Document Type : Review Paper


Mechanical and Manufacturing Engineering, College of Engineering, Sulaimani Polytechnic University, Sulaimani, Kurdistan, Iraq.


The effect of calcium carbonate nanoparticles (CaCO3) on the mechanical and thermal properties of various polymers was investigated in this review. The results were compared to scholarly research published between 2002-2022. Different polymers were evaluated, including Polypropylene (PP), High-density polyethylene (HDPE), Polyvinyl chloride (PVC), Low-density polyethylene (LDPE), Polyethylene (PE), and natural rubber (NR). Through this work, the effect of CaCO3 nanoparticles that act as fillers in polymeric materials has been reviewed. It can be concluded that mechanical and thermal properties can be decreased, increased, or unchanged by increasing and decreasing the fillers to obtain optimal results. It is reasonable to conclude that most papers with nano-CaCO3 showed improvements in appreciable mechanical and thermal properties. In general, the term "surface modification of inorganic fillers" refers to the coating of the fillers with organic materials, which can be done by physical and chemical interactions between the modifiers and the fillers. The reviewed articles revealed that modification of CaCO3 nanoparticles with surface pre-treatment fillers caused enhancement of the mechanical properties of the polymeric matrix twice and prevented the agglomeration of particles in the matrix. Various mixing methods have been used, the most significant being a twin screw extruder, mechanical stirrer, and two-roll mill.

Graphical Abstract


  • he nano-CaCO3 showed appreciable mechanical and thermal properties
  • The modification of CaCO3 nanoparticles with surface pre-treatment caused enhancement of the mechanical properties twice
  • Surface pre-treatment prevented the agglomeration of particles in the matrix
  • The twin screw extruder method showed appreciable results


Main Subjects

  1. S. Nalwa, Handbook of organic-inorganic hybrid materials and nanocomposites, Am. Sci. Publishers, 2003.
  2. Lapčík, D. Maňas, M. Vašina, B. Lapčíková, M. Řezníček, P. Zádrapa, High density poly (ethylene)/CaCO3 hollow spheres composites for technical applications,Composites Part B: Eng., 113 (2017) 218-224.
  3. Zokaei , R. Bagheri,Study of scratch resistance in homo-and co-polypropylene filled with nanometric calcium carbonate, Mater. Sci. Eng. A, 445 (2007) 526-536.
  4. M. Deng, M. Chen, N. J. Ao, D. Yan, Z. Q. Zheng,CaCO3/natural rubber latex nanometer composite and its properties, J. Appl. Polym. Sci., 101 (2006) 3442-3447.
  5. Mishra, N. G. Shimpi, A. D. Mali,Investigation of photo‐oxidative effect on morphology and degradation of mechanical and physical properties of nano CaCO3 silicone rubber composites, Polym. Adv. Technol., 23 (2012) 236-246.
  6. Sonawane, S. Mishra, N. Shimpi,Effect of nano-CaCO3 on mechanical and thermal properties of polyamide nanocomposites, Polym. Plast. Technol .Eng., 49 (2009) 38-44.
  7. Mishra, S. Sonawane, R. Singh,Studies on characterization of nano CaCO3 prepared by the in situ deposition technique and its application in PP‐nano CaCO3 composites, J. Polym. Sci B Polym. Phys., 43 (2005)107-113.
  8. Wang, Y. X. Moo, C. Chen, P. Gunawan, R. Xu, Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyapatite nanospheres, J. Colloid. Interface. Sci., 352 (2010) 393-400.
  9. Shimpi , S. Mishra, Synthesis of nanoparticles and its effect on properties of elastomeric nanocomposites, J . Nanopart. Res., 12 (2010) 2093-2099.
  10. Mishra, A. Chatterjee, R. Singh,Novel synthesis of nano‐calcium carbonate (CaCO3)/polystyrene (PS) core–shell nanoparticles by atomized microemulsion technique and its effect on properties of polypropylene (PP) composites, Polym . Adv. Technol., 22 (2011) 2571-2582.
  11. S. Fischer, J. K. Galinat, S. S. Bang, Microbiological precipitation of CaCO3, Soil. Biol. Biochem, 31 (1999) 1563-1571 .
  12. Mishra, N. Shimpi, U. Patil, Effect of nano CaCO3 on thermal properties of styrene butadiene rubber (SBR), J. Polym. Res., 14 (2007) 449-459.
  13. Xiang, Y. Xiang, Y. Wen, F. Wei,Formation of CaCO3 nanoparticles in the presence of terpineol, Mater. Lett., 58 (2004) 959-965.
  14. Sheng, J. Zhao, B. Zhou, X. Ding, Y. Deng, Z. Wang,In situ preparation of CaCO3/polystyrene composite nanoparticles, Mater. Letters., 60 (2006) 3248-3250.
  15. H. Sonawane ,An innovative method for effective micro-mixing of CO2 gas during synthesis of nano-calcite crystal using sonochemical carbonization, J. Chem. Eng., 143 (2008) 308-313 .
  16. Shimpi, A. Mali, D. Hansora, S. Mishra, Synthesis and surface modification of calcium carbonate nanoparticles using ultrasound cavitation technique, Nanosci. Nanotechnol., 3 (2015) 8-12.
  17. Q. Mahmood, K. Marossy, P. Baumli, Effects of nanocrystalline calcium oxide particles on mechanical, thermal, and electrical properties of EPDM rubber, Colloid . Polym. Sci., 299 (2021) 1669-1682.
  18. Pradittham, N. Charitngam, S. Puttajan, D. Atong, C. Pechyen,Surface modified CaCO3 by palmitic acid as nucleating agents for polypropylene film: mechanical, thermal and physical properties, Energy Procedia, 56 (2014) 264-273.
  19. Deshmane, Q. Yuan, R. Misra,On the fracture characteristics of impact tested high density polyethylene–calcium carbonate nanocomposites, Mater. Sci. Eng. A, 452 (2007) 592-601.
  20. Lin, H. Chen, C.-M. Chan, J. Wu,Effects of coating amount and particle concentration on the impact toughness of polypropylene/CaCO3 nanocomposites, Eur. Polym. J., 47 (2011) 294-304 .
  21. X. Zhang, Z. Z. Yu, X. L. Xie, Y. W. Mai,Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier, Polymer, 45 (2004) 5985-5994.
  22. Cao, Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods, Appl. Surf. Sci., 378 (2016) 320-329.
  23. M. do Nascimento, D. Eiras, L. A. Pessan,Effect of thermal treatment on impact resistance and mechanical properties of polypropylene/calcium carbonate nanocomposites, Compos. B: Eng., 91 (2016) 228-234.
  24. Wang et al.,Novel rigid poly (vinyl chloride) ternary nanocomposites containing ultrafine full-vulcanized powdered rubber and untreated nanosized calcium carbonate, Mater. Lett., 61 (2007) 1174-1177.
  25. A. Osman, A. Atallah, U. W. Suter,Influence of excessive filler coating on the tensile properties of LDPE–calcium carbonate composites, Polymer, 45 (2004) 1177-1183.
  26. Jong, Synergistic effect of calcium carbonate and biobased particles for rubber reinforcement and comparison to silica reinforced rubber, J. Compos. Sci., 4 (2020) 113.
  27. He, Z. Zhang, J. Wang, K. Li,Compressive properties of nano-calcium carbonate/epoxy and its fibre composites, Compos. B: Eng., 45 (2013) 919-924.
  28. ]L. Jiang, Y. Lam, K. Tam, T. Chua, G. Sim, L. Ang, Strengthening acrylonitrile-butadiene-styrene (ABS) with nanosized and micron-sized calcium carbonate,Polymer, 46 (2005) 243-252.
  29. Fang, B. Song, T.-T. Tee, L. T. Sin, D. Hui, and S.-T. Bee, Investigation of dynamic characteristics of nano-size calcium carbonate added in natural rubber vulcanizate, Compos. P. B: Eng., 60 (2014) 561-567.
  30. K. Konar, R. Gu, and M. Sain, Preparation and characterization of baked nitrile latex foam reinforced with biomasses, Ind. Crops Prod., 42 (2013) 261-267.
  31. Ismail and M. Mathialagan, Comparative study on the effect of partial replacement of silica or calcium carbonate by bentonite on the properties of EPDM composites, Polym. Test., 31 (2012) 199-208.
  32. Mishra and N. Shimpi, Mechanical and flame‐retarding properties of styrene–butadiene rubber filled with nano‐CaCO3 as a filler and linseed oil as an extender, J. Appl. Polym. Sci., 98 (2005) 2563-2571.
  33. -L. Jin and S.-J. Park, Thermo-mechanical behaviors of butadiene rubber reinforced with nanosized calcium carbonate, Mater. Sci. Eng., : A 478 (2008) 406-408.
  34. Y. Tang, L. C. Chan, J. Liang, K. W. E. Cheng, and T. Wong, Mechanical and thermal properties of ABS-CaCO3 composites, J. Reinf. Plast. Compos., 21 (2002) 1337-1345.
  35. Parhizkar, K. Shelesh-Nezhad, and A. Rezaei,Mechanical and thermal properties of Homo-PP/GF/CaCO3 hybrid nanocomposites, Adv. Mater. Res., 5 (2016) 121.
  36. Seyedzavvar, C. Boğa, S. Akar, and F. Pashmforoush, Molecular dynamic approach to predict thermo-mechanical properties of poly (butylene terephthalate)/CaCO3 nanocomposites, Mater. Today Commun., 28 (2021) 102602.
  37. Zhou, X. Ji, Y. Sheng, L. Wang, and Z. Jiang,Mechanical and thermal properties of poly-ether ether ketone reinforced with CaCO3, Eur. Polym. J., 40 (2004) 2357-2363.
  38. S. Chow, Y. Y. Leu, and Z. A. M. Ishak,Mechanical, thermal and morphological properties of injection molded poly (lactic acid)/calcium carbonate nanocomposites, Periodica Polytechnica Mech. Eng., 60 (2016) 15-20.
  39. C. Bonse and L. M. Molina, Effect of calcium carbonate particle size and content on polyamide 6 processing and properties, in AIP Conference Proceedings, 1779, AIP Publishing LLC, p. 030019, 2016.
  40. Mohsenzadeh, B. H. Soudmand, and K. Shelesh‐Nezhad, Synergetic impacts of two rigid nano‐scale inclusions on the mechanical and thermal performance of POM/carbon black/CaCO3 ternary nanocomposite systems, Polym. Compos., (2022).
  41. Wang, W. Tong, W. Li, H. Huang, J. Yang, and G. Li, Preparation and properties of nanocomposite of poly (phenylene sulfide)/calcium carbonate, Polym. Bull., 57 (2006) 953-962.
  42. Liang and G. Liu, Effects of nano-CaCO3 content and surface treatment on tensile properties of PPS/GF ternary composites, Polym.-Plast. Technol. Mater., 48 (2009) 1025-1029.
  43. Liang, Mechanical properties of PPS/PC/GF/nano-CaCO3 hybrid composites, Polym.-Plast. Technol. Mater., 48 (2009) 292-296.
  44. Gao, L. Liu, and Z. Zhang, Mechanical performance of nano-CaCO3 filled polystyrene composites, Acta Mech. Solida Sin., 22 (2009) 555-562.
  45. S. Najim, N. J. Hadi, and D. J. Mohamed, Study the effect of CaCO3 nanoparticles on the mechanical properties of virgin and waste polypropylene, Adv. Mater. Res., 2014, vol. 1016: Trans Tech Publ, pp. 23-33.
  46. Zhang, C. Wang, Y. Meng, and K. Mai, Synergistic effects of toughening of nano-CaCO3 and toughness of β-polypropylene, Compos. P. A: Appl. Sci. Manuf., 43 (2012) 189-197.
  47. Mishra, U. Patil, and N. Shimpi, Synthesis of mineral nanofiller using solution spray method and its influence on mechanical and thermal properties of EPDM nanocomposites, Polym.-Plast. Technol Eng., 48 (2009) 1078-1083.
  48. Mishra and N. Shimpi, Studies on mechanical, thermal, and flame retarding properties of polybutadiene rubber (PBR) nanocomposites, Polym.-Plast. Technol. Mater., 47 (2007) 72-81.
  49. G. Ma, Y. L. Mai, M. Z. Rong, W. H. Ruan, and M. Q. Zhang, Phase structure and mechanical properties of ternary polypropylene/elastomer/nano-CaCO3 composites, Composi. Sci. Technol., 67 (2007) 2997-3005.
  50. Chen et al., Toughening of polypropylene–ethylene copolymer with nanosized CaCO3 and styrene–butadiene–styrene, J. Appl. Polym. Sci., 94 (2004) 796-802.
  51. -L. Xie et al., Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization, Polymer, 45 (2004) 6665-6673.
  52. Sadeghi and A. Esfandiari, The effects of micro and nano CaCO3 on the rheological and physico/mechanical behavior of an SBS/CaCO3 composite, Mater. Technol., 46 (2012) 695-703.
  53. Gumfekar, K. Kunte, L. Ramjee, K. Kate, and S. Sonawane, Synthesis of CaCO3–P (MMA–BA) nanocomposite and its application in water based alkyd emulsion coating, Prog. Org. Coat., 72 (2011) 632-637.
  54. Eskizeybek, H. Ulus, H. B. Kaybal, Ö. S. Şahin, and A. Avcı, Static and dynamic mechanical responses of CaCO3 nanoparticle modified epoxy/carbon fiber nanocomposites, Compos. P. B: Eng., 140 (2018) 223-231.
  55. Gbadeyan, S. Adali, G. Bright, and B. Sithole, The investigation of reinforcement properties of nano-CaCO3 synthesized from Achatina fulica snail shell through mechanochemical methods on epoxy nanocomposites, Nanocomposites, 7 (2021) 79-86.
  56. H. Cai, S. D. Li, G. R. Tian, H. B. Wang, and J. H. Wang, Reinforcement of natural rubber latex film by ultrafine calcium carbonate, J. Appl. Polym. Sci., 87 (2003) 982-985.
  57. S. Islam, M. M. Islam, and K. N. Islam, The effect of CaCO3 nanoparticles and chitosan on the properties of PLA based biomaterials for biomedical applications, (2020).
  58. B. Melbiah, D. Nithya, and D. Mohan, Surface modification of polyacrylonitrile ultrafiltration membranes using amphiphilic Pluronic F127/CaCO3 nanoparticles for oil/water emulsion separation, Colloids Surf. A: Physicochem. Eng. Aspects, 516 (2017) 147-160.
  59. Zhao, Q. Guo, J. Qian, and G. Pan, Mechanical properties and tribological behaviour of polyurethane elastomer reinforced with CaCO3 nanoparticles, Polym. Polym. Compos., 20 (2012) 575-580.
  60. Lai, N. Yuhana, S. Fariz, and M. Otoh, The Mechanical and Thermal Properties of Polyurethanes/Precipitated Calcium Carbonate Composites, in IOP Conf. Ser.: Mat. Sci. Eng., 943 (2020) IOP Publishing, p. 012018.
  61. Baskaran, M. Sarojadevi, and C. T. Vijayakumar, Mechanical and thermal properties of unsaturated polyester/calcium carbonate nanocomposites, J. Reinf. Plast. Compos., 30 (2011) 1549-1556.
  62. Gao, Y. Zhu, S. Zhou, W. Gao, Z. Wang, and B. Zhou, Preparation and characterization of well-dispersed waterborne polyurethane/CaCO3 nanocomposites, Colloids Surf. A: Physicochem. Eng. Aspects, 377 (2011) 312-317.
  63. Wu, X. Zhang, J. Chen, and S. Shen, Synthesis of nano-CaCo3 composite particles and their application, J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater., 15 (2008) 67-73.
  64. Sepet, B. Aydemir, and N. Tarakcioglu, Evaluation of mechanical and thermal properties and creep behavior of micro-and nano-CaCO3 particle-filled HDPE nano-and microcomposites produced in large scale, Polym. Bull., 77 (2020) 3677-3695.
  65. Lazzeri, S. Zebarjad, M. Pracella, K. Cavalier, and R. Rosa, Filler toughening of plastics. Part 1—The effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites, Polymer, 46 (2005) 827-844.
  66. Q. Zhang, M. Z. Rong, S. L. Pan, and K. Friedrich, Tensile properties of polypropylene filled with nanoscale calcium carbonate particles, Adv. Compos. Lett., 11 (2002) 096369350201100604.
  67. A. Zapata et al., Effect of CaCO3 nanoparticles on the mechanical and photo-degradation properties of LDPE, Molecules, 24 (2018) 126.
  68. Bahlouli, A. Makhlouf, and N. Haddaoui, Influence of nanosized CaCO3 content in tailoring the structure, the morphology and the thermal and mechanical properties of iPP/PA66/PP-g-MA alloy, Int. J. Polym. Anal. Charact., 26 (2021) 440-457.
  69. Chatterjee and S. Mishra, Nano-Calcium carbonate (CaCO3)/Polystyrene (PS) core-shell nanoparticle: It’s effect on physical and mechanical properties of high impact polystyrene (HIPS), J. Polym. Res., 20 (2013) 1-12.
  70. Shimpi, J. Verma, S. Mishra,Dispersion of nano CaCO3 on PVC and its influence on mechanical and thermal properties, J. Compos. Mater., 44 (2010) 211-219.
  71. Momen, M. M. Mazidi, N. Jahangiri,Isotactic polypropylene (PP) modified by ABS and CaCO3 nanoparticles: effect of composition and compatibilization on the phase morphology, mechanical properties and fracture behavior, Polym. Bull., 72 (2015) 2757-2782.
  72. H. Ritonga et al., Organic modification of precipitated calcium carbonate nanoparticles as filler in LLDPE/CNR blends with the presence of coupling agents: impact strength, thermal, and morphology, J. Mater. Res. Technol., 17 (2022) 2326-2332.
  73. S. Ghari, Z. Shakouri, M. Shirazi,Evaluation of microstructure of natural rubber/nano-calcium carbonate nanocomposites by solvent transport properties,Plastics, Plast. Rubber .Compos., 43 (2014) 177-186.
  74. Juntuek, C. Ruksakulpiwat, P. Chumsamrong, Y. Ruksakulpiwat, Comparison between mechanical and thermal properties of polylactic acid and natural rubber blend using calcium carbonate and vetiver grass fiber as fillers, Adv. Mat. Res., 410 (2012) 59-62.
  75. M. Abdelrahman, S. F. Abdellah Ali, A. Khalil, S. Kandil,Influence of poly (butylene succinate) and calcium carbonate nanoparticles on the biodegradability of high density-polyethylene nanocomposites, J. Polym. Res., 27 (2020) 1-21.
  76. M. Zebarjad , S. A. Sajjadi,On the strain rate sensitivity of HDPE/CaCO3 nanocomposites, Mater. Sci. Eng. A, 475 (2008) 365-367.
  77. Öksüz , H. Yıldırım, Effect of calcium carbonate on the mechanical and thermal properties of isotactic polypropylene/ethylene vinyl acetate blends, J. Appl. Polym. Sci., 96 (2005) 1126-1137.
  78. Mohammed,Study the effect of CaCO3 nanoparticles on physical properties of biopolymer blend, Iraqi J. Phys., 16 (2018) 11-22.
  79. Abdi, R. E. Farsani, H. Khosravi,Evaluating the mechanical behavior of basalt fibers/epoxy composites containing surface-modified CaCO3 nanoparticles, Fibers . Polym., 19 (2018) 635-640.
  80. S. Sambudi, M. Sathyamurthy, G. M. Lee, S. B. Park,Electrospun chitosan/poly (vinyl alcohol) reinforced with CaCO3 nanoparticles with enhanced mechanical properties and biocompatibility for cartilage tissue engineering, Compos. Sci. Technol., 106 (2015) 76-84.
  81. He, K. Li, J. Wang, G. Sun, Y. Li, J. Wang, Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites, Mater. Des., 32 (2011) 4521-4527.
  82. Tiwari, C. Gehlot, D. Srivastava,Synergistic influence of CaCO3 nanoparticle on the mechanical and thermal of fly ash reinforced epoxy polymer composites, Mater. Today.Proc., 43 (2021) 3375-3385.
  83. Assaedi., Characterization and properties of geopolymer nanocomposites with different contents of nano-CaCO3, Constr. Build. Mater., 252 (2020) 119137.
  84. Xia, S. Q. Shi, L. Cai,Vacuum-assisted resin infusion (VARI) and hot pressing for CaCO3 nanoparticle treated kenaf fiber reinforced composites, Compos. B: Eng., 78 (2015) 138-143.
  85. Misra, M. Shukla, M. K. Shukla, D. Srivastava, A. Nagpal,Nano CaCO3 modified multifunctional epoxy nanocomposites: A study on flexural and structural properties, Mater. Today. Proc., 47 (2021) 3295-3300.
  86. Prusty , S. K. Swain,Nano CaCO3 imprinted starch hybrid polyethylhexylacrylate\polyvinylalcohol nanocomposite thin films, Carbohydr. Polym., 139 (2016) 90-98.
  87. Mahadevaswamy , B. Suresha,Role of nano-CaCO3 on mechanical and thermal characteristics of pineapple fibre reinforced epoxy composites, Mater. Today. Proc., 22 (2020) 572-579.
  88. Avella, M. E. Errico, G. Gentile, PMMA based nanocomposites filled with modified CaCO3 nanoparticles, Macromol. Symp., 247 (2007) 140-146.
  89. D. Lam, T. V. Hoang, D. T. Quang, J. S. Kim, Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites,Mate. Sci. Eng. A, 501 (2009) 87-93.
  90. Chan, J. Wu, J. Li, Y. K. Cheung, Polypropylene/calcium carbonate nanocomposites,polymer, 43 (2002) 2981-2992.
  91. Li, S. Tjong, Y. Meng, Q. Zhu,Fabrication and properties of poly (propylene carbonate)/calcium carbonate composites, J. Polym .Sci. B Polym. Phys., 41 (2003) 1806-1813.
  92. Pashmforoush, S. Ajori, H. Azimi, Interfacial characteristics and thermo-mechanical properties of calcium carbonate/polystyrene nanocomposite, Mater. Chem. Phys., 247 (2020) 122871.
  93. Kovačević, S. Lučić, M. Leskovac,Morphology and failure in nanocomposites. Part I: Structural and mechanical properties, J. Adhes. Sci. Technol., 16 (2002) 1343-1365.
  94. Suharty, I. Almanar, K. Dihardjo, N. Astasari,Flammability, biodegradability and mechanical properties of bio-composites waste polypropylene/kenaf fiber containing nano CaCO3 with diammonium phosphate, Procedia Chem., 4 (2012) 282-287.
  95. Abdolmohammadi et al., Enhancement of mechanical and thermal properties of polycaprolactone/chitosan blend by calcium carbonate nanoparticles, Int. J. Mol. Sci., 13 (2012) 4508- 4522.
  96. A. HAROUN, A. M. RABIE, G. A. ALI, M. Y. ABDELRAHIM, Improving the mechanical and thermal properties of chlorinated poly (vinyl chloride) by incorporating modified CaCO $ _ {3} $ nanoparticles as a filler, Turk. J. Chem., 43 (2019) 750-759.
  97. Sahebian, S. M. Zebarjad, J. V. Khaki, S. A. Sajjadi,The effect of nano-sized calcium carbonate on thermodynamic parameters of HDPE, J. Mater. Process. Technol., 209 (2009) 1310-1317.
  98. Avella, S. Cosco, M. Di Lorenzo, E. Di Pace, M. Errico,Influence of CaCO3 nanoparticles shape on thermal and crystallization behavior of isotactic polypropylene based nanocomposites, J. Therm. Anal. Calorim., 80 (2005) 131-136.
  99. Roy, M. Alam, S. K. Mandal, S. C. Debnath,Effect of sol–gel modified nano calcium carbonate (CaCO3) on the cure, mechanical and thermal properties of acrylonitrile butadiene rubber (NBR) nanocomposites, J. Solgel. Sci .Technol, 73 (2015) 306-313.
  100. S. Ghari , A. J. Arani, Nanocomposites based on natural rubber, organoclay and nano-calcium carbonate: Study on the structure, cure behavior, static and dynamic-mechanical properties, Appl. Clay Sci., 119 (2016) 348-357.
  101. Yusof, J. Lamaming, R. Hashim, M. F. Yhaya, O. Sulaiman, M. E. Selamat,Flame retardancy of particleboards made from oil palm trunk-poly (vinyl) alcohol with citric acid and calcium carbonate as additives, Constr. Build. Mater., 263 (2020) 120906.
  102. Sahebian , M. H. Mosavian,Thermal stability of CaCO3/polyethylene (PE) nanocomposites, Polym. Polym. Compos., 27 (2019) 371-382.
  103. Gao, X. Ma, Y. Liu, Z. Wang, Y. Zhu, Effect of calcium carbonate on PET physical properties and thermal stability, Powder Technol., 244 (2013) 45-51.
  104. Chen et al.,Hydrophilic CaCO3 nanoparticles designed for poly (ethylene terephthalate),Powder technol., 204 (2010) 21-26.
  105. Gao, X. Ma, Z. Wang, Y. Zhu,The influence of surface modification on the structure and properties of a calcium carbonate filled poly (ethylene terephthalate), Colloids. Surf. A: Physicochem. Eng. Asp., 389 (2011) 230-236.
  106. Di Lorenzo, M. Errico, M. Avella,Thermal and morphological characterization of poly (ethylene terephthalate)/calcium carbonate nanocomposites, J. mater. Sci., 37 (2002) 2351-2358.
  107. Avolio, G. Gentile, M. Avella, C. Carfagna, M. E. Errico, Polymer–filler interactions in PET/CaCO3 nanocomposites: Chain ordering at the interface and physical properties, Eur. Polym. J., 49 (2013) 419-427.
  108. M. Aframehr, B. Molki, P. Heidarian, T. Behzad, M. Sadeghi, R. Bagheri,Effect of calcium carbonate nanoparticles on barrier properties and biodegradability of polylactic acid, Fibers. Polym., 18 (2017) 2041-2048.
  109. Nekhamanurak, P. Patanathabutr, N. Hongsriphan,The influence of micro-/nano-CaCO3 on thermal stability and melt rheology behavior of poly (lactic acid), Energy Procedia, 56 (2014) 118-128.
  110. Bhanvase, D. Pinjari, P. Gogate, S. Sonawane, A. Pandit,Process intensification of encapsulation of functionalized CaCO3 nanoparticles using ultrasound assisted emulsion polymerization, Chem. Eng. Process. Process. Intensif., 50 (2011) 1160-1168.
  111. Chatterjee , S. Mishra,Novel synthesis with an atomized microemulsion technique and characterization of nano-calcium carbonate (CaCO3)/poly (methyl methacrylate) core–shell nanoparticles,Particuology, 11 (2013) 760-767.
  112. K. Pal, B. Singh, J. Gautam,Thermal stability and UV-shielding properties of polymethyl methacrylate and polystyrene modified with calcium carbonate nanoparticles, J. Therm. Anal. Calorim., 107 (2012) 85-96.
  113. Karamipour, H. Ebadi-Dehaghani, D. Ashouri, S. Mousavian, Effect of nano-CaCO3 on rheological and dynamic mechanical properties of polypropylene: Experiments and models, Polym. Test., 30 (2011) 110-117.
  114. Gao et al.,Synthesis and characterization of well-dispersed polyurethane/CaCO3 nanocomposites, Colloids Surf. A: Physicochem. Eng. Asp., 371 (2010) 1-7.
  115. Li, S. M. Li, J. H. Liu, M. Yu,The heat resistance of a polyurethane coating filled with modified nano-CaCO3, Appl. Surf. Sci., 315 (2014) 241-246.
  116. Liu, M. Zhao, J. Guo,Thermal stabilities of poly (vinyl chloride)/calcium carbonate (PVC/CaCO3) composites, J. Macromol. Sci. Phys ., 45 (2006) 1135-1140.
  117. A. Hassan, V. K. Rangari, S. Jeelani, Mechanical and thermal properties of bio‐based CaCO3/soybean‐based hybrid unsaturated polyester nanocomposites, J. Appl. Polym. Sci., 130 (2013) 1442-1452.
  118. Wu, X. Wang, Y. Song, R. Jin, Nanocomposites of poly (vinyl chloride) and nanometric calcium carbonate particles: Effects of chlorinated polyethylene on mechanical properties, morphology, and rheology, J. Appl. Polym. Sci., 92 (2004) 2714-2723.
  119. Chen, C. Wan, Y. Zhang, Y. Zhang,Effect of nano-CaCO3 on mechanical properties of PVC and PVC/Blendex blend, Polym. Test., 23 (2004) 169-174.
  120. Wang, C. Wang, M. Run,Study on morphology, rheology, and mechanical properties of poly (trimethylene terephthalate)/CaCO3 nanocomposites, Int. J. Polym. Sci., 2013 (2013) 890749 .
  121. SHENTU, L. Jipeng, W. Zhixue,Effect of oleic acid-modified nano-CaCO3 on the crystallization behavior and mechanical properties of polypropylene, Chin. J. Chem. Eng., 14 (2006) 814-818.
  122. Hu et al.,Modification of CaCO3 nanoparticle by styrene-acrylic polymer emulsion spraying and its application in polypropylene material, Powder Technol., 394 (2021) 83-91.
  123. Chen, C. Li, S. Xu, L. Zhang, W. Shao, H. Du, Interfacial adhesion and mechanical properties of PMMA-coated CaCO3 nanoparticle reinforced PVC composites, China. Particuology, 4 (2006) 25-30.
  124. Sun, C. Li, L. Zhang, H. Du, J. Burnell‐Gray, Interfacial structures and mechanical properties of PVC composites reinforced by CaCO3 with different particle sizes and surface treatments, Polym. Int., 55 (2006) 158-164.