Document Type : Review Paper

Authors

Mechanical and Manufacturing Engineering, College of Engineering, Sulaimani Polytechnic University, Sulaimani, Kurdistan, Iraq.

Abstract

The effect of calcium carbonate nanoparticles (CaCO3) on the mechanical and thermal properties of various polymers was investigated in this review. The results were compared to scholarly research published between 2002-2022. Different polymers were evaluated, including Polypropylene (PP), High-density polyethylene (HDPE), Polyvinyl chloride (PVC), Low-density polyethylene (LDPE), Polyethylene (PE), and natural rubber (NR). Through this work, the effect of CaCO3 nanoparticles that act as fillers in polymeric materials has been reviewed. It can be concluded that mechanical and thermal properties can be decreased, increased, or unchanged by increasing and decreasing the fillers to obtain optimal results. It is reasonable to conclude that most papers with nano-CaCO3 showed improvements in appreciable mechanical and thermal properties. In general, the term "surface modification of inorganic fillers" refers to the coating of the fillers with organic materials, which can be done by physical and chemical interactions between the modifiers and the fillers. The reviewed articles revealed that modification of CaCO3 nanoparticles with surface pre-treatment fillers caused enhancement of the mechanical properties of the polymeric matrix twice and prevented the agglomeration of particles in the matrix. Various mixing methods have been used, the most significant being a twin screw extruder, mechanical stirrer, and two-roll mill.

Graphical Abstract

Highlights

  • he nano-CaCO3 showed appreciable mechanical and thermal properties
  • The modification of CaCO3 nanoparticles with surface pre-treatment caused enhancement of the mechanical properties twice
  • Surface pre-treatment prevented the agglomeration of particles in the matrix
  • The twin screw extruder method showed appreciable results

Keywords

Main Subjects

  1. S. Nalwa, Handbook of organic-inorganic hybrid materials and nanocomposites, Am. Sci. Publishers, 2003.
  2. Lapčík, D. Maňas, M. Vašina, B. Lapčíková, M. Řezníček, P. Zádrapa, High density poly (ethylene)/CaCO3 hollow spheres composites for technical applications,Composites Part B: Eng., 113 (2017) 218-224.   https://doi.org/10.1016/j.compositesb.2017.01.025
  3. Zokaei , R. Bagheri,Study of scratch resistance in homo-and co-polypropylene filled with nanometric calcium carbonate, Mater. Sci. Eng. A, 445 (2007) 526-536. https://doi.org/10.1016/j.msea.2006.09.080
  4. M. Deng, M. Chen, N. J. Ao, D. Yan, Z. Q. Zheng,CaCO3/natural rubber latex nanometer composite and its properties, J. Appl. Polym. Sci., 101 (2006) 3442-3447. https://doi.org/10.1002/app.24345
  5. Mishra, N. G. Shimpi, A. D. Mali,Investigation of photo‐oxidative effect on morphology and degradation of mechanical and physical properties of nano CaCO3 silicone rubber composites, Polym. Adv. Technol., 23 (2012) 236-246. https://doi.org/10.1002/pat.1861
  6. Sonawane, S. Mishra, N. Shimpi,Effect of nano-CaCO3 on mechanical and thermal properties of polyamide nanocomposites, Polym. Plast. Technol .Eng., 49 (2009) 38-44. https://doi.org/10.1080/03602550903204220
  7. Mishra, S. Sonawane, R. Singh,Studies on characterization of nano CaCO3 prepared by the in situ deposition technique and its application in PP‐nano CaCO3 composites, J. Polym. Sci B Polym. Phys., 43 (2005)107-113. https://doi.org/10.1002/polb.20296
  8. Wang, Y. X. Moo, C. Chen, P. Gunawan, R. Xu, Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyapatite nanospheres, J. Colloid. Interface. Sci., 352 (2010) 393-400. https://doi.org/10.1016/j.jcis.2010.08.060
  9. Shimpi , S. Mishra, Synthesis of nanoparticles and its effect on properties of elastomeric nanocomposites, J . Nanopart. Res., 12 (2010) 2093-2099. https://doi.org/10.1007/s11051-009-9768-x
  10. Mishra, A. Chatterjee, R. Singh,Novel synthesis of nano‐calcium carbonate (CaCO3)/polystyrene (PS) core–shell nanoparticles by atomized microemulsion technique and its effect on properties of polypropylene (PP) composites, Polym . Adv. Technol., 22 (2011) 2571-2582. https://doi.org/10.1002/pat.1802
  11. S. Fischer, J. K. Galinat, S. S. Bang, Microbiological precipitation of CaCO3, Soil. Biol. Biochem, 31 (1999) 1563-1571 . https://doi.org/10.1016/S0038-0717(99)00082-6
  12. Mishra, N. Shimpi, U. Patil, Effect of nano CaCO3 on thermal properties of styrene butadiene rubber (SBR), J. Polym. Res., 14 (2007) 449-459. https://doi.org/10.1007/s10965-007-9127-5
  13. Xiang, Y. Xiang, Y. Wen, F. Wei,Formation of CaCO3 nanoparticles in the presence of terpineol, Mater. Lett., 58 (2004) 959-965. https://doi.org/10.1016/j.matlet.2003.07.034
  14. Sheng, J. Zhao, B. Zhou, X. Ding, Y. Deng, Z. Wang,In situ preparation of CaCO3/polystyrene composite nanoparticles, Mater. Letters., 60 (2006) 3248-3250. https://doi.org/10.1016/j.matlet.2006.02.090
  15. H. Sonawane ,An innovative method for effective micro-mixing of CO2 gas during synthesis of nano-calcite crystal using sonochemical carbonization, J. Chem. Eng., 143 (2008) 308-313 . https://doi.org/10.1016/j.cej.2008.05.030
  16. Shimpi, A. Mali, D. Hansora, S. Mishra, Synthesis and surface modification of calcium carbonate nanoparticles using ultrasound cavitation technique, Nanosci. Nanotechnol., 3 (2015) 8-12. https://doi.org/10.13189/nn.2015.030102
  17. Q. Mahmood, K. Marossy, P. Baumli, Effects of nanocrystalline calcium oxide particles on mechanical, thermal, and electrical properties of EPDM rubber, Colloid . Polym. Sci., 299 (2021) 1669-1682.
  18. Pradittham, N. Charitngam, S. Puttajan, D. Atong, C. Pechyen,Surface modified CaCO3 by palmitic acid as nucleating agents for polypropylene film: mechanical, thermal and physical properties, Energy Procedia, 56 (2014) 264-273. https://doi.org/10.1016/j.egypro.2014.07.157
  19. Deshmane, Q. Yuan, R. Misra,On the fracture characteristics of impact tested high density polyethylene–calcium carbonate nanocomposites, Mater. Sci. Eng. A, 452 (2007) 592-601. https://doi.org/10.1016/j.msea.2006.11.059
  20. Lin, H. Chen, C.-M. Chan, J. Wu,Effects of coating amount and particle concentration on the impact toughness of polypropylene/CaCO3 nanocomposites, Eur. Polym. J., 47 (2011) 294-304 . https://doi.org/10.1016/j.eurpolymj.2010.12.004
  21. X. Zhang, Z. Z. Yu, X. L. Xie, Y. W. Mai,Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier, Polymer, 45 (2004) 5985-5994.
  22. Cao, Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods, Appl. Surf. Sci., 378 (2016) 320-329. https://doi.org/10.1016/j.apsusc.2016.03.205
  23. M. do Nascimento, D. Eiras, L. A. Pessan,Effect of thermal treatment on impact resistance and mechanical properties of polypropylene/calcium carbonate nanocomposites, Compos. B: Eng., 91 (2016) 228-234. https://doi.org/10.1016/j.compositesb.2015.12.040
  24. Wang et al.,Novel rigid poly (vinyl chloride) ternary nanocomposites containing ultrafine full-vulcanized powdered rubber and untreated nanosized calcium carbonate, Mater. Lett., 61 (2007) 1174-1177. https://doi.org/10.1016/j.matlet.2006.06.078
  25. A. Osman, A. Atallah, U. W. Suter,Influence of excessive filler coating on the tensile properties of LDPE–calcium carbonate composites, Polymer, 45 (2004) 1177-1183. https://doi.org/10.1016/j.polymer.2003.12.020
  26. Jong, Synergistic effect of calcium carbonate and biobased particles for rubber reinforcement and comparison to silica reinforced rubber, J. Compos. Sci., 4 (2020) 113. https://doi.org/10.3390/jcs4030113
  27. He, Z. Zhang, J. Wang, K. Li,Compressive properties of nano-calcium carbonate/epoxy and its fibre composites, Compos. B: Eng., 45 (2013) 919-924. https://doi.org/10.1016/j.compositesb.2012.09.050
  28. ]L. Jiang, Y. Lam, K. Tam, T. Chua, G. Sim, L. Ang, Strengthening acrylonitrile-butadiene-styrene (ABS) with nanosized and micron-sized calcium carbonate,Polymer, 46 (2005) 243-252. https://doi.org/10.1016/j.polymer.2004.11.001
  29. Fang, B. Song, T.-T. Tee, L. T. Sin, D. Hui, and S.-T. Bee, Investigation of dynamic characteristics of nano-size calcium carbonate added in natural rubber vulcanizate, Compos. P. B: Eng., 60 (2014) 561-567. https://doi.org/10.1016/j.compositesb.2014.01.010
  30. K. Konar, R. Gu, and M. Sain, Preparation and characterization of baked nitrile latex foam reinforced with biomasses, Ind. Crops Prod., 42 (2013) 261-267.https://doi.org/10.1016/j.indcrop.2012.05.036
  31. Ismail and M. Mathialagan, Comparative study on the effect of partial replacement of silica or calcium carbonate by bentonite on the properties of EPDM composites, Polym. Test., 31 (2012) 199-208. https://doi.org/10.1016/j.polymertesting.2011.09.002
  32. Mishra and N. Shimpi, Mechanical and flame‐retarding properties of styrene–butadiene rubber filled with nano‐CaCO3 as a filler and linseed oil as an extender, J. Appl. Polym. Sci., 98 (2005) 2563-2571. https://doi.org/10.1002/app.22458
  33. -L. Jin and S.-J. Park, Thermo-mechanical behaviors of butadiene rubber reinforced with nanosized calcium carbonate, Mater. Sci. Eng., : A 478 (2008) 406-408. https://doi.org/10.1016/j.msea.2007.05.102
  34. Y. Tang, L. C. Chan, J. Liang, K. W. E. Cheng, and T. Wong, Mechanical and thermal properties of ABS-CaCO3 composites, J. Reinf. Plast. Compos., 21 (2002) 1337-1345. http://dx.doi.org/10.1177/0731684402021015753
  35. Parhizkar, K. Shelesh-Nezhad, and A. Rezaei,Mechanical and thermal properties of Homo-PP/GF/CaCO3 hybrid nanocomposites, Adv. Mater. Res., 5 (2016) 121. https://doi.org/10.12989/amr.2016.5.2.121
  36. Seyedzavvar, C. Boğa, S. Akar, and F. Pashmforoush, Molecular dynamic approach to predict thermo-mechanical properties of poly (butylene terephthalate)/CaCO3 nanocomposites, Mater. Today Commun., 28 (2021) 102602. https://doi.org/10.1016/j.mtcomm.2021.102602
  37. Zhou, X. Ji, Y. Sheng, L. Wang, and Z. Jiang,Mechanical and thermal properties of poly-ether ether ketone reinforced with CaCO3, Eur. Polym. J., 40 (2004) 2357-2363. https://doi.org/10.1016/j.eurpolymj.2004.05.019
  38. S. Chow, Y. Y. Leu, and Z. A. M. Ishak,Mechanical, thermal and morphological properties of injection molded poly (lactic acid)/calcium carbonate nanocomposites, Periodica Polytechnica Mech. Eng., 60 (2016) 15-20. http://dx.doi.org/10.3311/PPme.8319
  39. C. Bonse and L. M. Molina, Effect of calcium carbonate particle size and content on polyamide 6 processing and properties, in AIP Conference Proceedings, 1779, AIP Publishing LLC, p. 030019, 2016.
  40. Mohsenzadeh, B. H. Soudmand, and K. Shelesh‐Nezhad, Synergetic impacts of two rigid nano‐scale inclusions on the mechanical and thermal performance of POM/carbon black/CaCO3 ternary nanocomposite systems, Polym. Compos., (2022). https://doi.org/10.1002/pc.26598
  41. Wang, W. Tong, W. Li, H. Huang, J. Yang, and G. Li, Preparation and properties of nanocomposite of poly (phenylene sulfide)/calcium carbonate, Polym. Bull., 57 (2006) 953-962. https://doi.org/10.1007/s00289-006-0652-x
  42. Liang and G. Liu, Effects of nano-CaCO3 content and surface treatment on tensile properties of PPS/GF ternary composites, Polym.-Plast. Technol. Mater., 48 (2009) 1025-1029.https://doi.org/10.1080/03602550903092542
  43. Liang, Mechanical properties of PPS/PC/GF/nano-CaCO3 hybrid composites, Polym.-Plast. Technol. Mater., 48 (2009) 292-296. https://doi.org/10.1080/03602550802675629
  44. Gao, L. Liu, and Z. Zhang, Mechanical performance of nano-CaCO3 filled polystyrene composites, Acta Mech. Solida Sin., 22 (2009) 555-562. https://doi.org/10.1016/S0894-9166(09)60386-4
  45. S. Najim, N. J. Hadi, and D. J. Mohamed, Study the effect of CaCO3 nanoparticles on the mechanical properties of virgin and waste polypropylene, Adv. Mater. Res., 2014, vol. 1016: Trans Tech Publ, pp. 23-33.
  46. Zhang, C. Wang, Y. Meng, and K. Mai, Synergistic effects of toughening of nano-CaCO3 and toughness of β-polypropylene, Compos. P. A: Appl. Sci. Manuf., 43 (2012) 189-197. https://doi.org/10.1016/j.compositesa.2011.10.008
  47. Mishra, U. Patil, and N. Shimpi, Synthesis of mineral nanofiller using solution spray method and its influence on mechanical and thermal properties of EPDM nanocomposites, Polym.-Plast. Technol Eng., 48 (2009) 1078-1083. https://doi.org/10.1080/03602550903092492
  48. Mishra and N. Shimpi, Studies on mechanical, thermal, and flame retarding properties of polybutadiene rubber (PBR) nanocomposites, Polym.-Plast. Technol. Mater., 47 (2007) 72-81. https://doi.org/10.1080/03602550701580987
  49. G. Ma, Y. L. Mai, M. Z. Rong, W. H. Ruan, and M. Q. Zhang, Phase structure and mechanical properties of ternary polypropylene/elastomer/nano-CaCO3 composites, Composi. Sci. Technol., 67 (2007) 2997-3005. https://doi.org/10.1016/j.compscitech.2007.05.022
  50. Chen et al., Toughening of polypropylene–ethylene copolymer with nanosized CaCO3 and styrene–butadiene–styrene, J. Appl. Polym. Sci., 94 (2004) 796-802. https://doi.org/10.1002/app.20925
  51. -L. Xie et al., Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization, Polymer, 45 (2004) 6665-6673.https://doi.org/10.1016/j.polymer.2004.07.045
  52. Sadeghi and A. Esfandiari, The effects of micro and nano CaCO3 on the rheological and physico/mechanical behavior of an SBS/CaCO3 composite, Mater. Technol., 46 (2012) 695-703.
  53. Gumfekar, K. Kunte, L. Ramjee, K. Kate, and S. Sonawane, Synthesis of CaCO3–P (MMA–BA) nanocomposite and its application in water based alkyd emulsion coating, Prog. Org. Coat., 72 (2011) 632-637. https://doi.org/10.1016/j.porgcoat.2011.07.005
  54. Eskizeybek, H. Ulus, H. B. Kaybal, Ö. S. Şahin, and A. Avcı, Static and dynamic mechanical responses of CaCO3 nanoparticle modified epoxy/carbon fiber nanocomposites, Compos. P. B: Eng., 140 (2018) 223-231. https://doi.org/10.1016/j.compositesb.2017.12.013
  55. Gbadeyan, S. Adali, G. Bright, and B. Sithole, The investigation of reinforcement properties of nano-CaCO3 synthesized from Achatina fulica snail shell through mechanochemical methods on epoxy nanocomposites, Nanocomposites, 7 (2021) 79-86. https://doi.org/10.1080/20550324.2021.1936972
  56. H. Cai, S. D. Li, G. R. Tian, H. B. Wang, and J. H. Wang, Reinforcement of natural rubber latex film by ultrafine calcium carbonate, J. Appl. Polym. Sci., 87 (2003) 982-985.https://doi.org/10.1002/app.11410
  57. S. Islam, M. M. Islam, and K. N. Islam, The effect of CaCO3 nanoparticles and chitosan on the properties of PLA based biomaterials for biomedical applications, (2020).
  58. B. Melbiah, D. Nithya, and D. Mohan, Surface modification of polyacrylonitrile ultrafiltration membranes using amphiphilic Pluronic F127/CaCO3 nanoparticles for oil/water emulsion separation, Colloids Surf. A: Physicochem. Eng. Aspects, 516 (2017) 147-160.
  59. Zhao, Q. Guo, J. Qian, and G. Pan, Mechanical properties and tribological behaviour of polyurethane elastomer reinforced with CaCO3 nanoparticles, Polym. Polym. Compos., 20 (2012) 575-580. https://doi.org/10.1002/app.11410
  60. Lai, N. Yuhana, S. Fariz, and M. Otoh, The Mechanical and Thermal Properties of Polyurethanes/Precipitated Calcium Carbonate Composites, in IOP Conf. Ser.: Mat. Sci. Eng., 943 (2020) IOP Publishing, p. 012018.
  61. Baskaran, M. Sarojadevi, and C. T. Vijayakumar, Mechanical and thermal properties of unsaturated polyester/calcium carbonate nanocomposites, J. Reinf. Plast. Compos., 30 (2011) 1549-1556. https://doi.org/10.1177/0731684411424630
  62. Gao, Y. Zhu, S. Zhou, W. Gao, Z. Wang, and B. Zhou, Preparation and characterization of well-dispersed waterborne polyurethane/CaCO3 nanocomposites, Colloids Surf. A: Physicochem. Eng. Aspects, 377 (2011) 312-317. https://doi.org/10.1016/j.colsurfa.2011.01.025
  63. Wu, X. Zhang, J. Chen, and S. Shen, Synthesis of nano-CaCo3 composite particles and their application, J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater., 15 (2008) 67-73. https://doi.org/10.1016/S1005-8850(08)60014-6
  64. Sepet, B. Aydemir, and N. Tarakcioglu, Evaluation of mechanical and thermal properties and creep behavior of micro-and nano-CaCO3 particle-filled HDPE nano-and microcomposites produced in large scale, Polym. Bull., 77 (2020) 3677-3695. https://doi.org/10.1007/s00289-019-02922-9
  65. Lazzeri, S. Zebarjad, M. Pracella, K. Cavalier, and R. Rosa, Filler toughening of plastics. Part 1—The effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites, Polymer, 46 (2005) 827-844. https://doi.org/10.1016/j.polymer.2004.11.111
  66. Q. Zhang, M. Z. Rong, S. L. Pan, and K. Friedrich, Tensile properties of polypropylene filled with nanoscale calcium carbonate particles, Adv. Compos. Lett., 11 (2002) 096369350201100604.
  67. A. Zapata et al., Effect of CaCO3 nanoparticles on the mechanical and photo-degradation properties of LDPE, Molecules, 24 (2018) 126. https://doi.org/10.3390/molecules24010126
  68. Bahlouli, A. Makhlouf, and N. Haddaoui, Influence of nanosized CaCO3 content in tailoring the structure, the morphology and the thermal and mechanical properties of iPP/PA66/PP-g-MA alloy, Int. J. Polym. Anal. Charact., 26 (2021) 440-457.https://doi.org/10.1080/1023666X.2021.1902675
  69. Chatterjee and S. Mishra, Nano-Calcium carbonate (CaCO3)/Polystyrene (PS) core-shell nanoparticle: It’s effect on physical and mechanical properties of high impact polystyrene (HIPS), J. Polym. Res., 20 (2013) 1-12. https://doi.org/10.1007/s10965-013-0249-7
  70. Shimpi, J. Verma, S. Mishra,Dispersion of nano CaCO3 on PVC and its influence on mechanical and thermal properties, J. Compos. Mater., 44 (2010) 211-219. https://doi.org/10.1177/0021998309344637
  71. Momen, M. M. Mazidi, N. Jahangiri,Isotactic polypropylene (PP) modified by ABS and CaCO3 nanoparticles: effect of composition and compatibilization on the phase morphology, mechanical properties and fracture behavior, Polym. Bull., 72 (2015) 2757-2782. https://doi.org/10.1007/s00289-015-1434-0
  72. H. Ritonga et al., Organic modification of precipitated calcium carbonate nanoparticles as filler in LLDPE/CNR blends with the presence of coupling agents: impact strength, thermal, and morphology, J. Mater. Res. Technol., 17 (2022) 2326-2332. https://doi.org/10.1016/j.jmrt.2022.01.125
  73. S. Ghari, Z. Shakouri, M. Shirazi,Evaluation of microstructure of natural rubber/nano-calcium carbonate nanocomposites by solvent transport properties,Plastics, Plast. Rubber .Compos., 43 (2014) 177-186. https://doi.org/10.1179/1743289814Y.0000000087
  74. Juntuek, C. Ruksakulpiwat, P. Chumsamrong, Y. Ruksakulpiwat, Comparison between mechanical and thermal properties of polylactic acid and natural rubber blend using calcium carbonate and vetiver grass fiber as fillers, Adv. Mat. Res., 410 (2012) 59-62. https://doi.org/10.4028/www.scientific.net/AMR.410.59
  75. M. Abdelrahman, S. F. Abdellah Ali, A. Khalil, S. Kandil,Influence of poly (butylene succinate) and calcium carbonate nanoparticles on the biodegradability of high density-polyethylene nanocomposites, J. Polym. Res., 27 (2020) 1-21. https://doi.org/10.1007/s10965-020-02217-y
  76. M. Zebarjad , S. A. Sajjadi,On the strain rate sensitivity of HDPE/CaCO3 nanocomposites, Mater. Sci. Eng. A, 475 (2008) 365-367. https://doi.org/10.1016/j.msea.2007.05.008
  77. Öksüz , H. Yıldırım, Effect of calcium carbonate on the mechanical and thermal properties of isotactic polypropylene/ethylene vinyl acetate blends, J. Appl. Polym. Sci., 96 (2005) 1126-1137. https://doi.org/10.1002/app.21555
  78. Mohammed,Study the effect of CaCO3 nanoparticles on physical properties of biopolymer blend, Iraqi J. Phys., 16 (2018) 11-22. https://doi.org/10.30723/ijp.v16i39.97
  79. Abdi, R. E. Farsani, H. Khosravi,Evaluating the mechanical behavior of basalt fibers/epoxy composites containing surface-modified CaCO3 nanoparticles, Fibers . Polym., 19 (2018) 635-640. https://doi.org/10.1007/s12221-018-7755-x
  80. S. Sambudi, M. Sathyamurthy, G. M. Lee, S. B. Park,Electrospun chitosan/poly (vinyl alcohol) reinforced with CaCO3 nanoparticles with enhanced mechanical properties and biocompatibility for cartilage tissue engineering, Compos. Sci. Technol., 106 (2015) 76-84. https://doi.org/10.1016/j.compscitech.2014.11.003
  81. He, K. Li, J. Wang, G. Sun, Y. Li, J. Wang, Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites, Mater. Des., 32 (2011) 4521-4527. https://doi.org/10.1016/j.matdes.2011.03.026
  82. Tiwari, C. Gehlot, D. Srivastava,Synergistic influence of CaCO3 nanoparticle on the mechanical and thermal of fly ash reinforced epoxy polymer composites, Mater. Today.Proc., 43 (2021) 3375-3385.
  83. Assaedi., Characterization and properties of geopolymer nanocomposites with different contents of nano-CaCO3, Constr. Build. Mater., 252 (2020) 119137. https://doi.org/10.1016/j.conbuildmat.2020.119137
  84. Xia, S. Q. Shi, L. Cai,Vacuum-assisted resin infusion (VARI) and hot pressing for CaCO3 nanoparticle treated kenaf fiber reinforced composites, Compos. B: Eng., 78 (2015) 138-143. https://doi.org/10.1016/j.compositesb.2015.03.039
  85. Misra, M. Shukla, M. K. Shukla, D. Srivastava, A. Nagpal,Nano CaCO3 modified multifunctional epoxy nanocomposites: A study on flexural and structural properties, Mater. Today. Proc., 47 (2021) 3295-3300.
  86. Prusty , S. K. Swain,Nano CaCO3 imprinted starch hybrid polyethylhexylacrylate\polyvinylalcohol nanocomposite thin films, Carbohydr. Polym., 139 (2016) 90-98. https://doi.org/10.1016/j.carbpol.2015.12.009
  87. Mahadevaswamy , B. Suresha,Role of nano-CaCO3 on mechanical and thermal characteristics of pineapple fibre reinforced epoxy composites, Mater. Today. Proc., 22 (2020) 572-579. https://doi.org/10.1016/j.matpr.2019.08.211
  88. Avella, M. E. Errico, G. Gentile, PMMA based nanocomposites filled with modified CaCO3 nanoparticles, Macromol. Symp., 247 (2007) 140-146. https://doi.org/10.1002/masy.200750116
  89. D. Lam, T. V. Hoang, D. T. Quang, J. S. Kim, Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites,Mate. Sci. Eng. A, 501 (2009) 87-93. https://doi.org/10.1016/j.msea.2008.09.060
  90. Chan, J. Wu, J. Li, Y. K. Cheung, Polypropylene/calcium carbonate nanocomposites,polymer, 43 (2002) 2981-2992. https://doi.org/10.1016/S0032-3861(02)00120-9
  91. Li, S. Tjong, Y. Meng, Q. Zhu,Fabrication and properties of poly (propylene carbonate)/calcium carbonate composites, J. Polym .Sci. B Polym. Phys., 41 (2003) 1806-1813. https://doi.org/10.1002/polb.10546
  92. Pashmforoush, S. Ajori, H. Azimi, Interfacial characteristics and thermo-mechanical properties of calcium carbonate/polystyrene nanocomposite, Mater. Chem. Phys., 247 (2020) 122871. https://doi.org/10.1016/j.matchemphys.2020.122871
  93. Kovačević, S. Lučić, M. Leskovac,Morphology and failure in nanocomposites. Part I: Structural and mechanical properties, J. Adhes. Sci. Technol., 16 (2002) 1343-1365. https://doi.org/10.1163/156856102320252840
  94. Suharty, I. Almanar, K. Dihardjo, N. Astasari,Flammability, biodegradability and mechanical properties of bio-composites waste polypropylene/kenaf fiber containing nano CaCO3 with diammonium phosphate, Procedia Chem., 4 (2012) 282-287. https://doi.org/10.1016/j.proche.2012.06.039
  95. Abdolmohammadi et al., Enhancement of mechanical and thermal properties of polycaprolactone/chitosan blend by calcium carbonate nanoparticles, Int. J. Mol. Sci., 13 (2012) 4508- 4522. https://doi.org/10.3390/ijms13044508
  96. A. HAROUN, A. M. RABIE, G. A. ALI, M. Y. ABDELRAHIM, Improving the mechanical and thermal properties of chlorinated poly (vinyl chloride) by incorporating modified CaCO $ _ {3} $ nanoparticles as a filler, Turk. J. Chem., 43 (2019) 750-759. https://doi.org/10.3906/kim-1808-51
  97. Sahebian, S. M. Zebarjad, J. V. Khaki, S. A. Sajjadi,The effect of nano-sized calcium carbonate on thermodynamic parameters of HDPE, J. Mater. Process. Technol., 209 (2009) 1310-1317.https://doi.org/10.1016/j.jmatprotec.2008.03.066
  98. Avella, S. Cosco, M. Di Lorenzo, E. Di Pace, M. Errico,Influence of CaCO3 nanoparticles shape on thermal and crystallization behavior of isotactic polypropylene based nanocomposites, J. Therm. Anal. Calorim., 80 (2005) 131-136. https://doi.org/10.1007/s10973-005-0624-7
  99. Roy, M. Alam, S. K. Mandal, S. C. Debnath,Effect of sol–gel modified nano calcium carbonate (CaCO3) on the cure, mechanical and thermal properties of acrylonitrile butadiene rubber (NBR) nanocomposites, J. Solgel. Sci .Technol, 73 (2015) 306-313. https://doi.org/10.1007/s10971-014-3530-2
  100. S. Ghari , A. J. Arani, Nanocomposites based on natural rubber, organoclay and nano-calcium carbonate: Study on the structure, cure behavior, static and dynamic-mechanical properties, Appl. Clay Sci., 119 (2016) 348-357. https://doi.org/10.1016/j.clay.2015.11.001
  101. Yusof, J. Lamaming, R. Hashim, M. F. Yhaya, O. Sulaiman, M. E. Selamat,Flame retardancy of particleboards made from oil palm trunk-poly (vinyl) alcohol with citric acid and calcium carbonate as additives, Constr. Build. Mater., 263 (2020) 120906. https://doi.org/10.1016/j.conbuildmat.2020.120906
  102. Sahebian , M. H. Mosavian,Thermal stability of CaCO3/polyethylene (PE) nanocomposites, Polym. Polym. Compos., 27 (2019) 371-382. https://doi.org/10.1177/0967391119845994
  103. Gao, X. Ma, Y. Liu, Z. Wang, Y. Zhu, Effect of calcium carbonate on PET physical properties and thermal stability, Powder Technol., 244 (2013) 45-51. https://doi.org/10.1016/j.powtec.2013.04.008
  104. Chen et al.,Hydrophilic CaCO3 nanoparticles designed for poly (ethylene terephthalate),Powder technol., 204 (2010) 21-26. https://doi.org/10.1016/j.powtec.2010.07.002
  105. Gao, X. Ma, Z. Wang, Y. Zhu,The influence of surface modification on the structure and properties of a calcium carbonate filled poly (ethylene terephthalate), Colloids. Surf. A: Physicochem. Eng. Asp., 389 (2011) 230-236. https://doi.org/10.1016/j.colsurfa.2011.08.022
  106. Di Lorenzo, M. Errico, M. Avella,Thermal and morphological characterization of poly (ethylene terephthalate)/calcium carbonate nanocomposites, J. mater. Sci., 37 (2002) 2351-2358. https://doi.org/10.1023/A:1015358425449
  107. Avolio, G. Gentile, M. Avella, C. Carfagna, M. E. Errico, Polymer–filler interactions in PET/CaCO3 nanocomposites: Chain ordering at the interface and physical properties, Eur. Polym. J., 49 (2013) 419-427. https://doi.org/10.1016/j.eurpolymj.2012.10.008
  108. M. Aframehr, B. Molki, P. Heidarian, T. Behzad, M. Sadeghi, R. Bagheri,Effect of calcium carbonate nanoparticles on barrier properties and biodegradability of polylactic acid, Fibers. Polym., 18 (2017) 2041-2048. https://doi.org/10.1007/s12221-017-6853-0
  109. Nekhamanurak, P. Patanathabutr, N. Hongsriphan,The influence of micro-/nano-CaCO3 on thermal stability and melt rheology behavior of poly (lactic acid), Energy Procedia, 56 (2014) 118-128. https://doi.org/10.1016/j.egypro.2014.07.139
  110. Bhanvase, D. Pinjari, P. Gogate, S. Sonawane, A. Pandit,Process intensification of encapsulation of functionalized CaCO3 nanoparticles using ultrasound assisted emulsion polymerization, Chem. Eng. Process. Process. Intensif., 50 (2011) 1160-1168.
  111. Chatterjee , S. Mishra,Novel synthesis with an atomized microemulsion technique and characterization of nano-calcium carbonate (CaCO3)/poly (methyl methacrylate) core–shell nanoparticles,Particuology, 11 (2013) 760-767. https://doi.org/10.1016/j.partic.2012.11.005
  112. K. Pal, B. Singh, J. Gautam,Thermal stability and UV-shielding properties of polymethyl methacrylate and polystyrene modified with calcium carbonate nanoparticles, J. Therm. Anal. Calorim., 107 (2012) 85-96. https://doi.org/10.1007/s10973-011-1686-3
  113. Karamipour, H. Ebadi-Dehaghani, D. Ashouri, S. Mousavian, Effect of nano-CaCO3 on rheological and dynamic mechanical properties of polypropylene: Experiments and models, Polym. Test., 30 (2011) 110-117. https://doi.org/10.1016/j.polymertesting.2010.10.009
  114. Gao et al.,Synthesis and characterization of well-dispersed polyurethane/CaCO3 nanocomposites, Colloids Surf. A: Physicochem. Eng. Asp., 371 (2010) 1-7. https://doi.org/10.1016/j.colsurfa.2010.08.036
  115. Li, S. M. Li, J. H. Liu, M. Yu,The heat resistance of a polyurethane coating filled with modified nano-CaCO3, Appl. Surf. Sci., 315 (2014) 241-246. https://doi.org/10.1016/j.apsusc.2014.07.022
  116. Liu, M. Zhao, J. Guo,Thermal stabilities of poly (vinyl chloride)/calcium carbonate (PVC/CaCO3) composites, J. Macromol. Sci. Phys ., 45 (2006) 1135-1140. https://doi.org/10.1080/00222340600962650
  117. A. Hassan, V. K. Rangari, S. Jeelani, Mechanical and thermal properties of bio‐based CaCO3/soybean‐based hybrid unsaturated polyester nanocomposites, J. Appl. Polym. Sci., 130 (2013) 1442-1452.  https://doi.org/10.1002/app.39227
  118. Wu, X. Wang, Y. Song, R. Jin, Nanocomposites of poly (vinyl chloride) and nanometric calcium carbonate particles: Effects of chlorinated polyethylene on mechanical properties, morphology, and rheology, J. Appl. Polym. Sci., 92 (2004) 2714-2723. https://doi.org/10.1002/app.20295
  119. Chen, C. Wan, Y. Zhang, Y. Zhang,Effect of nano-CaCO3 on mechanical properties of PVC and PVC/Blendex blend, Polym. Test., 23 (2004) 169-174. https://doi.org/10.1016/S0142-9418(03)00076-X
  120. Wang, C. Wang, M. Run,Study on morphology, rheology, and mechanical properties of poly (trimethylene terephthalate)/CaCO3 nanocomposites, Int. J. Polym. Sci., 2013 (2013) 890749 . https://doi.org/10.1155/2013/890749
  121. SHENTU, L. Jipeng, W. Zhixue,Effect of oleic acid-modified nano-CaCO3 on the crystallization behavior and mechanical properties of polypropylene, Chin. J. Chem. Eng., 14 (2006) 814-818. https://doi.org/10.1016/S1004-9541(07)60018-4
  122. Hu et al.,Modification of CaCO3 nanoparticle by styrene-acrylic polymer emulsion spraying and its application in polypropylene material, Powder Technol., 394 (2021) 83-91. https://doi.org/10.1016/j.powtec.2021.08.046
  123. Chen, C. Li, S. Xu, L. Zhang, W. Shao, H. Du, Interfacial adhesion and mechanical properties of PMMA-coated CaCO3 nanoparticle reinforced PVC composites, China. Particuology, 4 (2006) 25-30. https://doi.org/10.1016/S1672-2515(07)60228-0
  124. Sun, C. Li, L. Zhang, H. Du, J. Burnell‐Gray, Interfacial structures and mechanical properties of PVC composites reinforced by CaCO3 with different particle sizes and surface treatments, Polym. Int., 55 (2006) 158-164. https://doi.org/10.1002/pi.193