Document Type : Review Paper

Authors

1 Applied Sciences Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Malaysia

Abstract

Solid polymeric electrolytes have become crucial today due to their stability and high conductivity. Recently, lithium ion-doped polymeric electrolytes have gained intense attention for their superior ability to create highly conductive electrolytes for batteries and energy storage. This innovative electrolyte type has displaced many traditional systems due to their flammability and bulkiness. Traditional liquid organic electrolytes pose risks due to their flammable and unstable nature. Solid-state composite electrolytes offer both mechanical stability and electrical conductivity by using solid polymeric matrices like polyethylene oxide and polyurethane reinforced with inert fillers like alumina and titanium dioxide. Polyethylene oxide (PEO)-based materials show promise as polymer hosts for high-energy-density lithium batteries due to their safety, cost-effectiveness, and compatibility with lithium salt. However, the linear PEO's insufficient ionic conductivity, stemming from high crystallinity in ethylene oxide chains, limits production at low temperatures. This review delves into lithium salt effects, matrix types, plasticizer and filler impact, and composite electrolyte mechanisms.

Graphical Abstract

Highlights

  • This work uncovers crucial techniques for doped polymer.
  • Doped Polymers offer more unique properties than pure polymers and their advanced applications.
  • This work provides insights into recent advances in doped polymer technology.

Keywords

Main Subjects

  1. Junxian H., Languang Lu, Li Wang, et al., Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes, Nat Commun., 11 (2020) 1-11. https://doi.org/10.1038/s41467-020-18868-w
  2. Wang L., Chen Z., X. He, Challenges of Fast Charging for Electric Vehicles and the Role of Red Phosphorous as Anode Material: Review, Energies, 20 (2019) 3897. https://doi.org/10.3390/en12203897
  3. Suogang Guo,Li Wang, et al., A polymeric composite protective layer for stable Li metal anodes, Nano Convergence, 7 (2020). https://doi.org/10.1186/s40580-020-00231-w
  4. Snehashis Ch., Zhengyuan Tu, Nijamudheen A., Stabilizing polymer electrolytes in high-voltage lithium batteries, Nat Commun., 10 (2019) 1-11. https://doi.org/10.1038/s41467-019-11015-0
  5. Norby, Solid-state protonic conductors: principles, properties, progress and prospects, Solid State Ionics, 125 (1999) 1-11. https://doi.org/10.1016/S0167-2738(99)00152-6
  6. E. Fenton, J. M. Parker, P. Wright, Complexes of alkali-metal ions with poly (ethylene oxide), Polymer, 11 (1973) 589–589. https://doi.org/10.1016/0032-3861(73)90146-8
  7. Armand, Fast ion transport in solids, New York: Elsevier, 1979.
  8. Arya, A. L. Sharma, Polymer electrolytes for lithium ion batteries: a critical study, Ionics, 23 (2017) 497–540. https://doi.org/10.1007/s11581-016-1908-6
  9. Ngai, R. subramaniam , R. Kasi , A review of polymer electrolytes: fundamental, approaches and applications, Ionics, 22 (2016) 1259–1279. https://doi.org/10.1007/s11581-016-1756-4
  10. Y. Song, Y.Y. Wang, C.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries, J. Power Sources, 77 (1999) 183–197. https://doi.org/10.1016/S0378-7753(98)00193-1
  11. S. Jie, X. X. Zeng, Q. Ma, X. Wu, Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries, Electrochem. Energy. Rev., 1 (2018) 113–138. https://doi.org/10.1007/s41918-018-0011-2
  12. Susan , F. Shirey , K. Janna , Maranas, Effect of LiClO4 on the Structure and Mobility of PEO-Based Solid Polymer Electrolytes, Macromolecules, 42 (2009) 2142-2156. https://doi.org/10.1021/ma802502u
  13. D. Robitaille, D. Fauteux1, Phase Diagrams and Conductivity Characterization of Some  PEO  ‐ LiX Electrolytes, J. Electrochem. Soc., 133 (1986) 315-325. https://doi.org/10.1149/1.2108569
  14. H. Newman1, R. W. Francis1, L. H. Gaines, B. M. Rao1, Hazard Investigations of LiClO4 / Dioxolane Electrolyte, J. Electrochem. Soc., 127 (1980) 2025-2027. https://doi.org/10.1149/1.2130056
  15. Karmakar, A. Ghosh, Dielectric permittivity and electric modulus of polyethylene oxide (PEO)–LiClO4 composite electrolytes, Curr. Appl. Phys., 12 (2012) 539-543. https://doi.org/10.1016/j.cap.2011.08.017
  16. Henderson, Crystallization kinetics of glyme− LiX and PEO− LiX polymer electrolytes, Macromolecules, 40 (2007) 4963-4971. https://doi.org/10.1021/ma061866d
  17. A. Munshi, B. B . Owens, Ionic transport in poly (ethylene oxide)(PEO)-LiX polymeric solid electrolyte, Polym. J., 20 (1988) 577-586.
  18. Graham , M. Glashan, G. Y. Andreev , P. G. Bruce, Structure of the polymer electrolyte poly (ethylene oxide) 6:LiAsF6, Nature, 398 (1999) 792-794. https://doi.org/10.1038/19730
  19. Litas, Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb, Chem. Mater., 14 (2002) 2166-2170.
  20. M. Zahurak, M. L. Kaplan, E. A. Rietman, D. W. Murphy, R. J. Cava, Phase relationships and conductivity of the polymer electrolytes poly (ethylene oxide)/lithium tetrafluoroborate and poly (ethylene oxide)/lithium trifluoromethane sulfonate, Macromolecules, 21(1988) 654-660. https://doi.org/10.1021/ma00181a020
  21. G. Andreev, V. Seneviratne, M. Khan, W. A. Henderson, R. E. Frech, P. G. Bruce, Crystal Structures of Poly (Ethylene Oxide) 3:LiBF4 and (Diglyme) n: LiBF4 (n = 1,2), Chem. Mater., 17 (2005) 767-772. https://doi.org/10.1021/cm048310u
  22. C. Bloise, C.C. Tambelli, R.W.A. Franco, J.P. Donoso, C.J. Magon, M.F. Souza, A.V. Rosario, E.C. Pereira, Nuclear magnetic resonance study of PEO-based composite polymer electrolytes, Electrochim. Acta, 46 (2001)1571-1579. https://doi.org/10.1016/S0013-4686(00)00755-6
  23. Kalita, M. Bukat, M. Ciosek, M. Siekierski, S.H. Chung, T. Rodríguez, S.G. Greenbaum, R. Kovarsky, D. Golodnitsky, E. Peled, D. Zane, B. Scrosati , W. Wieczorek , Effect of calixpyrrole in  PEO–LiBF4 polymer electrolytes, Electrochim. Acta, 50 (2005) 3942-3948.  https://doi.org/10.1016/j.electacta.2005.02.067
  24. Lim, Y. An, N. Jo , Polystyrene-Al2O3 composite solid polymer electrolyte for a secondary lithium battery, Nanoscale Res. Lett., 7 (2012) 19 . https://doi.org/10.1186/1556-276X-7-19
  25. A. Suthanthiraraj, J. Sheeba ,Structural investigation on PEO-based polymer electrolytes dispersed with Al2O3 nanoparticles, Ionics, 13 (2007) 447–450. https://doi.org/10.1007/s11581-007-0131-x
  26. Nirali, D. K. Kanchan, S. Poonam, P. Meenakshi, S. J. Manish , Dielectric and conductivity in silver‐poly (ethylene oxide) solid polymer electrolytes dispersed with SiO2 nanoparticles, AIP. Conf. Proc., 1313 (2010)112-114. https://doi.org/10.1063/1.3530460
  27. Croce, G. B. Appetecchi, L.  Persi, B.  Scrosati, Nanocomposite polymer electrolytes for lithium batteries, Polymer, 394 (1998) 456–458.  https://doi.org/10.1038/28818
  28. M. Xiong, Z. D. Wang , D. P. Xie , Stable polymer electrolytes based on polyether grafted ZnO nanoparticles for all-solid-state lithium batteries, J. Mater. Chem., 16 (2006) 1345–1349. https://doi.org/10.1039/b514346b
  29. Y. X. Guo, On the grain-boundaries of Zro2-based solid-electrolyte, Solid State Ionics, 80 (1995) 159–166.
  30. Y. Abd. Rahman, A. Ahmad , L. H. C. Ismail , Fabrication and characterization of a solid polymeric electrolyte of PAN-TiO2-LiClO4, J. Appl. Polym. Sci., 115 (2010) 2144–2148. https://doi.org/10.1002/app.31299
  31. Devaux, D. Glé , D. Gigmes, Optimization of block copolymer electrolytes for lithium metal batteries, Chem. Mater., 27 (2015) 4682–4692.
  32. Bouchet, T. N. T. Phan, E. Beaudoin, Charge transport in nanostructured PS-PEO-PS triblock copolymer electrolytes, Macromol., 47 (2014) 2659–2665. https://doi.org/10.1021/ma500420w
  33. Oh . Hyunwoo, Y. Kim , J. Kim , Electrically conductive poly (methyl methacrylate)-reduced graphene oxide/poly (styrene-co-acrylonitrile) composite with double percolative architecture, Org. Electron., 85 (2020) 105877. https://doi.org/10.1016/j.orgel.2020.105877
  34. Cao, L. Wang, Y. Shang, Dispersibility of nano-TiO2 on the performance of composite polymer electrolytes for Li-ion batteries, Electrochim. Acta, 111 (2013) 674–679. https://doi.org/10.1016/j.electacta.2013.08.048
  35. Cao, Li. Wang, X. He, In situ prepared nano-crystalline TiO2–poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries, J. Mater. Chem., 19 (2013) 5955–5961. https://doi.org/10.1039/C3TA00086A
  36. Lu, S. W. Chiang, H. Du, Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO), Polymer, 115 (2017) 52-59. https://doi.org/10.1016/j.polymer.2017.02.024
  37. S. Lee, H. Y. Park , Y. G. Jung, Effect of lithium salt on the properties of PEO based hybrid solid electrolyte for high safety lithium-ion batteries, Int. J. Nanotechnol., 15 (2018) 620–629. https://doi.org/10.1504/IJNT.2018.096352
  38. D. Robitaille, D. Fauteux1, Phase-Diagrams and Conductivity Characterization of Some Peo-Lix Electrolytes, J. Electrochem. Soc., 133 (1986) 315-325. https://doi.org/10.1149/1.2108569
  39. Zhao, X. M. Qian, E. K. Wang , S. J. Dong , Advances in ionic conductive polymer electrolytes, Progress Chem., 14 (2002) 374–383 .
  40. Borodin, G. D. Smith, LiTFSI structure and transport in ethylene carbonate from molecular dynamics simulations, J. Phys. Chem. B, 110 (2006) 4971–4977. https://doi.org/10.1021/jp056249q
  41. S Michael, M.M.E. Jacob, S.R.S. Prabaharan, S. Radhakrishna, Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers, Solid State Ionics, 98 (1997) 167-174. https://doi.org/10.1016/S0167-2738(97)00117-3
  42. Niedzicki, M. Kasprzyk, K. Kuziak, G.Z. Żukowska, Modern generation of polymer electrolytes based on lithium conductive imidazole salts, J. Power. Sources, 192 (2009) 612-617. https://doi.org/10.1016/j.jpowsour.2009.03.050
  43. Prasanth, N. Shubha, H. H. Hng, M. Srinivasan. Effect of poly (ethylene oxide) on ionic conductivity and electrochemical properties of poly (vinylidene fluoride) based polymer gel electrolytes prepared by electrospinning for lithium-ion batteries, J. Power Sources, 245 (2014) 283-291. https://doi.org/10.1016/j.jpowsour.2013.05.178
  44. S. Michael, M. Jacob, S. Radhakrishna , Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers, Solid State Ionics, 98 (1997) 167-174. https://doi.org/10.1016/S0167-2738(97)00117-3
  45. E. Sutto, Hydrophobic and Hydrophilic Interactions of Ionic Liquids and Polymers in Solid Polymer Gel Electrolytes, J. Electrochem. Soc., 154 (2007) 101-107. https://doi.org/10.1149/1.2767414
  46. R. K. a. A. S. A. M. Sukeshini, PEO based solid polymer electrolyte plasticized by dibutyl phthalate, Solid State Ionics, 113-115 (1998) 179-186. https://doi.org/10.1016/S0167-2738(98)00372-5
  47. J.An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D. L. Wood, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon,105 (2016) 52-76. https://doi.org/10.1016/j.carbon.2016.04.008
  48. H .Wang, M. Matsui, Y. Takeda, O. Yamamoto, Interface Properties between Lithium Metal and a Composite Polymer Electrolyte of PEO18Li(CF3SO2)2N-Tetraethylene Glycol Dimethyl Ether, Membranes., 3 (2013) 298-310 https://doi.org/10.3390/membranes3040298
  49. C. a. R. Frech, Effect of Plasticizers on Ionic Association and Conductivity in the (PEO)9LiCF3SO3 System, Macromolecules, 29 (1996) 3499-3506.
  50. Vignarooban, M. Dissanayake, I. Albinsson, Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly (ethylene oxide) (PEO) based solid polymer electrolytes, Solid State Ionics, 266 (2014) 25-28. https://doi.org/10.1016/j.ssi.2014.08.002
  51. Yang, H. Lee, L. Hanson, Development of a new plasticizer for poly(ethylene oxide)-based polymer electrolyte and the investigation of their ion-pair dissociation effect, J. Power Sources, 54 (1995) 198-204. https://doi.org/10.1016/0378-7753(94)02066-C
  52. Rajendran, O. Mahendran, K. Raman, Investigations on poly(methyl methacrylate)-poly(ethylene oxide) hybrid polymer electrolytes with dioctyl phthalate, dimethyl phthalate, and diethyl phthalate as plasticizers, J. Solid State Electrochem., 6 (2002) 560-564. https://doi.org/10.1007/s10008-001-0257-0
  53. E. Weston, B. Steele, Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes, Solid State Ionics, 7 (1982.) 75-79. https://doi.org/10.1016/0167-2738(82)90072-8
  54. Croce, G. B .Appetecchi, B. Scrosati , Nanocomposite polymer electrolytes for lithium batteries, Nature, 394 (1998) 456-458. https://doi.org/10.1038/28818
  55. A. N. S. P. S. P. B. S. a. J. H. M. Wetjen, Gel Polymer Electrolytes Based on Silica-Added Poly(ethylene oxide) Electrospun Membranes for Lithium Batteries, Chem .Sus. Chem., 6 (2013) 1037-1043.
  56. M. Xiong, Z. D. Wang, D. P. Liu, J. S. Chen, Bonding polyether onto ZnO nanoparticles: An effective method for preparing polymer nanocomposites with tunable luminescence and stable conductivity, Adv. Funct. Mater., 15 (2005)1751-1756. https://doi.org/10.1002/adfm.200500167
  57. Kumar, L.G. Scanlon, Composite Electrolytes for Lithium Rechargeable Batteries, J. Electroceram., 5 (2000) 127-139. https://doi.org/10.1023/A:1009958118260
  58. A. R. D Jayathilaka, M. A. K. L Dissanayake, I Albinsson, B.-E Mellander, Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system, Electrochim. Acta, 47 (2002) 3257-3268. https://doi.org/10.1016/S0013-4686(02)00243-8
  59. Seok Kim, Eun-Ju Hwang, Yongju Jung, Mijeong Han, Soo-Jin Park, Ionic conductivity of polymeric nanocomposite electrolytes based on poly(ethylene oxide) and organo-clay materials, Colloids Surf. A, 313-314 (2008) 216-219. https://doi.org/10.1016/j.colsurfa.2007.04.097
  60. W. Kim, W. Lee, B.K. Choi, Relation between glass transition and melting of PEO–salt complexes, Electrochim. Acta, 45 (2000) 1473-1477. https://doi.org/10.1016/S0013-4686(99)00362-X
  61. K. Choi. K. H. Shin, Effects of SiC and Si3N4 fillers on the electrical properties of (PEO)16LiClO4 electrolytes, J. Appl. Electrochem., 27 (1997) 365-367. https://doi.org/10.1023/A%3A1018497117353
  62. B. Appetecchi, S .Scaccia, Investigation on the Stability of the Lithium‐Polymer Electrolyte Interface, J. Electrochem. Soc., 147 (2000) 4448-4452. https://doi.org/10.1149/1.1394084
  63. Linfeng Hu, Zilong Tang, Zhongtai Zhang, New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4, J. Power Sources, 166 (2007) 226-232. https://doi.org/10.1016/j.jpowsour.2007.01.028
  64. A.S.A. Samir, A.M. Mateos, F. Alloin, J.Y. Sanchez, Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers, Electrochim. Acta, 49 (2004) 4667-4677. https://doi.org/10.1016/j.electacta.2004.05.021
  65. Ojur Dennis, M. Ali, K. Ibnaouf, O. Aldaghri, N. Abdel All, A. Adam, F. Usman, Y. Hassan and B. Abdulkadir, Effect of ZnO Nanofiller on Structural and Electrochemical Performance Improvement of Solid Polymer Electrolytes Based on Polyvinyl Alcohol–Cellulose Acetate– Potassium Carbonate Composites, Molecules, 27 (2022) 5528. https://doi.org/10.3390/molecules27175528
  66. Seyedeh N. Banitaba, et al., Effect of titanium dioxide and zinc oxide fillers on morphology, electrochemical and mechanical properties of the PEO-based nanofibers, applicable as an electrolyte for lithium-ion batteries, Mater. Res. Express, 6 (2019). https://doi.org/10.1088/2053-1591/ab25cd
  67. Zhitao Yang, et al., Solvation-Free Fabrication of PEO/LiTFSI/SiO2 Composite Electrolyte Membranes with High Ionic Conductivity Based on a Novel Elongational Flow Field, Ind. Eng. Chem. Res., 61 (2022) 4850–4859. https://doi.org/10.1021/acs.iecr.2c00450
  68. Hui-min Xu, et al., Safety-Enhanced Flexible Polypropylene Oxide–ZrO2 Composite Solid Electrolyte Film with High Room-Temperature Ionic Conductivity, ACS Sustainable Chem. Eng., 9 (2021) 11118–11126. http://dx.doi.org/10.1021/acssuschemeng.1c02886
  69. He, X., Zhu, Y. & Mo, Y., Origin of fast ion diffusion in super-ionic conductors, Nat Commun., 1 (2017) 15893. https://doi.org/10.1038/ncomms15893
  70. Feng, J., Wang, L., Chen, Y. et al. PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence, 2 (2021). https://doi.org/10.1186/s40580-020-00252-5