Document Type : Review Paper


1 Production Engineering and Metallurgy Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 Department of Physiology, Hammurabi College of Medicine, University of Babylon, Iraq.


Carbon fiber cloths (CFCs) are essential materials extensively studied and utilized in numerous applications, including supercapacitors (SCs), batteries, solar cells, and catalysis. CFC is gaining significant research attention as an inexpensive choice for (SC) electrode materials, mainly owing to its peculiar adaptability, which makes it suitable for conveyable or flexible devices. In fact, this characteristic is not easily attainable with other carbon-based matrices. However, bare CFC electrodes face difficulties concerning their capacitive performance because of numerous factors, including markedly little surface space, poor electrochemical efficacy, and limited porousness. In this way, these factors reduce their efficiency as supercapacitor electrodes. To address this, the incorporation of transition metal oxides (TMOs) and conducting polymers (CPs) within the CFC is expected to be crucial in developing the electrochemical performance. This work thoroughly reviews the design and the modification of (CFC) that provide high-performance electrode supercapacitors. It emphasizes implementing effective approaches, such as active material loading, specifically focusing on iron oxides. The SCs have high working potentials and can effectively increase their energy density by iron oxides. According to the researchers’ findings, combining CFC and FeCo2O4 has a high electrochemical performance and potential range in aqueous electrolytes. Additionally, this paper outlines and highlights the recent advancements in developing iron oxides-CFC and iron oxides/CP-CFC for supercapacitor applications. It explores their design approaches and electrochemical properties, offering insights into future opportunities for energy storage technologies.

Graphical Abstract


  • Carbon fiber cloth, iron oxides & conducting polymers are effective, abundant materials for supercapacitor electrodes.
  • This review focused on how iron oxides and conductive polymers affect carbon fiber cloth supercapacitor electrodes.
  • Previous research found FeCo2O4 and conductive polymers improved carbon fiber cloth supercapacitor electrodes.
  • The outlook offers insights into improving supercapacitor energy storage using modified carbon fiber cloth electrodes.


Main Subjects

  1. Rajkumar, C.-T. Hsu, T.-H. Wu, M.-G. Chen, C.-C. Hu, Advanced materials for aqueous supercapacitors in the asymmetric design, Prog. Nat. Sci.: Mater. Int., 25 (2015) 527–544.
  2. Wu, L. Yang, S. Chen, Y. Shao, L. Jing, G. Zhao, H. Wei, Core–shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors, RSC Adv., 5 (2015) 91645–91653.
  3. Du, Y.-L. Bai, J. Xu, H. Zhao, L. Zhang, X. Li, J. Zhang, Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors, J. Power Sources, 402 (2018) 281–295.
  4. Y. Guan, A. Kushima, L. Yu, S. Li, J. Li, X.W. Lou, Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors, Adv. Mater., 29 (2017) 1605902.
  5. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials, Adv. Mater., 23 (2011) 2076–2081.
  6. -J. Qiu, L. Liu, Y.-P. Mu, H.-J. Zhang, Y. Wang, Designed synthesis of cobalt-oxidebased nanomaterials for superior electrochemical energy storage devices, Nano Res., 8 (2015) 321–339.
  7. Agnihotri, P. Sen, A. De, M. Mukherjee, Hierarchically designed PEDOT encapsulated graphene-MnO2 nanocomposite as supercapacitors, Mater. Res. Bull., 88 (2017) 218–225.
  8. A.A. Mohd Abdah, N.H.N. Azman, S. Kulandaivalu, Y. Sulaiman, Asymmetric supercapacitor of functionalised electrospun carbon fibers/poly (3,4- ethylenedioxythiophene) /manganese oxide//activated carbon with superior electrochemical performance, Sci. Rep., 9 (2019) 16782.
  9. H. Ko, D. Lei, S. Balasubramaniam, M.-K. Seo, Y.-S. Chung, H.-Y. Kim, and B.-S. Kim, Polypyrrole-decorated hierarchical NiCo2O4 nanoneedles/carbon fiber papers for flexible high-performance supercapacitor applications, Electrochim. Acta, 247 (2017), 524-534.
  10. Gui, L. Wu, Y. Li, and J. Liu. Scalable Wire-Type Asymmetric Pseudocapacitor Achieving High Volumetric Energy/Power Densities and Ultralong Cycling Stability of 100 000 Times, Adv. Sci., 6 (2019) 1802067.
  11. Zhai, S. Sun, X. Liu, C. Liang, G. Wang, and H. Xia, Achieving Insertion-Like Capacity at Ultrahigh Rate via Tunable Surface Pseudocapacitance, Adv. Mater., 30 (2018) 1706640.
  12. Wang, Y. Han, Z. Wang, J. Jiang, Y. Tong, and X. Lu, Nickel@Nickel Oxide Core–Shell Electrode with Significantly Boosted Reactivity for Ultrahigh-Energy and Stable Aqueous Ni–Zn Battery, Adv. Funct. Mater., 28 (2018) 1802157.
  13. Ali J. Saloum, Basma H.Al-Tamimi, Saad B.H., Preparation of Graphene Nanosheets from Graphite Flakes via Shear Assisted Exfoliation, Eng. and Technol. J., 39 (2021) 1663-1668.
  14. Wang, C. Xu, Y. Chen, and Y. Wang, MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density, Energy Storage Mater., 8 (2017) 127-133.
  15. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, and Y. Tong, Iron-Based Supercapacitor Electrodes: Advances and Challenges, Adv. Energy Mater., 6 (2016) 1601053.
  16. Wang, H. Yang, X. Liu, R. Zeng, M. Li, Y. Huang, and X. Hu, Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew. Chem. Int. Ed., 56 (2016) 1105–1110.
  17. Strauss, K. Marsh, M. D. Kowal, M. El-Kady, and R. B. Kaner. A Simple Route to Porous Graphene from Carbon Nanodots for Supercapacitor Applications, Adv. Mater., 30 (2018), 1704449.
  18. Liu, S. Sun, R. Jia, H. Zhang, X. Zhu, C. Zhang, J. Xu, T. Zhai, and H. Xia, Oxygen-Deficient Homo-Interface toward Exciting Boost of Pseudocapacitance, Adv. Funct. Mater., 30 (2020) 1909546.
  19. Yan, S. Li, B. Lan, Y. Wu, and P. S. Lee, Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors, Adv. Funct. Mater., 30 (2020) 1902564.
  20. Zheng, Y. Zeng, S. Liu, C. Zeng, Y. Tong, Z. Zheng, T. Zhu, and X. Lu, Valence and surface modulated vanadium oxide nanowires as new high-energy and durable negative electrode for flexible asymmetric supercapacitors, Energy Storage Mater., 22 (2019) 410-417.
  21. K. Mohammed, A. M. Al-Dahawi, and Q. S. Banyhussan, Effect of adding additional Carbon Fiber on Piezoresistive Properties of Fiber Reinforced Concrete Pavements under Impact Load, Eng. Technol. J., 39 (2021) 1771-1780.
  22. Yu, D. Lin, H. Feng, Y. Zeng, Y. Tong, and X. Lu, Boosting the Energy Density of Carbon-Based Aqueous Supercapacitors by Optimizing the Surface Charge, Angew. Chem. Int. Ed., 56 (2017) 5454-5459.
  23. Song, Y. Jiang, X. Pang, Y. Li, and J. Liu, Electrodepositing a 3D porous rGO electrode for efficient hydrogel electrolyte integration towards 1.6 V flexible symmetric supercapacitors, Chem. Comm., 55 (2019) 8282-8285.
  24. Wu, Z. Liu, X. Zhong, X. Cheng, Z. Fan, and Y. Yu, Amorphous Red Phosphorus Embedded in Sandwiched Porous Carbon Enabling Superior Sodium Storage Performances, Small, 14 (2018) 1703472.
  25. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, and D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. A, 5 (2017) 12653-12672.
  26. Teng, Y. Han, G. Fu, J. Hu, H. Zheng, X. Lu, and J. Jiang, Isostatic pressure-assisted nanocasting preparation of zeolite templated carbon for high-performance and ultrahigh rate capability supercapacitors, J. Mater. Chem. A, 6 (2018) 18938-18947.
  27. Qing, Y. Jiang, H. Lin, L. Wang, A. Liu, Y. Cao, R. Sheng, Y. Guo, C. Fan, and S. Zhang, Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots, J. Mater. Chem. A, 7 (2019) 6021-6027.
  28. Yao, S. Chandrasekaran, H. Zhang, A. Ma, J. Kang, L. Zhang, X. Lu, F. Qian, C. Zhu, and E. B. Duoss, 3D-Printed Structure Boosts the Kinetics and Intrinsic Capacitance of Pseudocapacitive Graphene Aerogels, Adv. Mater., 32 (2020) 1906652.
  29. Zeng, Y., M. Yu, Y. Meng, P. Fang, X. Lu, and Y. Tong, Iron‐based supercapacitor electrodes: advances and challenges, Adv. Energy Mater., 6 (2016) 1601053.
  30. Zhao, Z. Li, M. Zhang, A. Meng, and Q. Li, Direct Growth of Ultrathin NiCo2O4/NiO Nanosheets on SiC Nanowires as a Free-Standing Advanced Electrode for High-Performance Asymmetric Supercapacitors, ACS Sustain. Chem. Eng., 4 (2016) 3598-3608.
  31. Ajeel, and A. Radhi, Optimization of Mild Steel Anodizing Using Box-Wilson Experimental Design, Eng. Technol. J., 32 (2014) 2830–2845.
  32. He, Q. Liu, J. Liu, R. Li, H. Zhang, R. Chen, and J. Wang, Hierarchical NiCo2O4@NiCoAl-layered double hydroxide core/shell nanoforest arrays as advanced electrodes for high-performance asymmetric supercapacitors. J. Alloys Compd., 724 (2017) 130-138.
  33. Jost, D. Stenger, C. R. Perez, J. K. McDonough, K. Lian, Y. Gogotsi and G. Dion, Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics, Energy Environ. Sci., 6 (2013) 2698-2705.
  34. Wang, Z. Ruan, W. S. Ng, H. Li, Z. Tang, Z. Liu, Y. Wang, H. Hu and C. Zhi, Integrating a Triboelectric Nanogenerator and a Zinc-Ion Battery on a Designed Flexible 3D Spacer Fabric, Small Methods, 2 (2018) 1800150.
  35. Wang, W. Liu, Y. Zeng, Y. Han, M. Yu, X. Lu and Y. Tong, A Novel Exfoliation Strategy to Significantly Boost the Energy Storage Capability of Commercial Carbon Cloth, Adv. Mater., 27 (2015) 3572-3578.
  36. Wei, L. Haiwei, K. Parvez, and X. Zhuang, Nitrogen-Doped Carbon Nanosheets with Size-Defined Mesopores as Highly Efficient Metal-Free Catalyst for the Oxygen Reduction Reaction, Angew. Chem. Int. Ed., 53 (2014) 1570–1574.
  37. Piticescu, A. M. Motoc, A. I. Tudor, C. F. Rusti, R. M. Piticescu, and M. D. Ramiro-sanchez, Hydrothermal Synthesis of Nanostructured Materials for Energy Harvesting Applications, Int. J. Mater. Chem. Phys., 1 (2015) 31-42.
  38. Rajagopalan, S. Al- Rubaye, Z. Wu, E. Wang, Y. Liu, C. Wu, W. Xiang, B. Zhong, X. Guo, S. X. Dou, and H. K. Liu, A novel high voltage battery cathodes of Fe2+/Fe3+ sodium fluoro sulfate lined with carbon nanotubes for stable sodium batteries, J. Power Sources, 398 (2018) 175–182.
  39. Al-Keisy, R. Mahdi, D. Ahmed, K. Al-Attafi, and W. H. A. Majid, Enhanced Photoreduction Activity in BiOI1-xFx Nanosheet for Efficient Removal of Pollutants from Aqueous Solution, Chemistry Select., 5 (2020) 9758 –9764.
  40. Al-Rubaye, R. Rajagopalan, C. M. Subramaniyam, Z. Yu, S. X. Dou, and Z. Cheng, Electrochemical performance enhancement in MnCo2O4 nanoflake/graphene nanoplatelets composite, J. Power Sources, 324 (2016) 179–187.
  41. Z. Al Sheheri, Z.M. Al-Amshany, Q.A. Al Sulami, N.Y. Tashkandi, M. Hussein, and R.M. El-Shishtawy, The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites, Des. Monomers Polym., 22 (2019) 8–53.
  42. Wu, D. Niu, J. Zhu, Y. Gao, D. Wei, C. Zhao, C. Wang, F. Wang, L. Wang, and L. Yang, Hierarchical architecture of Ti3C2@PDA/NiCo2S4 composite electrode as high performance supercapacitors, Ceram. Int., 45 (2019) 16261–16269.
  43. M. Lian, W. Utetiwabo, Y. Zhou, Z.-H. Huang, L. Zhou, F. Muhammad, R.-J. Chen, and W. Yang, From upcycled waste polyethylene plastic to graphene/mesoporous carbon for high-voltage supercapacitors, J. Colloid Interface. Sci., 557 (2019) 55–64.
  44. E. Conway, Electrochemical Supercapacitors. Scientific Fundamentals and Technological Applications, Kluwer Academic Plenum Publishers, New York 1999.
  45. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche, Ann. der Phys. Und Chemie., 165 (1853) 211–233.
  46. Gouy, Sur la constitution de la charge électrique à la surface d’un électrolyte, J. Phys. Théorique Appliquée, 9 (1910) 457–468.
  47. L. Chapman, LI. A contribution to the theory of electrocapillarity, Philos. Mag. Ser., 6 25 (1913) 475–481.
  48. Stern, Zur Theorie Der Elektrolytischen Doppelschicht, Zeitschrift für Elektrochemie und Angew. Phys. Chemie, 30 (1924) 508–516.
  49. C. Grahame, The Electrical Double Layer and the Theory of Electrocapillarity, Chem. Rev., 41 (1947) 441–501.
  50. E. Conway, Transition from ‘Supercapacitor’ to ‘Battery’ Behavior in Electrochemical Energy Storage, J. Electrochemical Society, 138 (1991) 1539.
  51. Amirul Aizat Mohd Abdah, N. Hawa Nabilah Azman, S. Kulandaivalu, and Y, Sulaiman, Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors, Mater. Des., 186 (2020) 108199.
  52. Forouzandeh, V. Kumaravel, and S. C. Pillai, Electrode Materials for Supercapacitors: A Review of Recent Advances, Catalysts,  10 (2020) 969.
  53. Han, Y. Lu, S. Shen, Y. Zhong, S, Liu, X. Xia, Y. Tong, and X. Lu, Enhancing the Capacitive Storage Performance of Carbon Fiber Textile by Surface and Structural Modulation for Advanced Flexible Asymmetric Supercapacitors, Adv. Fun. Mater., 29 (2019) 1806329.
  54. Yu, S. Zhai, W. Jiang, K. Goh, L. Wei, X. Chen, R. Jiang, and Y. Chen, Transforming Pristine Carbon Fiber Tows into High Performance Solid-State Fiber Supercapacitors, J. Adv. Mater., 27 (2015) 4895-4901.
  55. Wang, W. Liu, Y. Zeng, Y. Han, M. Yu, X. Lu, and Y. Tong, A Novel Exfoliation Strategy to Significantly Boost the Energy Storage Capability of Commercial Carbon Cloth, J. Adv. Mater., 27 (2015) 3572-3578.
  56. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Y. Tong, and Y. Li, Solid-State Supercapacitor Based on Activated Carbon Cloths Exhibits Excellent Rate Capability, Adv. Mater., 26 (2014) 2676-2682.
  57. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L. L. Zhang, A. H. MacDonald, and R. S. Ruoff, Capacitance of carbon-based electrical double-layer capacitors, Nat. Commun., 5 (2014) 3317.
  58. Davies, and A. Yu, Material advancements in supercapacitors: From activated carbon to carbon nanotube and graphene, Can. J. Chem. Eng., 89 (2011) 1342–1357.
  59. Beguin, E. Frackowiak, Supercapacitors: Materials, Systems, and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany (2013) 69-162.
  60. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, Progress of electrochemical capacitor electrode materials: A review, Int. J. Hydrogen Energy, 34 (2009) 4889–4899.
  61. Ye, Y. Yu1, J. Tang, L. Liu, and Y. Wu, Electrochemical activation of Carbon Cloth in Aqueous Inorganic Salts Solution for superior capacitive performance, Nanoscale, 8 (2016) 10406-10414.
  62. Yu, Y. Zeng, Y. Han, X. Cheng, W. Zhao, C. Liang, Y. Tong, H. Tang, X. Lu, Valence-Optimized Vanadium Oxide Supercapacitor Electrodes Exhibit Ultrahigh Capacitance and Super-Long Cyclic Durability of 100 000 Cycles, Adv. Funct. Mater., 25 (2015) 3534–3540.
  63. Ji, X. Liu, Z. Liu, B. Yan, L. Chen, Y. Xie, C. Liu, W. Hou, G. Yang, In Situ Preparation of Sandwich MoO3/C Hybrid Nanostructures for High-Rate and Ultralong-Life Supercapacitors, Adv. Funct. Mater., 25 (2015) 1886–1894.
  64. Wang, P. Xu, P. Zhang, and S. Ma, Preparation of Electrode Materials Based on Carbon Cloth via Hydrothermal Method and Their Application in Supercapacitors, Materials, 14 (2021) 7148.
  65. Chen, K. Chen, H. Wang, and D. Xue, Composition design upon iron element toward supercapacitor electrode materials, Mater. Focus, 4 (2015) 78–80.
  66. Zhang, H. Wang, Y. Zhang, X. Mu, B. Huang, J. Du, J. Zhou, X. Pan, and E. Xie, Carbon nanotube/hematite core/shell nanowires on carbon cloth for supercapacitor anode with ultrahigh specific capacitance and superb cycling stability, Chem. Eng. J., 325 (2017) 221–228.
  67. Chen, S. Zhou, H. Quan, R. Zou, W. Gao, X. Luo, and L. Guo, Tetsubo-like α- Fe2O3/C nanoarrays on carbon cloth as negative electrode for high-performance asymmetric supercapacitors, Chem. Eng. J., 341 (2018) 102–111.
  68. Li, Y. Wang, W. Xu, Y. Wang, B. Zhang, S. Luo, X. Zhou, C. Zhang, X. Gu, and C. Hu, Porous Fe2O3 Nanospheres Anchored on Activated Carbon Cloth for High-Performance Symmetric Supercapacitors, Nano Energy, 57 (2019) 379–387.
  69. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu, and C. C. Hu, A cost‐effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide‐driven sol–gel process, Adv. Mater., 22 (2010) 347-351.
  70. Wang , C. X. Guo, J. Liu, T. Chen, H. Yang, and C. M. Li, CeO2 nanoparticles/graphene nanocomposite-based high performance supercapacitor, Dalton Transactions., 40 (2011) 6388-6391.
  71. Huang, Y. Song, X. Xu, and X. Liu, Ordered Polypyrrole Nanowire Arrays Grown on Carbon Cloth Substrate for High Performance Pseudocapacitor Electrode, ACS Appl. Mater. Interfaces, 7 (2015) 45 25506–25513.
  72. Song, X. Wang, J. Wang, B. Zhang, and R. Yang, Hierarchical structure of CoFe2O4 core-shell microsphere coating on carbon fiber cloth for high-performance asymmetric flexible supercapacitor applications, Ionics, 25 (2019) 4905–4914.
  73. G. C. Munhoza, A. C. Rodrigues-Siqueli, B. C. S. Fonseca, J. S. Marcuzzo, J. T. Matsushimad, G. F. B. Lenz e Silva, M. R. Baldan, G. Amaral-Labat. Electrochemical Properties of Iron Oxide Decorated Activated Carbon Cloth as a Binder-Free Flexible Electrode, Mater. Res., 25 (2022).
  74. Wu, Z. Pei, M. Lv, D. Huang, Y. Wang, and S.Yuan, Polypyrrole-Coated Low-Crystallinity Iron Oxide Grown on Carbon Cloth Enabling Enhanced Electrochemical Supercapacitor Performance, Molecules, 28 (2023) 434.
  75. He, Y. Zhao, R. Chen, H. Zhang, J. Liu, Q. Liu, D. Song, R. Li, and J. Wang, Hierarchical FeCo2O4@polypyrrole core/shell nanowires on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors, ACS Sustainable Chem. Eng., 6 (2018) 14945–14954.
  76. Wang, S. Li, J. Sun, Y. Zhang, H. Chen, and C. Xu, Simple solvothermal synthesis of magnesium cobaltite microflowers as a battery grade material with high electrochemical performances. Ceram. Int., 45 (2019) 14642−14651.
  77. Pendashteh, J. Palma, M. Anderson, R. Marcilla, Nanostructured porous wires of iron cobaltite: novel positive electrode for high-performance hybrid energy storage devices, J. Mater. Chem. A. 3 (2015) 16849–16859.
  78. G. Mohamed, C.-J. Chen, C.K. Chen, S.-F. Hu, R.-S. Liu, High-Performance Lithium-Ion Battery and Symmetric Supercapacitors Based on FeCo2O4Nanoflakes Electrodes, ACS Appl. Mater. Interfaces., 6 (2014) 22701–22708.