Document Type : Review Paper


1 Applied Sciences Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Malaysia


Solid polymeric electrolytes have become crucial today due to their stability and high conductivity. Recently, lithium ion-doped polymeric electrolytes have gained intense attention for their superior ability to create highly conductive electrolytes for batteries and energy storage. This innovative electrolyte type has displaced many traditional systems due to their flammability and bulkiness. Traditional liquid organic electrolytes pose risks due to their flammable and unstable nature. Solid-state composite electrolytes offer both mechanical stability and electrical conductivity by using solid polymeric matrices like polyethylene oxide and polyurethane reinforced with inert fillers like alumina and titanium dioxide. Polyethylene oxide (PEO)-based materials show promise as polymer hosts for high-energy-density lithium batteries due to their safety, cost-effectiveness, and compatibility with lithium salt. However, the linear PEO's insufficient ionic conductivity, stemming from high crystallinity in ethylene oxide chains, limits production at low temperatures. This review delves into lithium salt effects, matrix types, plasticizer and filler impact, and composite electrolyte mechanisms.

Graphical Abstract


  • This work uncovers crucial techniques for doped polymer.
  • Doped Polymers offer more unique properties than pure polymers and their advanced applications.
  • This work provides insights into recent advances in doped polymer technology.


Main Subjects

  1. Junxian H., Languang Lu, Li Wang, et al., Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes, Nat Commun., 11 (2020) 1-11.
  2. Wang L., Chen Z., X. He, Challenges of Fast Charging for Electric Vehicles and the Role of Red Phosphorous as Anode Material: Review, Energies, 20 (2019) 3897.
  3. Suogang Guo,Li Wang, et al., A polymeric composite protective layer for stable Li metal anodes, Nano Convergence, 7 (2020).
  4. Snehashis Ch., Zhengyuan Tu, Nijamudheen A., Stabilizing polymer electrolytes in high-voltage lithium batteries, Nat Commun., 10 (2019) 1-11.
  5. Norby, Solid-state protonic conductors: principles, properties, progress and prospects, Solid State Ionics, 125 (1999) 1-11.
  6. E. Fenton, J. M. Parker, P. Wright, Complexes of alkali-metal ions with poly (ethylene oxide), Polymer, 11 (1973) 589–589.
  7. Armand, Fast ion transport in solids, New York: Elsevier, 1979.
  8. Arya, A. L. Sharma, Polymer electrolytes for lithium ion batteries: a critical study, Ionics, 23 (2017) 497–540.
  9. Ngai, R. subramaniam , R. Kasi , A review of polymer electrolytes: fundamental, approaches and applications, Ionics, 22 (2016) 1259–1279.
  10. Y. Song, Y.Y. Wang, C.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries, J. Power Sources, 77 (1999) 183–197.
  11. S. Jie, X. X. Zeng, Q. Ma, X. Wu, Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries, Electrochem. Energy. Rev., 1 (2018) 113–138.
  12. Susan , F. Shirey , K. Janna , Maranas, Effect of LiClO4 on the Structure and Mobility of PEO-Based Solid Polymer Electrolytes, Macromolecules, 42 (2009) 2142-2156.
  13. D. Robitaille, D. Fauteux1, Phase Diagrams and Conductivity Characterization of Some  PEO  ‐ LiX Electrolytes, J. Electrochem. Soc., 133 (1986) 315-325.
  14. H. Newman1, R. W. Francis1, L. H. Gaines, B. M. Rao1, Hazard Investigations of LiClO4 / Dioxolane Electrolyte, J. Electrochem. Soc., 127 (1980) 2025-2027.
  15. Karmakar, A. Ghosh, Dielectric permittivity and electric modulus of polyethylene oxide (PEO)–LiClO4 composite electrolytes, Curr. Appl. Phys., 12 (2012) 539-543.
  16. Henderson, Crystallization kinetics of glyme− LiX and PEO− LiX polymer electrolytes, Macromolecules, 40 (2007) 4963-4971.
  17. A. Munshi, B. B . Owens, Ionic transport in poly (ethylene oxide)(PEO)-LiX polymeric solid electrolyte, Polym. J., 20 (1988) 577-586.
  18. Graham , M. Glashan, G. Y. Andreev , P. G. Bruce, Structure of the polymer electrolyte poly (ethylene oxide) 6:LiAsF6, Nature, 398 (1999) 792-794.
  19. Litas, Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb, Chem. Mater., 14 (2002) 2166-2170.
  20. M. Zahurak, M. L. Kaplan, E. A. Rietman, D. W. Murphy, R. J. Cava, Phase relationships and conductivity of the polymer electrolytes poly (ethylene oxide)/lithium tetrafluoroborate and poly (ethylene oxide)/lithium trifluoromethane sulfonate, Macromolecules, 21(1988) 654-660.
  21. G. Andreev, V. Seneviratne, M. Khan, W. A. Henderson, R. E. Frech, P. G. Bruce, Crystal Structures of Poly (Ethylene Oxide) 3:LiBF4 and (Diglyme) n: LiBF4 (n = 1,2), Chem. Mater., 17 (2005) 767-772.
  22. C. Bloise, C.C. Tambelli, R.W.A. Franco, J.P. Donoso, C.J. Magon, M.F. Souza, A.V. Rosario, E.C. Pereira, Nuclear magnetic resonance study of PEO-based composite polymer electrolytes, Electrochim. Acta, 46 (2001)1571-1579.
  23. Kalita, M. Bukat, M. Ciosek, M. Siekierski, S.H. Chung, T. Rodríguez, S.G. Greenbaum, R. Kovarsky, D. Golodnitsky, E. Peled, D. Zane, B. Scrosati , W. Wieczorek , Effect of calixpyrrole in  PEO–LiBF4 polymer electrolytes, Electrochim. Acta, 50 (2005) 3942-3948.
  24. Lim, Y. An, N. Jo , Polystyrene-Al2O3 composite solid polymer electrolyte for a secondary lithium battery, Nanoscale Res. Lett., 7 (2012) 19 .
  25. A. Suthanthiraraj, J. Sheeba ,Structural investigation on PEO-based polymer electrolytes dispersed with Al2O3 nanoparticles, Ionics, 13 (2007) 447–450.
  26. Nirali, D. K. Kanchan, S. Poonam, P. Meenakshi, S. J. Manish , Dielectric and conductivity in silver‐poly (ethylene oxide) solid polymer electrolytes dispersed with SiO2 nanoparticles, AIP. Conf. Proc., 1313 (2010)112-114.
  27. Croce, G. B. Appetecchi, L.  Persi, B.  Scrosati, Nanocomposite polymer electrolytes for lithium batteries, Polymer, 394 (1998) 456–458.
  28. M. Xiong, Z. D. Wang , D. P. Xie , Stable polymer electrolytes based on polyether grafted ZnO nanoparticles for all-solid-state lithium batteries, J. Mater. Chem., 16 (2006) 1345–1349.
  29. Y. X. Guo, On the grain-boundaries of Zro2-based solid-electrolyte, Solid State Ionics, 80 (1995) 159–166.
  30. Y. Abd. Rahman, A. Ahmad , L. H. C. Ismail , Fabrication and characterization of a solid polymeric electrolyte of PAN-TiO2-LiClO4, J. Appl. Polym. Sci., 115 (2010) 2144–2148.
  31. Devaux, D. Glé , D. Gigmes, Optimization of block copolymer electrolytes for lithium metal batteries, Chem. Mater., 27 (2015) 4682–4692.
  32. Bouchet, T. N. T. Phan, E. Beaudoin, Charge transport in nanostructured PS-PEO-PS triblock copolymer electrolytes, Macromol., 47 (2014) 2659–2665.
  33. Oh . Hyunwoo, Y. Kim , J. Kim , Electrically conductive poly (methyl methacrylate)-reduced graphene oxide/poly (styrene-co-acrylonitrile) composite with double percolative architecture, Org. Electron., 85 (2020) 105877.
  34. Cao, L. Wang, Y. Shang, Dispersibility of nano-TiO2 on the performance of composite polymer electrolytes for Li-ion batteries, Electrochim. Acta, 111 (2013) 674–679.
  35. Cao, Li. Wang, X. He, In situ prepared nano-crystalline TiO2–poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries, J. Mater. Chem., 19 (2013) 5955–5961.
  36. Lu, S. W. Chiang, H. Du, Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO), Polymer, 115 (2017) 52-59.
  37. S. Lee, H. Y. Park , Y. G. Jung, Effect of lithium salt on the properties of PEO based hybrid solid electrolyte for high safety lithium-ion batteries, Int. J. Nanotechnol., 15 (2018) 620–629.
  38. D. Robitaille, D. Fauteux1, Phase-Diagrams and Conductivity Characterization of Some Peo-Lix Electrolytes, J. Electrochem. Soc., 133 (1986) 315-325.
  39. Zhao, X. M. Qian, E. K. Wang , S. J. Dong , Advances in ionic conductive polymer electrolytes, Progress Chem., 14 (2002) 374–383 .
  40. Borodin, G. D. Smith, LiTFSI structure and transport in ethylene carbonate from molecular dynamics simulations, J. Phys. Chem. B, 110 (2006) 4971–4977.
  41. S Michael, M.M.E. Jacob, S.R.S. Prabaharan, S. Radhakrishna, Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers, Solid State Ionics, 98 (1997) 167-174.
  42. Niedzicki, M. Kasprzyk, K. Kuziak, G.Z. Żukowska, Modern generation of polymer electrolytes based on lithium conductive imidazole salts, J. Power. Sources, 192 (2009) 612-617.
  43. Prasanth, N. Shubha, H. H. Hng, M. Srinivasan. Effect of poly (ethylene oxide) on ionic conductivity and electrochemical properties of poly (vinylidene fluoride) based polymer gel electrolytes prepared by electrospinning for lithium-ion batteries, J. Power Sources, 245 (2014) 283-291.
  44. S. Michael, M. Jacob, S. Radhakrishna , Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers, Solid State Ionics, 98 (1997) 167-174.
  45. E. Sutto, Hydrophobic and Hydrophilic Interactions of Ionic Liquids and Polymers in Solid Polymer Gel Electrolytes, J. Electrochem. Soc., 154 (2007) 101-107.
  46. R. K. a. A. S. A. M. Sukeshini, PEO based solid polymer electrolyte plasticized by dibutyl phthalate, Solid State Ionics, 113-115 (1998) 179-186.
  47. J.An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D. L. Wood, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon,105 (2016) 52-76.
  48. H .Wang, M. Matsui, Y. Takeda, O. Yamamoto, Interface Properties between Lithium Metal and a Composite Polymer Electrolyte of PEO18Li(CF3SO2)2N-Tetraethylene Glycol Dimethyl Ether, Membranes., 3 (2013) 298-310
  49. C. a. R. Frech, Effect of Plasticizers on Ionic Association and Conductivity in the (PEO)9LiCF3SO3 System, Macromolecules, 29 (1996) 3499-3506.
  50. Vignarooban, M. Dissanayake, I. Albinsson, Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly (ethylene oxide) (PEO) based solid polymer electrolytes, Solid State Ionics, 266 (2014) 25-28.
  51. Yang, H. Lee, L. Hanson, Development of a new plasticizer for poly(ethylene oxide)-based polymer electrolyte and the investigation of their ion-pair dissociation effect, J. Power Sources, 54 (1995) 198-204.
  52. Rajendran, O. Mahendran, K. Raman, Investigations on poly(methyl methacrylate)-poly(ethylene oxide) hybrid polymer electrolytes with dioctyl phthalate, dimethyl phthalate, and diethyl phthalate as plasticizers, J. Solid State Electrochem., 6 (2002) 560-564.
  53. E. Weston, B. Steele, Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes, Solid State Ionics, 7 (1982.) 75-79.
  54. Croce, G. B .Appetecchi, B. Scrosati , Nanocomposite polymer electrolytes for lithium batteries, Nature, 394 (1998) 456-458.
  55. A. N. S. P. S. P. B. S. a. J. H. M. Wetjen, Gel Polymer Electrolytes Based on Silica-Added Poly(ethylene oxide) Electrospun Membranes for Lithium Batteries, Chem .Sus. Chem., 6 (2013) 1037-1043.
  56. M. Xiong, Z. D. Wang, D. P. Liu, J. S. Chen, Bonding polyether onto ZnO nanoparticles: An effective method for preparing polymer nanocomposites with tunable luminescence and stable conductivity, Adv. Funct. Mater., 15 (2005)1751-1756.
  57. Kumar, L.G. Scanlon, Composite Electrolytes for Lithium Rechargeable Batteries, J. Electroceram., 5 (2000) 127-139.
  58. A. R. D Jayathilaka, M. A. K. L Dissanayake, I Albinsson, B.-E Mellander, Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system, Electrochim. Acta, 47 (2002) 3257-3268.
  59. Seok Kim, Eun-Ju Hwang, Yongju Jung, Mijeong Han, Soo-Jin Park, Ionic conductivity of polymeric nanocomposite electrolytes based on poly(ethylene oxide) and organo-clay materials, Colloids Surf. A, 313-314 (2008) 216-219.
  60. W. Kim, W. Lee, B.K. Choi, Relation between glass transition and melting of PEO–salt complexes, Electrochim. Acta, 45 (2000) 1473-1477.
  61. K. Choi. K. H. Shin, Effects of SiC and Si3N4 fillers on the electrical properties of (PEO)16LiClO4 electrolytes, J. Appl. Electrochem., 27 (1997) 365-367.
  62. B. Appetecchi, S .Scaccia, Investigation on the Stability of the Lithium‐Polymer Electrolyte Interface, J. Electrochem. Soc., 147 (2000) 4448-4452.
  63. Linfeng Hu, Zilong Tang, Zhongtai Zhang, New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4, J. Power Sources, 166 (2007) 226-232.
  64. A.S.A. Samir, A.M. Mateos, F. Alloin, J.Y. Sanchez, Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers, Electrochim. Acta, 49 (2004) 4667-4677.
  65. Ojur Dennis, M. Ali, K. Ibnaouf, O. Aldaghri, N. Abdel All, A. Adam, F. Usman, Y. Hassan and B. Abdulkadir, Effect of ZnO Nanofiller on Structural and Electrochemical Performance Improvement of Solid Polymer Electrolytes Based on Polyvinyl Alcohol–Cellulose Acetate– Potassium Carbonate Composites, Molecules, 27 (2022) 5528.
  66. Seyedeh N. Banitaba, et al., Effect of titanium dioxide and zinc oxide fillers on morphology, electrochemical and mechanical properties of the PEO-based nanofibers, applicable as an electrolyte for lithium-ion batteries, Mater. Res. Express, 6 (2019).
  67. Zhitao Yang, et al., Solvation-Free Fabrication of PEO/LiTFSI/SiO2 Composite Electrolyte Membranes with High Ionic Conductivity Based on a Novel Elongational Flow Field, Ind. Eng. Chem. Res., 61 (2022) 4850–4859.
  68. Hui-min Xu, et al., Safety-Enhanced Flexible Polypropylene Oxide–ZrO2 Composite Solid Electrolyte Film with High Room-Temperature Ionic Conductivity, ACS Sustainable Chem. Eng., 9 (2021) 11118–11126.
  69. He, X., Zhu, Y. & Mo, Y., Origin of fast ion diffusion in super-ionic conductors, Nat Commun., 1 (2017) 15893.
  70. Feng, J., Wang, L., Chen, Y. et al. PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence, 2 (2021).