economic study, Therm. Sci. Eng. Prog., (2019) 213–230.
  48. A.Teamah, Mohamed M. K. Dawood, and A. Shehata, Numerical and experimental investigation of flow structure and behavior of nanofluids flow impingement on horizontalflat plate, Exp. Therm. Fluid Sci., 74 (2015) 235-246.
  49. Hasan, H. Alnoman, and A Shah, Energy efficiency enhancement of photovoltaics by phase change materials through thermal energy recovery, Energies, 782 (2017).
  50. M. Sarafraz, M. R. Safaei, A. S. Leon, I. Tlili, T. A. Alkanhal, Z. Tian, M. Goodarzi, and M. Arjomandi, Experimental investigation   on    thermal performance of a PV/T-PCM (photovoltaic/thermal) system cooling with a PCM and nanofluid, Energies, 12 ( 2019) 2572.
  51. E. Abdelrahman, Wahba MH, Refaey HA, Moawad M, Berbish NS, Jan Performance enhancement of photovoltaic cells by changing configuration and using PCM (RT35HC) with nanoparticles Al2O3, Sol. Energy, 177 (2019) 665-71.
  52. Naghdbishi, M. E. Yazdi and G. Akbari, Experimental investigation of the effect of multi-wall carbon nanotube–Water/glycol based nanofluids on a PVT system integrated with PCM-covered collector, Appl. Therm. Eng., 178 (2020) 115556.
  53. Maghrabie, H.M., Mohamed, A.S.A., Fahmy, A.M. and Samee, A.A.A., 2023. Performance enhancement of PV panels using phase change material (PCM): An experimental implementation. Case Studies in Thermal Engineering, 42, p.102741.
  54. Wu, H. Bostanci, L. C. Chow, S. J. Ding, Y. Hong, M. Su, J. P. Kizito, L. Gschwender, and C. E.Snyder, Jet impingement and spray cooling using slurry of Nanoencapsulated phase change materials,Int. J. Heat Mass Transfer, 54 (2011) 2715-2723.
  55. A. Nada, D. H. El-Nagar and H. M.  S.  Hussein, Improving the  thermal  regulation  and  efficiency  enhancement  of   PCM-Integrated PV  modules  using  nano  particles, Energy Convers. Manag., 166  (2018) 735-743.
  56. R. Salem, M. M.  Elsayed, A.  A. Abd-Elaziz, and K.  M.  Elshazly, Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques, Renewable Energy, 138 (2019) 876-890.
  57. Sharaf, Huzayyin, A.S. and Yousef, M.S., Performance enhancement of photovoltaic cells using phase change material (PCM) in winter, Alexandria Eng. J., 61 (2022) 4229-4239.
  58. J. Zhang, Yang, C.H., Jin, Z.G., Ma, S.X., Zhang, J.S. and Pang, X.M., 2021. Experimental study of jet impingement heat transfer with microencapsulated phase change material slurry, Appl. Therm. Eng., 188 (2021) 116588.