Document Type : Research Paper

Authors

1 Chemical Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 Materials Science and Engineering Dept., Kwara State University,Malete, PMB 1530, Ilorin, Kwara State Nigeria

Abstract

Y-zeolite catalyst, with a Si/Al ratio of 2.23 and a high surface area of 703.34 m2/gcat, was prepared with three different particle sizes: 75, 600, and 1000 μm, from commercial Ludox AS-40 colloidal silica 40 wt.% suspension in water using the hydrothermal method. Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray (EDX), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) analyses were all utilized to analyze the properties of the synthesized Y-zeolite catalyst. Waste cooking oil (WCO) was transesterified to biodiesel in a batch reactor under different temperatures (e.g., 40, 50, and 60 °C) for 3 hours, and the activity of the catalyst was evaluated before and after being loaded with potassium oxide (K2O) molecules using the impregnation method. It is observed that the biodiesel conversion and yield, in the presence of a non-KOH-loaded catalyst, rose with increasing temperature and/or reaction time. However, increasing the reaction time beyond 2 hours in the presence of the catalyst loaded with 10% KOH decreased biodiesel conversion and yield. It has also been found that using catalysts with smaller particle sizes (e.g.,75 μm) is more favorable for enhancing the conversion of the catalytic process due to the acceleration of the reaction rate. A maximum biodiesel yield and conversion of 84.44% and 80%, respectively, were obtained. Using Gas Chromatography-Mass Spectrometry (GCMS), the composition and physical characteristics of the produced biodiesel were compared with those of standard fuels and the comparison results were particularly satisfactory. The spent Y catalyst loaded with KOH was recovered, reactivated, and reused in subsequent reactions. It exhibited outstanding catalytic activity, which is a testament to its cost advantage since it could significantly reduce the need for large quantities of costly homogeneous catalysts that are difficult to separate from the reaction products.

Graphical Abstract

Highlights

  • HY-zeolite catalyst was prepared from colloidal silica suspended in water by the hydrothermal method.
  • Environmentally harmful waste cooking oil transesterified into biodiesel using both unloaded catalyst and KOH loaded catalyst.
  • The compositions of produced biodiesel were compared with those of standard fuel and found to be almost comparable.
  • The cost was significantly reduced by means of separating the spent solid HY catalyst at the end of the reaction and reactivating it for further use in post-reactions.

Keywords

Main Subjects

  1. Mansir, Y. H. T.Yap, U. Rashid, I. M. Lokman, Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review, Energy. Convers. Manag., 141(2017)171–182.
  2. F. Yee, J. Kansedo, K. T. Lee, Biodiesel production from palm oil via heterogeneous transesterification: optimization study, Chem. Eng. Commun., 197 (2010) 1597–1611. https://doi.org/10.1080/00986445.2010.500156
  3. Kansedo, K. T. Lee, S. Bhatia, Biodiesel production from palm oil via heterogeneous transesterification, Biomass. Bioenergy., 33 (2009) 271–276. https://doi.org/10.1016/j.biombioe.2008.05.011
  4. T. Al-Humairi, J. G. M. Lee, A. P. Harvey, Direct and rapid production of biodiesel from algae foamate using a homogeneous base catalyst as part of an intensified process, Energy .Convers. Manag., 16 (2022) 100284. https://doi.org/10.1016/j.ecmx.2022.100284
  5. Y. Koh , T. I. Mohd, Ghazi, A review of biodiesel production from Jatropha curcas L. oil, Renew. Sust. Energ. Rev., 15 (2011) 2240–2251. https://doi.org/10.1016/j.rser.2011.02.013
  6. N. Nabi, M. M. Rahman, M. S. Akhter, Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions, Appl. Therm. Eng., 29 (2009) 2265–2270. https://doi.org/10.1016/j.applthermaleng.2008.11.009
  7. Meng, G. Chen, Y. Wang, Biodiesel production from waste cooking oil via alkali catalyst and its engine test, Fuel Process. Technol., 89 (2008) 851–857. https://doi.org/10.1016/j.fuproc.2008.02.006
  8. N. Bhatti, M. A. Hanif, M. Qasim, Biodiesel production from waste tallow, Fuel, 87(2008) 2961–2966. https://doi.org/10.1016/j.fuel.2008.04.016
  9. Cao, M. A. Dubé, A. Y. Tremblay, High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor, Biomass . Bioenergy ., 32 (2008) 1028–1036. https://doi.org/10.1016/j.biombioe.2008.01.020
  10. Y. Shin, S. H. Lee, J. H. Ryu, S. Y. Bae, Biodiesel production from waste lard using supercritical methanol, J. Supercrit. Fluids, 61 (2012)134–138. https://doi.org/10.1016/j.supflu.2011.09.009
  11. Gürü, A. Koca, Ö. Can, C. Çınar, F. Şahin, Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine, Renew. Energy., 35 (2010) 637–643. https://doi.org/10.1016/j.renene.2009.08.011
  12. Alptekin , M. Canakci, Optimization of pretreatment reaction for methyl ester production from chicken fat, Fuel, 89 (2010) 4035–4039. https://doi.org/10.1016/j.fuel.2010.04.031
  13. Gaurav, S. Dumas, C. T. Q. Mai, F. T. T. Ng, A kinetic model for a single step biodiesel production from a high free fatty acid (FFA) biodiesel feedstock over a solid heteropolyacid catalyst, Green. Energy. Environ., 4 (2019)328–341. https://doi.org/10.1016/j.gee.2019.03.004
  14. Nisar, M. A. Hanif, U. Rashid, A. Hanif, M. N. Akhtar, C. Ngamcharussrivichai, Trends in widely used catalysts for fatty acid methyl esters (Fame) production: A review, Catal., 11 ( 2021) 1085 . https://doi.org/10.3390/catal11091085
  15. Leclercq, A. Finiels, C. Moreau, Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts, J. Amer. Oil Chem. Soc., 78 (2001)1161–1165. https://doi.org/10.1007/s11746-001-0406-9
  16. Ebiura, T. Echizen, A. Ishikawa, K. Murai, T. Baba, Selective transesterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst, Appl. Catal. A Gen., 283 (2005) 111–116. https://doi.org/10.1016/j.apcata.2004.12.041
  17. Qasim, Y. I. Abdul-Aziz, Z. T. Alismaeel, Biodiesel from fresh and waste sunflower oil using calcium oxide catalyst synthesized from local limestone, Res. J. Chem. Environ., 23 (2019)111–119.
  18. J. Suppes, M. A. Dasari, E. J. Doskocil, P. J. Mankidy, M. J. Goff, Transesterification of soybean oil with zeolite and metal catalysts, Appl. Catal. A Gen., 257 (2004) 213–223. https://doi.org/10.1016/j.apcata.2003.07.010
  19. G. Cantrell, L. J. Gillie, A. F. Lee, K. Wilson, Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis, Appl. Catal. A Gen., 287 (2005) 183–190. https://doi.org/10.1016/j.apcata.2005.03.027
  20. Xie, H. Peng, L. Chen, Calcined Mg–Al hydrotalcites as solid base catalysts for methanolysis of soybean oil, J. Mol .Catal. A Chem., 246 (2006) 24–32. https://doi.org/10.1016/j.molcata.2005.10.008
  21. Al-Jammal, Z. Al-Hamamre, M. Alnaief, Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil, Renew. Energy., 93 (2016) 449–459. https://doi.org/10.1016/j.renene.2016.03.018
  22. Tosheva, A. Brockbank, B. Mihailova,   J. Sutula,   J. Ludwig,   H. Potgietera  J.Verrana , Micron-and nanosized FAU-type zeolites from fly ash for antibacterial applications, J. Mater. Chem., 22 (2012)16897–16905. https://doi.org/10.1039/C2JM33180B
  23. S. Abbas , R. N. Abbas, Preparation and characterization of NaY zeolite for biodiesel production, J. Chem. Pet. Eng., 16 (2015) 19–29. https://doi.org/10.31699/IJCPE.2015.2.3
  24. Belviso, L. C. Giannossa, F. J. Huertas, A. Lettino, A. Mangone, S. Fiore, Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures, Microporous Mesoporous Mater., 212 (2015) 35–47.
  25. M. Doyle, Z. T. Alismaeel, T. M. Albayati, A. S. Abbas, High purity FAU-type zeolite catalysts from shale rock for biodiesel production, Fuel, 199 (2017) 394–402.
  26. Xie, X. Huang, H. Li, Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst, Bioresour. Technol., 98 (2007) 936–939. https://doi.org/10.1016/j.biortech.2006.04.003
  27. J. Ramos, A. Casas, L. Rodríguez, R. Romero, Á. Pérez, Transesterification of sunflower oil over zeolites using different metal loading: A case of leaching and agglomeration studies, Appl. Catal. A Gen., 346 (2008)79–85. https://doi.org/10.1016/j.apcata.2008.05.008
  28. Wu, J. Zhang, Q. Wei, J. Zheng, J. Zhang, Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts, Fuel Process. Technol., 109 (2013)13–18. https://doi.org/10.1016/j.fuproc.2012.09.032
  29. Al-Jammal, Z. Al-Hamamre, M. Alnaief, Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil, Renew. Energy., 93 (2016) 449–459 . https://doi.org/10.1016/j.renene.2016.03.018
  30. C. Manique, L. V. Lacerda, A. K. Alves, C. P. Bergmann, Biodiesel production using coal fly ash-derived sodalite as a heterogeneous catalyst, Fuel, 190 (2017) 268–273.
  31. P. S. Dias, J. Puna, M. J. N. Correia, I. Nogueira, J. Gomes, J. Bordado, Effect of the oil acidity on the methanolysis performances of lime catalyst biodiesel from waste frying oils (WFO), Fuel Process. Technol., 116 (2013) 94–100. https://doi.org/10.1016/j.fuproc.2013.05.002
  32. Meynen, P. Cool, E. F. Vansant, Verified syntheses of mesoporous materials, Microporous. Mesoporous. Mater. ., 125 (2009)170–223. https://doi.org/10.1016/j.micromeso.2009.03.046
  33. S. Cundy . P. A. Cox, The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism, Microporous mesoporous Mater., 82 (2005) 1–78. https://doi.org/10.1016/j.micromeso.2005.02.016
  34. Y. S. Al-Zaidi, The effect of modification techniques on the performance of zeolite-Y catalysts in hydrocarbon cracking reactions, The University of Manchester (United Kingdom), 2011.
  35. Robson, Verified synthesis of zeolitic materials. Gulf Professional Publishing, 2001.
  36. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, J. G. Goodwin, Synthesis of biodiesel via acid catalysis, Ind. Eng. Chem. Res., 44 (2005) 5353–5363. https://doi.org/10.1021/ie049157g
  37. Al-Hamamre, S. Foerster, F. Hartmann, M. Kröger, M. Kaltschmitt, Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing, Fuel, 96 (2012) 70–76. https://doi.org/10.1016/j.fuel.2012.01.023
  38. Baerlocher, L. B. McCusker, D. H. Olson, Atlas of zeolite framework types. Elsevier, 2007.
  39. M. J. Treacy , J. B. Higgins, Collection of simulated XRD powder patterns for zeolites fifth (5th) revised. Elsevier, 2007. https://doi.org/10.1016/B978-0-444-53067-7.X5470-7
  40. Zhang, M. Lu, M. A. M. Idrus, C. Crombie, V. Jegatheesan, Performance of precipitation and electrocoagulation as pretreatment of silica removal in brackish water and seawater, Process .Saf. Environ .Prot., 126 (2019) 18–24. https://doi.org/10.1016/j.psep.2019.03.024
  41. H. Khalaf, B. Y. Sherhan Al-Zaidi, Z. M. Shakour, Experimental and Kinetic Study of the Effect of using Zr-and Pt-loaded Metals on Y-zeolite-based Catalyst to Improve the Products of n-heptane Hydroisomerization Reactions, Orbital, 14 (2022) 153–167. https://doi.org/10.17807/orbital.v14i3.17429
  42. Y. Ghazal , T. A. Younus, Preparation and Studying of Zeolite with Catalytic Properties From Silica and Bauxite Ores Local, J. Educ. Sci., 30 (2021) 103–116 . https://doi.org/1033899/EDUSJ.2020.127990.1104
  43. Nsaif, A. Abdulhaq, A. Farhan, S. Neamat, Catalytic Cracking of Heptane using prepared zeolite, J. Asian .Sci. Res., 2 (2012) 927–948.
  44. H. Matti , K. M. Surchi, Comparison the properties of zeolite NaY synthesized by different procedures, Int. J. Innov. Res. Sci. Eng. Technol., 3 (2014) 13333–13342.
  45. J. B. Souza, A. O. S. Silva, V. J. Fernandes Jr, A. S. Araujo, Catalytic cracking of C5+ gasoline over HY zeolite, React. Kinet. Catal. Lett., 79 (2003) 257–262. https://doi.org/10.1023/A:1024530017369
  46. S. MacLeod, A. P. Harvey, A. F. Lee, K. Wilson, Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production, Chem. Eng. J., 135 (2008) 63–70. https://doi.org/10.1016/j.cej.2007.04.014
  47. M. Alonso, R. Mariscal, R. Moreno-Tost, M. D. Z. Poves, M. L. Granados, Potassium leaching during triglyceride transesterification using K/γ-Al2O3 catalysts, Catal. Commun., 8 (2007) 2074–2080. https://doi.org/10.1016/j.catcom.2007.04.003
  48. M. Kim , R. Ryoo, Synthesis of MCM-48 single crystals, Chem. Commun., 2 (1998) 259 –260. https://doi.org/10.1039/A707677K
  49. Querol , Synthesis of zeolites from coal fly ash: an overview, Int. J. coal Geol., 50 (2002) 413–423. https://doi.org/10.1016/S0166-5162(02)00124-6
  50. Sadeghbeigi, Fluid catalytic cracking handbook: An expert guide to the practical operation, design, and optimization of FCC units. Butterworth-Heinemann, 2020.
  51. P. Peña, W. Rondón, Linde type a zeolite and type Y faujasite as a solid-phase for lead, cadmium, nickel and cobalt preconcentration and determination using a flow injection system coupled to flame atomic absorption spectrometry, Am. J. Anal. Chem., 4 (2013) 387-397. https://doi.org/10.4236/ajac.2013.48049
  52. C. Meher, D. V. Sagar, S.N. Naik, Technical aspects of biodiesel production by transesterification—a review, Renew. Sust. Energ. Rev., 10 ( 2006) 248-268. https://doi.org/10.1016/j.rser.2004.09.002
  53. S. Fogler, Elements of chemical reaction engineering. Pearson Boston, 2020.
  54. B. Uzun, M. Kiliç, N. Özbay, A. E. Pütün, E. Pütün , Biodiesel production from waste frying oils: Optimization of reaction parameters and determination of fuel properties, Energy., 44 (2012) 347–351. https://doi.org/10.1016/j.%20energy.2012.06.024
  55. Kouzu, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka, J. Hidaka, Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel roduction, Fuel, 87 (2008) 2798–2806. https://doi.org/10.1016/j.fuel.2007.10.019
  56. O. Daramola, K. Mtshali, L. Senokoane, O. M. Fayemiwo, Influence of operating variables on the transesterification of waste cooking oil to biodiesel over sodium silicate catalyst: A statistical approach, J. Taibah .Univ. Sci., 10 (2016) 675–684. https://doi.org/10.1016/j.jtusci.2015.07.008
  57. Ogunkunle, O. O. Oniya, A. O. Adebayo, Yield response of biodiesel production from heterogeneous and homogeneous catalysis of milk bush seed (Thevetia peruviana) oil, Energy .Policy. Res., 4 (2017) 21–28. https://doi.org/10.1080/23815639.2017.1319772
  58. Jalal, P. S. Ilavarasi, L. R. Miranda, Fatty methyl esters from vegetable oils for use as a diesel fuel, IEEE Conf. Clean. Energy. Technol., (2011) 125–128. https://doi.org/10.1109/CET.2011.6041472
  59. ASTM, 150: The American Society for Testing Materials Standard Specification for Portland Cement, West Conshohocken (PA), USA, 2002.
  60. N. DIN, 590: 2014-04-Automotive fuels-Diesel-Requirements and test methods, Ger. version EN, 590 ( 2013).
  61. Á. León Valdez, Evaluación del acoplamiento de energía térmica solar para la producción de biodiesel a partir de aceite vegetal residual, 2017.