Document Type : Research Paper

Authors

Mechanical and Manufacturing Engineering Dept., Technical College of Engineering, Sulaimani Polytechnic University, Sulaimani, Kurdistan Region, Iraq.

Abstract

Aluminum alloy finds strong suitability in automotive, sporting, goods aerospace, and weight reduction industries. Its blend of lightweight attributes and robust strength make it well-suited for crafting lightweight components and structures while upholding overall strength and performance standards. In this research, AA6061-T4 alloy chips underwent a recycling process involving hot extrusion followed by Equal Channel Angular Pressing. The influence of various routes and varied numbers of cycles on microstructure and mechanical characteristics were examined utilizing a die featuring angles of 90° and 20°. Two routes, BC and C, were scrutinized, and the outcomes displayed significant enhancements in properties for the recycled chips after the hot extruded and ECAP techniques. After the fourth run, route BC exhibited a maximum Ultimate tensile strength of 265 MPa, peak yield strength of 149 MPa, and an elongation to failure of 46%. Meanwhile, the corresponding values for route C were 238 MPa, 136 MPa, and 41%, respectively. For two routes, BC and C, every pass led to elevated strength and hardness while also contributing to increased elongation to failure. The microstructures and mechanical characteristics of the ECAPed samples surpassed those of the extruded sample. The routes and pass numbers substantially impacted the microstructures and mechanical properties of the solid-state recycled AA6061-T4 alloy chip specimens. Scanning electron microscopy pictures showcased a honeybee-type pattern following ECAP through route BC, signifying the final stages of grain refinement. At the same time, the initial sample exhibited a fracture tendency with a mix of brittleness and ductility.

Graphical Abstract

Highlights

  • Tensile strength increased substantially by around 67% for route BC, while for route C, it rose by about 50%
  • Strength improved significantly, reaching 265MPa and 238MPa for routes BC and C after four passes
  • Results showed route BC is most effective for generating UFG materials to refine grains from recycled AA6061-T4 chips
  • ECAPed samples with tensile strength rising 67% for route BC and 50% for route C
  • Micro-hardness increased 67% after four passes to 79.36 HV, while for route BC, it reached 62.82 after two passes

Keywords

Main Subjects

  1. J. I. S. R. N. Mukhopadhyay, Alloy designation, processing, and use of AA6XXX series aluminum alloys, 2012 ( 2012) . https://doi.org/10.5402/2012/165082
  2. Cui, A. Kvithyld, H. J. Roven, Degreasing of aluminum turnings and implications for solid-state recycling, Minerals, Met. Mater. Int. Soc, /AIME, 420 Commonwealth Dr., P. O. Box , 2010.
  3. Wan, W. Chen, T. Lu, F. Liu, Z. Jiang, M. Mao, Review of solid state recycling of aluminum chips, Resour. Conserv . Recycl ., 125 (2017) 37-47. https://doi.org/10.1016/j.resconrec.2017.06.004
  4. Aslan, O. S. Sahin, E. Salur, A. Gunes, A. Akdemir, H. B. Karadag, A new method for recycling of metal chips , A. Sci., 4 (2015) 1-12.
  5. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater., 61 (2013) 782-817. https://doi.org/10.1016/j.actamat.2012.10.038
  6. Z. Valiev, T. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51 (2006) 881-981. https://doi.org/10.1016/j.pmatsci.2006.02.003
  7. P. Zhilyaev, T. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, 53 (2008) 893-979. https://doi.org/10.1016/j.pmatsci.2008.03.002
  8. Zaharia, R. Chelariu, R. Comaneci, Multiple direct extrusion: A new technique in grain refinement, Mater. Sci. Eng. A ., 550 ( 2012 ) 293-299. https://doi.org/10.1016/j.msea.2012.04.074
  9. Alihosseini, M. Zaeem, K. Dehghani, H. Shivaee, Producing ultrafine-grained aluminum rods by cyclic forward-backward extrusion: Study the microstructures and mechanical properties, Mater. Lett., 74 (2012) 147-150 . https://doi.org/10.1016/j.matlet.2012.01.102
  10. Su, C. Lu, A. Tieu, G. Deng, X. Sun, Ultrafine grained AA1050/AA6061 composite produced by accumulative roll bonding, Mater. Sci. Eng. A ., 559 (2013) 345-351. https://doi.org/10.1016/j.msea.2012.08.109
  11. Tan, A. A. Kibar, C. H. Gür, Mechanical and microstructural characterization of 6061 aluminum alloy strips severely deformed by dissimilar channel angular pressing, Mater. Charact., 62 (2011) 391-397. https://doi.org/10.1016/j.matchar.2011.01.016
  12. O. Sanusi, O. D. Makinde, G. Oliver, Equal channel angular pressing technique for the formation of ultra-fine grained structures : research article, S. Afr. J. Sci., 108 (2012) 1-7. https://hdl.handle.net/10520/EJC127477
  13. Z. Valiev, I. Sabirov, A. P. Zhilyaev, T. G. Langdon, Bulk nanostructured metals for innovative applications, JOM., 64 (2012) 1134-1142. https://doi.org/10.1007/s11837-012-0427-9
  14. R. Duflou, A. E. Tekkaya, M. Haase, T. Welo, K. Vanmeensel, K. Kellens, W. Dewulf, D. Paraskevas, Environmental assessment of solid state recycling routes for aluminium alloys: can solid state processes significantly reduce the environmental impact of aluminium recycling, CIRP Ann ., 64 (2015) 37-40. https://doi.org/10.1016/j.cirp.2015.04.051
  15. Baffari, G. Buffa, D. Campanella, L. Fratini, Design of continuous Friction Stir Extrusion machines for metal chip recycling: issues and difficulties, Procedia. Manuf., 15 (2018) 280-286. https://doi.org/10.1016/j.promfg.2018.07.220
  16. Maziarz, M. Greger, P. Długosz, J. Dutkiewicz, A. Wójcik, Ł. Rogal, K. Stan-Głowińska, O. Hilser, M. Pastrnak, L. Cizek, , Effect of severe plastic deformation process on microstructure and mechanical properties of AlSi/SiC composite, J. Mater. Res. Technol., 17 (2022) 948-960. https://doi.org/10.1016/j.jmrt.2022.01.023
  17. M. Agarwal, R. Tyagi, V. Choubey, K. Saxena, P. Technologies, Mechanical behaviour of Aluminium Alloy AA6063 processed through ECAP with optimum die design parameters, Mater. Today. Proc., 46 (2021) 6490-6495. https://doi.org/10.1016/j.matpr.2021.03.681
  18. Baig, A. U. Rehman, J. A. Mohammed, A. H. Seikh, Effect of microstructure and mechanical properties of Al5083 alloy processed by ECAP at room temperature and high temperature, Cryst., 11 (2021) 683. https://doi.org/10.3390/cryst11060683
  19. C. Gautam, S. Biswas, On the possibility to reduce ECAP deformation temperature in magnesium: Deformation behaviour, dynamic recrystallization and mechanical properties, Mater. Sci. Eng. A ., 812 (2021) 141103. https://doi.org/10.1016/j.msea.2021.141103
  20. Lefstad, K. Pedersen, S. Dumoulin, Up-scaled equal channel angular pressing of AA6060 and subsequent mechanical properties, Mater. Sci. Eng., 535 (2012) 235-240. https://doi.org/10.1016/j.msea.2011.12.073
  21. I. Abd El Aal , The influence of ECAP and HPT processing on the microstructure evolution, mechanical properties and tribology characteristics of an Al6061 alloy, J. Mater. Res. Technol., 9 (2020) 12525-12546. https://doi.org/10.1016/j.jmrt.2020.08.099
  22. Abioye, P. Atanda, G. Osinkolu, A. Abioye, I. Olumor, O. Odunlami, Influence of equal channel angular extrusion on the tensile behavior of Aluminum 6063 alloy, Procedia. Manuf., 35 (2019) 1337-1343. https://doi.org/10.1016/j.promfg.2019.05.020
  23. I. Ab Kadir, M. S. Mustapa, N. A. Latif, A. S. Mahdi, Microstructural analysis and mechanical properties of direct recycling aluminium chips AA6061/Al powder fabricated by uniaxial cold compaction technique, Procedia. Eng., 184 (2017) 687-694. https://doi.org/10.1016/j.proeng.2017.04.141
  24. A. Taha, A. T. Abbas, F. Benyahia, H. F. Alharbi, B. Guitián, X. Novoa, Enhanced corrosion resistance of recycled aluminum alloy 6061 chips using hot extrusion followed by ECAP, 2019 (2019) 3658507. https://doi.org/10.1155/2019/3658507
  25. I. Abd El Aal, M. A. Taha, A. Selmy, A. El-Gohry, H. Kim, Solid state recycling of aluminium AA6061 alloy chips by hot extrusion, 6 (2018) 036525. https://doi.org/10.1088/2053-1591/aaf6e7
  26. Liang, Z. Zhang, M. Jia, L. Cao, C. Li, H. Gao, J. Wang, D. Zhang, The microstructures and tensile mechanical properties of ultrafine grained and coarse grained Al-7Si-0.3 Mg alloy rods fabricated from machining chips, Mater. Sci. Eng., 729 (2018) 29-36. https://doi.org/10.1016/j.msea.2018.05.047
  27. Gronostajski, H. Marciniak, A. Matuszak, New methods of aluminium and aluminium-alloy chips recycling, J. Mater. Process. Technol., 106 (2000) 34-39. https://doi.org/10.1016/S0924-0136(00)00634-8
  28. A. Kazemi, R. Seifi, Effects of crack orientation on the fatigue crack growth rate and fracture toughness of AA6063 alloy deformed by ECAP, Mater. Sci. Eng., 733 (2018) 71-79. https://doi.org/10.1016/j.msea.2018.07.042
  29. Zhang, M. Chen, K. Ramesh, J. Ye, J. Schoenung, E. Chin, Tensile behavior and dynamic failure of aluminum 6092/B4C composites, Mater. Sci. Eng, : A .433 (2006) 70-82. https://doi.org/10.1016/j.msea.2006.06.055
  30. Ramachandran, Advances in Aluminium Processing and Its Automotive Application. pp. 28-32.
  31. Selmy, A. El-Gohry, M. Abd El Aal, M. Taha, Characteristics of solid state recycling of aluminum alloy (AA6061) chips by hot extrusion. 316-323.
  32. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, The process of grain refinement in equal-channel angular pressing, Acta. Mater., 46 (1998) 3317-3331. https://doi.org/10.1016/S1359-6454(97)00494-1
  33. G. Langdon, The principles of grain refinement in equal-channel angular pressing, Mater. Sci. Eng. A ., 462 (2007) 3-11. https://doi.org/10.1016/j.msea.2006.02.473
  34. Vinogradov, S. Yasuoka, S. Hashimoto, On the effect of deformation mode on fatigue: simple shear vs. pure shear, Mater. Sci. Forum., 584-586 (2008) 797-802. https://doi.org/10.4028/www.scientific.net/MSF.584-586.797
  35. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, T. G. Langdon, Influence of pressing speed on microstructural development in equal-channel angular pressing, Metall. Mater. Trans., 30 (1999) 1989-1997. https://doi.org/10.1007/s11661-999-0009-9
  36. Valiev, T. Langdon, Principles of equal, Prog. Mater. Sci., 51(2006) 881-981
  37. Standard, E8/E8M-16a standard test methods for tension testing, of metallic materials, 2016.
  38. A. Baharanchi, F. Karimzadeh, M. J. Enayati, Mechanical and tribological behavior of severely plastic deformed Al6061 at cryogenic temperatures, Mater. Sci. Eng., 683 (2017) 56-63. https://doi.org/10.1016/j.msea.2016.11.099
  39. J. J. o. m. s. Vinogradov, Fatigue limit and crack growth in ultra-fine grain metals produced by severe plastic deformation, J. Mater. Sci., 42 (2007) 1797-1808. https://doi.org/10.1007/s10853-006-0973-z
  40. Zhang, J. Wang, Q. Zhang, S. Zhang, Q. Shi, H. Qi, Research on grain refinement mechanism of 6061 aluminum alloy processed by combined SPD methods of ECAP and MAC, Mater., 11 (2018) 1246 . https://doi.org/10.3390/ma11071246
  41. Kadiyan, B. Dehiya, Evaluating the influence of various routes on micro-structure and mechanical properties of AA-6063 after equal channel angular pressing, Mater. Res. Express., 6 (2019) 0865f9. https://doi.org/10.1088/2053-1591/ab2618
  42. Ciemiorek, M. Lewandowska, L. Olejnik, Microstructure, tensile properties and formability of ultrafine-grained Al–Mn square plates processed by Incremental ECAP, Mater. Des., 196 (2020) 109125. https://doi.org/10.1016/j.matdes.2020.109125
  43. Al-Alimi, M. A. Lajis, S. Shamsudin, N. K. Yusuf, B. Chan, D. D. Hissein, M. H. Rady, M. S. Msebawi, H. Sabbar, Hot extrusion followed by a hot ecap consolidation combined technique in the production of boron carbide (B4C) reinforced With aluminium chips (AA6061) composite, Mater. Technol.,  55 (2021) 347–354. https://doi.org/10.17222/mit.2020.177
  44. Gupta, K. Saxena, A. Bharti, J. Lade, K. Chadha, P. Paresi, Influence of ECAP processing temperature and number of passes on hardness and microstructure of Al-6063, Adv. Mater. Process. Technol., 8 (2022) 1635-1646 . https://doi.org/10.1080/2374068X.2021.1953917
  45. Shuai, Z. Li, D. Zhang, Y. Tong, L. J. Li, The mechanical property and electrical conductivity evolution of Al–Fe alloy between room temperature and elevated temperature ECAP, Vacuum, 183 (2021) 109813 . https://doi.org/10.1016/j.vacuum.2020.109813