Document Type : Review Paper

Authors

1 Production Engineering and Metallurgy Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 Department of Physiology, Hammurabi College of Medicine, University of Babylon, Iraq.

Abstract

Carbon fiber cloths (CFCs) are essential materials extensively studied and utilized in numerous applications, including supercapacitors (SCs), batteries, solar cells, and catalysis. CFC is gaining significant research attention as an inexpensive choice for (SC) electrode materials, mainly owing to its peculiar adaptability, which makes it suitable for conveyable or flexible devices. In fact, this characteristic is not easily attainable with other carbon-based matrices. However, bare CFC electrodes face difficulties concerning their capacitive performance because of numerous factors, including markedly little surface space, poor electrochemical efficacy, and limited porousness. In this way, these factors reduce their efficiency as supercapacitor electrodes. To address this, the incorporation of transition metal oxides (TMOs) and conducting polymers (CPs) within the CFC is expected to be crucial in developing the electrochemical performance. This work thoroughly reviews the design and the modification of (CFC) that provide high-performance electrode supercapacitors. It emphasizes implementing effective approaches, such as active material loading, specifically focusing on iron oxides. The SCs have high working potentials and can effectively increase their energy density by iron oxides. According to the researchers’ findings, combining CFC and FeCo2O4 has a high electrochemical performance and potential range in aqueous electrolytes. Additionally, this paper outlines and highlights the recent advancements in developing iron oxides-CFC and iron oxides/CP-CFC for supercapacitor applications. It explores their design approaches and electrochemical properties, offering insights into future opportunities for energy storage technologies.

Graphical Abstract

Highlights

  • Carbon fiber cloth, iron oxides & conducting polymers are effective, abundant materials for supercapacitor electrodes.
  • This review focused on how iron oxides and conductive polymers affect carbon fiber cloth supercapacitor electrodes.
  • Previous research found FeCo2O4 and conductive polymers improved carbon fiber cloth supercapacitor electrodes.
  • The outlook offers insights into improving supercapacitor energy storage using modified carbon fiber cloth electrodes.

Keywords

Main Subjects

  1. Rajkumar, C.-T. Hsu, T.-H. Wu, M.-G. Chen, C.-C. Hu, Advanced materials for aqueous supercapacitors in the asymmetric design, Prog. Nat. Sci.: Mater. Int., 25 (2015) 527–544. https://doi.org/10.1016/j.pnsc.2015.11.012
  2. Wu, L. Yang, S. Chen, Y. Shao, L. Jing, G. Zhao, H. Wei, Core–shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors, RSC Adv., 5 (2015) 91645–91653. https://doi.org/10.1039/C5RA17036B
  3. Du, Y.-L. Bai, J. Xu, H. Zhao, L. Zhang, X. Li, J. Zhang, Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors, J. Power Sources, 402 (2018) 281–295. https://doi.org/10.1016/j.jpowsour.2018.09.023
  4. Y. Guan, A. Kushima, L. Yu, S. Li, J. Li, X.W. Lou, Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors, Adv. Mater., 29 (2017) 1605902. https://doi.org/10.1002/adma.201605902
  5. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials, Adv. Mater., 23 (2011) 2076–2081. https://doi.org/10.1002/adma.201100058
  6. -J. Qiu, L. Liu, Y.-P. Mu, H.-J. Zhang, Y. Wang, Designed synthesis of cobalt-oxidebased nanomaterials for superior electrochemical energy storage devices, Nano Res., 8 (2015) 321–339. https://doi.org/10.1007/s12274-014-0589-6
  7. Agnihotri, P. Sen, A. De, M. Mukherjee, Hierarchically designed PEDOT encapsulated graphene-MnO2 nanocomposite as supercapacitors, Mater. Res. Bull., 88 (2017) 218–225. https://doi.org/10.1016/j.materresbull.2016.12.036
  8. A.A. Mohd Abdah, N.H.N. Azman, S. Kulandaivalu, Y. Sulaiman, Asymmetric supercapacitor of functionalised electrospun carbon fibers/poly (3,4- ethylenedioxythiophene) /manganese oxide//activated carbon with superior electrochemical performance, Sci. Rep., 9 (2019) 16782. https://doi.org/10.1038/s41598-019-53421-w
  9. H. Ko, D. Lei, S. Balasubramaniam, M.-K. Seo, Y.-S. Chung, H.-Y. Kim, and B.-S. Kim, Polypyrrole-decorated hierarchical NiCo2O4 nanoneedles/carbon fiber papers for flexible high-performance supercapacitor applications, Electrochim. Acta, 247 (2017), 524-534. https://doi.org/10.1016/j.electacta.2017.07.047
  10. Gui, L. Wu, Y. Li, and J. Liu. Scalable Wire-Type Asymmetric Pseudocapacitor Achieving High Volumetric Energy/Power Densities and Ultralong Cycling Stability of 100 000 Times, Adv. Sci., 6 (2019) 1802067. https://doi.org/10.1002/advs.201802067
  11. Zhai, S. Sun, X. Liu, C. Liang, G. Wang, and H. Xia, Achieving Insertion-Like Capacity at Ultrahigh Rate via Tunable Surface Pseudocapacitance, Adv. Mater., 30 (2018) 1706640. https://doi.org/10.1002/adma.201706640
  12. Wang, Y. Han, Z. Wang, J. Jiang, Y. Tong, and X. Lu, Nickel@Nickel Oxide Core–Shell Electrode with Significantly Boosted Reactivity for Ultrahigh-Energy and Stable Aqueous Ni–Zn Battery, Adv. Funct. Mater., 28 (2018) 1802157. https://doi.org/10.1002/adfm.201802157
  13. Ali J. Saloum, Basma H.Al-Tamimi, Saad B.H., Preparation of Graphene Nanosheets from Graphite Flakes via Shear Assisted Exfoliation, Eng. and Technol. J., 39 (2021) 1663-1668. http://doi.org/10.30684/etj.v39i11.2219
  14. Wang, C. Xu, Y. Chen, and Y. Wang, MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density, Energy Storage Mater., 8 (2017) 127-133. https://doi.org/10.1016/j.ensm.2017.05.007
  15. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, and Y. Tong, Iron-Based Supercapacitor Electrodes: Advances and Challenges, Adv. Energy Mater., 6 (2016) 1601053. https://doi.org/10.1002/aenm.201601053
  16. Wang, H. Yang, X. Liu, R. Zeng, M. Li, Y. Huang, and X. Hu, Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew. Chem. Int. Ed., 56 (2016) 1105–1110. https://doi.org/10.1002/anie.201609527
  17. Strauss, K. Marsh, M. D. Kowal, M. El-Kady, and R. B. Kaner. A Simple Route to Porous Graphene from Carbon Nanodots for Supercapacitor Applications, Adv. Mater., 30 (2018), 1704449. https://doi.org/10.1002/adma.201704449
  18. Liu, S. Sun, R. Jia, H. Zhang, X. Zhu, C. Zhang, J. Xu, T. Zhai, and H. Xia, Oxygen-Deficient Homo-Interface toward Exciting Boost of Pseudocapacitance, Adv. Funct. Mater., 30 (2020) 1909546.https://doi.org/10.1002/adfm.201909546
  19. Yan, S. Li, B. Lan, Y. Wu, and P. S. Lee, Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors, Adv. Funct. Mater., 30 (2020) 1902564. https://doi.org/10.1002/adfm.201902564
  20. Zheng, Y. Zeng, S. Liu, C. Zeng, Y. Tong, Z. Zheng, T. Zhu, and X. Lu, Valence and surface modulated vanadium oxide nanowires as new high-energy and durable negative electrode for flexible asymmetric supercapacitors, Energy Storage Mater., 22 (2019) 410-417. https://doi.org/10.1016/j.ensm.2019.02.012
  21. K. Mohammed, A. M. Al-Dahawi, and Q. S. Banyhussan, Effect of adding additional Carbon Fiber on Piezoresistive Properties of Fiber Reinforced Concrete Pavements under Impact Load, Eng. Technol. J., 39 (2021) 1771-1780. https://doi.org/10.30684/etj.v39i12.1942
  22. Yu, D. Lin, H. Feng, Y. Zeng, Y. Tong, and X. Lu, Boosting the Energy Density of Carbon-Based Aqueous Supercapacitors by Optimizing the Surface Charge, Angew. Chem. Int. Ed., 56 (2017) 5454-5459. https://doi.org/10.1002/anie.201701737
  23. Song, Y. Jiang, X. Pang, Y. Li, and J. Liu, Electrodepositing a 3D porous rGO electrode for efficient hydrogel electrolyte integration towards 1.6 V flexible symmetric supercapacitors, Chem. Comm., 55 (2019) 8282-8285. https://doi.org/10.1039/C9CC03699G
  24. Wu, Z. Liu, X. Zhong, X. Cheng, Z. Fan, and Y. Yu, Amorphous Red Phosphorus Embedded in Sandwiched Porous Carbon Enabling Superior Sodium Storage Performances, Small, 14 (2018) 1703472. https://doi.org/10.1002/smll.201703472
  25. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, and D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. A, 5 (2017) 12653-12672. https://doi.org/10.1039/C7TA00863E
  26. Teng, Y. Han, G. Fu, J. Hu, H. Zheng, X. Lu, and J. Jiang, Isostatic pressure-assisted nanocasting preparation of zeolite templated carbon for high-performance and ultrahigh rate capability supercapacitors, J. Mater. Chem. A, 6 (2018) 18938-18947. https://doi.org/10.1039/C8TA05726E
  27. Qing, Y. Jiang, H. Lin, L. Wang, A. Liu, Y. Cao, R. Sheng, Y. Guo, C. Fan, and S. Zhang, Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots, J. Mater. Chem. A, 7 (2019) 6021-6027. https://doi.org/10.1039/C8TA11620B
  28. Yao, S. Chandrasekaran, H. Zhang, A. Ma, J. Kang, L. Zhang, X. Lu, F. Qian, C. Zhu, and E. B. Duoss, 3D-Printed Structure Boosts the Kinetics and Intrinsic Capacitance of Pseudocapacitive Graphene Aerogels, Adv. Mater., 32 (2020) 1906652. https://doi.org/10.1002/adma.201906652
  29. Zeng, Y., M. Yu, Y. Meng, P. Fang, X. Lu, and Y. Tong, Iron‐based supercapacitor electrodes: advances and challenges, Adv. Energy Mater., 6 (2016) 1601053. https://doi.org/10.1002/aenm.201601053
  30. Zhao, Z. Li, M. Zhang, A. Meng, and Q. Li, Direct Growth of Ultrathin NiCo2O4/NiO Nanosheets on SiC Nanowires as a Free-Standing Advanced Electrode for High-Performance Asymmetric Supercapacitors, ACS Sustain. Chem. Eng., 4 (2016) 3598-3608. https://doi.org/10.1021/acssuschemeng.6b00697
  31. Ajeel, and A. Radhi, Optimization of Mild Steel Anodizing Using Box-Wilson Experimental Design, Eng. Technol. J., 32 (2014) 2830–2845. https://doi.org/10.30684/etj.32.11A.18
  32. He, Q. Liu, J. Liu, R. Li, H. Zhang, R. Chen, and J. Wang, Hierarchical NiCo2O4@NiCoAl-layered double hydroxide core/shell nanoforest arrays as advanced electrodes for high-performance asymmetric supercapacitors. J. Alloys Compd., 724 (2017) 130-138. https://doi.org/10.1016/j.jallcom.2017.06.256
  33. Jost, D. Stenger, C. R. Perez, J. K. McDonough, K. Lian, Y. Gogotsi and G. Dion, Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics, Energy Environ. Sci., 6 (2013) 2698-2705. https://doi.org/10.1039/C3EE40515J
  34. Wang, Z. Ruan, W. S. Ng, H. Li, Z. Tang, Z. Liu, Y. Wang, H. Hu and C. Zhi, Integrating a Triboelectric Nanogenerator and a Zinc-Ion Battery on a Designed Flexible 3D Spacer Fabric, Small Methods, 2 (2018) 1800150. https://doi.org/10.1002/smtd.201800150
  35. Wang, W. Liu, Y. Zeng, Y. Han, M. Yu, X. Lu and Y. Tong, A Novel Exfoliation Strategy to Significantly Boost the Energy Storage Capability of Commercial Carbon Cloth, Adv. Mater., 27 (2015) 3572-3578. https://doi.org/10.1002/adma.201500707
  36. Wei, L. Haiwei, K. Parvez, and X. Zhuang, Nitrogen-Doped Carbon Nanosheets with Size-Defined Mesopores as Highly Efficient Metal-Free Catalyst for the Oxygen Reduction Reaction, Angew. Chem. Int. Ed., 53 (2014) 1570–1574. https://doi.org/10.1002/anie.201307319
  37. Piticescu, A. M. Motoc, A. I. Tudor, C. F. Rusti, R. M. Piticescu, and M. D. Ramiro-sanchez, Hydrothermal Synthesis of Nanostructured Materials for Energy Harvesting Applications, Int. J. Mater. Chem. Phys., 1 (2015) 31-42.
  38. Rajagopalan, S. Al- Rubaye, Z. Wu, E. Wang, Y. Liu, C. Wu, W. Xiang, B. Zhong, X. Guo, S. X. Dou, and H. K. Liu, A novel high voltage battery cathodes of Fe2+/Fe3+ sodium fluoro sulfate lined with carbon nanotubes for stable sodium batteries, J. Power Sources, 398 (2018) 175–182. https://doi.org/10.1016/j.jpowsour.2018.07.066
  39. Al-Keisy, R. Mahdi, D. Ahmed, K. Al-Attafi, and W. H. A. Majid, Enhanced Photoreduction Activity in BiOI1-xFx Nanosheet for Efficient Removal of Pollutants from Aqueous Solution, Chemistry Select., 5 (2020) 9758 –9764. https://doi.org/10.1002/slct.202000805
  40. Al-Rubaye, R. Rajagopalan, C. M. Subramaniyam, Z. Yu, S. X. Dou, and Z. Cheng, Electrochemical performance enhancement in MnCo2O4 nanoflake/graphene nanoplatelets composite, J. Power Sources, 324 (2016) 179–187. https://doi.org/10.1016/j.jpowsour.2016.05.081
  41. Z. Al Sheheri, Z.M. Al-Amshany, Q.A. Al Sulami, N.Y. Tashkandi, M. Hussein, and R.M. El-Shishtawy, The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites, Des. Monomers Polym., 22 (2019) 8–53. http://doi.org/10.1080/15685551.2019.1565664
  42. Wu, D. Niu, J. Zhu, Y. Gao, D. Wei, C. Zhao, C. Wang, F. Wang, L. Wang, and L. Yang, Hierarchical architecture of Ti3C2@PDA/NiCo2S4 composite electrode as high performance supercapacitors, Ceram. Int., 45 (2019) 16261–16269. http://doi.org/10.1016/j.ceramint.2019.05.149
  43. M. Lian, W. Utetiwabo, Y. Zhou, Z.-H. Huang, L. Zhou, F. Muhammad, R.-J. Chen, and W. Yang, From upcycled waste polyethylene plastic to graphene/mesoporous carbon for high-voltage supercapacitors, J. Colloid Interface. Sci., 557 (2019) 55–64. https://doi.org/10.1016/j.jcis.2019.09.003
  44. E. Conway, Electrochemical Supercapacitors. Scientific Fundamentals and Technological Applications, Kluwer Academic Plenum Publishers, New York 1999.
  45. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche, Ann. der Phys. Und Chemie., 165 (1853) 211–233. https://doi.org/10.1002/andp.18531650603
  46. Gouy, Sur la constitution de la charge électrique à la surface d’un électrolyte, J. Phys. Théorique Appliquée, 9 (1910) 457–468. https://doi.org/10.1051/jphystap:019100090045700
  47. L. Chapman, LI. A contribution to the theory of electrocapillarity, Philos. Mag. Ser., 6 25 (1913) 475–481. https://doi.org/10.1080/14786440408634187
  48. Stern, Zur Theorie Der Elektrolytischen Doppelschicht, Zeitschrift für Elektrochemie und Angew. Phys. Chemie, 30 (1924) 508–516. https://doi.org/10.1002/bbpc.192400182
  49. C. Grahame, The Electrical Double Layer and the Theory of Electrocapillarity, Chem. Rev., 41 (1947) 441–501. https://doi.org/10.1021/cr60130a002
  50. E. Conway, Transition from ‘Supercapacitor’ to ‘Battery’ Behavior in Electrochemical Energy Storage, J. Electrochemical Society, 138 (1991) 1539. https://doi.org/10.1149/1.2085829
  51. Amirul Aizat Mohd Abdah, N. Hawa Nabilah Azman, S. Kulandaivalu, and Y, Sulaiman, Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors, Mater. Des., 186 (2020) 108199. https://doi.org/10.1016/j.matdes.2019.108199
  52. Forouzandeh, V. Kumaravel, and S. C. Pillai, Electrode Materials for Supercapacitors: A Review of Recent Advances, Catalysts,  10 (2020) 969. https://doi.org/10.3390/catal10090969
  53. Han, Y. Lu, S. Shen, Y. Zhong, S, Liu, X. Xia, Y. Tong, and X. Lu, Enhancing the Capacitive Storage Performance of Carbon Fiber Textile by Surface and Structural Modulation for Advanced Flexible Asymmetric Supercapacitors, Adv. Fun. Mater., 29 (2019) 1806329. https://doi.org/10.1002/adfm.201806329
  54. Yu, S. Zhai, W. Jiang, K. Goh, L. Wei, X. Chen, R. Jiang, and Y. Chen, Transforming Pristine Carbon Fiber Tows into High Performance Solid-State Fiber Supercapacitors, J. Adv. Mater., 27 (2015) 4895-4901. https://doi.org/10.1002/adma.201501948
  55. Wang, W. Liu, Y. Zeng, Y. Han, M. Yu, X. Lu, and Y. Tong, A Novel Exfoliation Strategy to Significantly Boost the Energy Storage Capability of Commercial Carbon Cloth, J. Adv. Mater., 27 (2015) 3572-3578. https://doi.org/10.1002/adma.201500707
  56. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Y. Tong, and Y. Li, Solid-State Supercapacitor Based on Activated Carbon Cloths Exhibits Excellent Rate Capability, Adv. Mater., 26 (2014) 2676-2682. https://doi.org/10.1002/adma.201304756
  57. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L. L. Zhang, A. H. MacDonald, and R. S. Ruoff, Capacitance of carbon-based electrical double-layer capacitors, Nat. Commun., 5 (2014) 3317. https://doi.org/10.1038/ncomms4317
  58. Davies, and A. Yu, Material advancements in supercapacitors: From activated carbon to carbon nanotube and graphene, Can. J. Chem. Eng., 89 (2011) 1342–1357. https://doi.org/10.1002/cjce.20586
  59. Beguin, E. Frackowiak, Supercapacitors: Materials, Systems, and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany (2013) 69-162.
  60. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, Progress of electrochemical capacitor electrode materials: A review, Int. J. Hydrogen Energy, 34 (2009) 4889–4899. https://doi.org/10.1016/j.ijhydene.2009.04.005
  61. Ye, Y. Yu1, J. Tang, L. Liu, and Y. Wu, Electrochemical activation of Carbon Cloth in Aqueous Inorganic Salts Solution for superior capacitive performance, Nanoscale, 8 (2016) 10406-10414. https://doi.org/10.1039/C6NR00606J.
  62. Yu, Y. Zeng, Y. Han, X. Cheng, W. Zhao, C. Liang, Y. Tong, H. Tang, X. Lu, Valence-Optimized Vanadium Oxide Supercapacitor Electrodes Exhibit Ultrahigh Capacitance and Super-Long Cyclic Durability of 100 000 Cycles, Adv. Funct. Mater., 25 (2015) 3534–3540. https://doi.org/10.1002/adfm.201501342
  63. Ji, X. Liu, Z. Liu, B. Yan, L. Chen, Y. Xie, C. Liu, W. Hou, G. Yang, In Situ Preparation of Sandwich MoO3/C Hybrid Nanostructures for High-Rate and Ultralong-Life Supercapacitors, Adv. Funct. Mater., 25 (2015) 1886–1894. https://doi.org/10.1002/adfm.201404378
  64. Wang, P. Xu, P. Zhang, and S. Ma, Preparation of Electrode Materials Based on Carbon Cloth via Hydrothermal Method and Their Application in Supercapacitors, Materials, 14 (2021) 7148. https://doi.org/10.3390/ma14237148
  65. Chen, K. Chen, H. Wang, and D. Xue, Composition design upon iron element toward supercapacitor electrode materials, Mater. Focus, 4 (2015) 78–80. https://doi.org/10.1166/mat.2015.1213
  66. Zhang, H. Wang, Y. Zhang, X. Mu, B. Huang, J. Du, J. Zhou, X. Pan, and E. Xie, Carbon nanotube/hematite core/shell nanowires on carbon cloth for supercapacitor anode with ultrahigh specific capacitance and superb cycling stability, Chem. Eng. J., 325 (2017) 221–228. https://doi.org/10.1016/j.cej.2017.05.045
  67. Chen, S. Zhou, H. Quan, R. Zou, W. Gao, X. Luo, and L. Guo, Tetsubo-like α- Fe2O3/C nanoarrays on carbon cloth as negative electrode for high-performance asymmetric supercapacitors, Chem. Eng. J., 341 (2018) 102–111. https://doi.org/10.1016/j.cej.2018.02.021
  68. Li, Y. Wang, W. Xu, Y. Wang, B. Zhang, S. Luo, X. Zhou, C. Zhang, X. Gu, and C. Hu, Porous Fe2O3 Nanospheres Anchored on Activated Carbon Cloth for High-Performance Symmetric Supercapacitors, Nano Energy, 57 (2019) 379–387. https://doi.org/10.1016/j.nanoen.2018.12.061
  69. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu, and C. C. Hu, A cost‐effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide‐driven sol–gel process, Adv. Mater., 22 (2010) 347-351. https://doi.org/10.1002/adma.200902175
  70. Wang , C. X. Guo, J. Liu, T. Chen, H. Yang, and C. M. Li, CeO2 nanoparticles/graphene nanocomposite-based high performance supercapacitor, Dalton Transactions., 40 (2011) 6388-6391. http://dx.doi.org/10.1039/c1dt10397k
  71. Huang, Y. Song, X. Xu, and X. Liu, Ordered Polypyrrole Nanowire Arrays Grown on Carbon Cloth Substrate for High Performance Pseudocapacitor Electrode, ACS Appl. Mater. Interfaces, 7 (2015) 45 25506–25513. https://doi.org/10.1021/acsami.5b08830
  72. Song, X. Wang, J. Wang, B. Zhang, and R. Yang, Hierarchical structure of CoFe2O4 core-shell microsphere coating on carbon fiber cloth for high-performance asymmetric flexible supercapacitor applications, Ionics, 25 (2019) 4905–4914. https://doi.org/10.1007/s11581-019-03030-4
  73. G. C. Munhoza, A. C. Rodrigues-Siqueli, B. C. S. Fonseca, J. S. Marcuzzo, J. T. Matsushimad, G. F. B. Lenz e Silva, M. R. Baldan, G. Amaral-Labat. Electrochemical Properties of Iron Oxide Decorated Activated Carbon Cloth as a Binder-Free Flexible Electrode, Mater. Res., 25 (2022). https://doi.org/10.1590/1980-5373-MR-2022-0142
  74. Wu, Z. Pei, M. Lv, D. Huang, Y. Wang, and S.Yuan, Polypyrrole-Coated Low-Crystallinity Iron Oxide Grown on Carbon Cloth Enabling Enhanced Electrochemical Supercapacitor Performance, Molecules, 28 (2023) 434. https://doi.org/10.3390/molecules28010434
  75. He, Y. Zhao, R. Chen, H. Zhang, J. Liu, Q. Liu, D. Song, R. Li, and J. Wang, Hierarchical FeCo2O4@polypyrrole core/shell nanowires on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors, ACS Sustainable Chem. Eng., 6 (2018) 14945–14954. https://doi.org/10.1021/acssuschemeng.8b03440
  76. Wang, S. Li, J. Sun, Y. Zhang, H. Chen, and C. Xu, Simple solvothermal synthesis of magnesium cobaltite microflowers as a battery grade material with high electrochemical performances. Ceram. Int., 45 (2019) 14642−14651. https://doi.org/10.1016/j.ceramint.2019.04.183
  77. Pendashteh, J. Palma, M. Anderson, R. Marcilla, Nanostructured porous wires of iron cobaltite: novel positive electrode for high-performance hybrid energy storage devices, J. Mater. Chem. A. 3 (2015) 16849–16859. http://doi.org/10.1039/C5TA02701B
  78. G. Mohamed, C.-J. Chen, C.K. Chen, S.-F. Hu, R.-S. Liu, High-Performance Lithium-Ion Battery and Symmetric Supercapacitors Based on FeCo2O4Nanoflakes Electrodes, ACS Appl. Mater. Interfaces., 6 (2014) 22701–22708. https://doi.org/10.1021/am5068244