Document Type : Research Paper

Author

Nanotechnology and Advanced Materials Research Center, University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

Abstract

Using the sol-gel technique, this study successfully synthesized two types of nanoparticles, ZnO and TiO2. The Fourier-transform infrared (FTIR) spectrum exhibited a broad peak, providing insights into crucial chemical bonds. The average grain sizes, 18.6 nm for ZnO and 12.6 nm for TiO2 were determined through X-ray diffraction (XRD). Scanning electron microscopy (SEM) images of the (ZnO & TiO2) powder revealed the presence of pores and agglomeration. The antimicrobial efficacy of these nanoparticles was evaluated against Gram-negative bacteria (E. coli and Proteus) and Gram-positive bacteria (Staph. aureus). The results demonstrated the capability of both ZnO and TiO2 to impact bacterial survival rates, with ZnO nanoparticles exhibiting a superior effect compared to TiO2 nanoparticles. This research contributes valuable insights into the antimicrobial properties of ZnO and TiO2 nanoparticles, emphasizing their potential applications in combating bacterial infections.

Graphical Abstract

Highlights

  • Two types of Nanoparticles, ZnO and TiO2, were prepared utilizing the sol-gel technique.
  • Nanoparticle characterization was studied using XRD, SEM, and FTIR.
  • Antibacterial activity of the Nanoparticles was compared against E.coli and Staph.aureus bacteria.
  • Results showed ZnO NPs affected the two bacteria more than TiO2

Keywords

Main Subjects

  1. Cermenati Dondi. DL. Maurizio Fagnoni and Angelo Albini. Titanium dioxide photocatalysis of adamantine, Tetrahedron, 59 (2003) 6409-6414.
  2. Li P, Li J, Wu C, Wu Q, Li J. Synergistic antibacterial effects of lactam antibiotic combined with silver nanoparticles, Nanotechnol, 16 (2005)1912. https://doi.org/10.1088/0957-4484/16/9/082
  3. Sungkaworn, W. Triampo, P. nalakarn, D. Triampo, IM. tang, Y. Lenbury et al., The effects of Tio2 nanoparticles on tumor cells colonies: fractal dimension and morphological properties, Int. J. Biomed Sci., 2 (2007) 67-74.
  4. Further, DY. Lyon, CM. Sayes, AM. Boyd, JC. Falkner, EM Hotze, Alemany et al., C-60 in water: Nanocrystal formation and microbial response. Environ Sci. Technol., 39 (2005) 430716.
  5. Sawai, (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54, 177–182.
  6. Fu, P.S.Vary, and C.T. Lin, (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109, 8889–8898.
  7. L Zhang, Y.H. Jiang, Y.L. Ding, M. Povey, and D. York, Investigation into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnO nanofluids), J. Nanopart. Res., 9 (2007) 479–489. https://doi.org/10.1007/s11051-006-9150-1
  8. Li, Q., Mahendra, S. Lyon, D.Y. Brunet, L. Liga, M.V., Li. D. and P. J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications, Water Res., 42 (2008) 4591-4602. https://doi.org/10.1016/j.watres.2008.08.015
  9. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, and F. Fievet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett 6 (2006) 866–870. https://doi.org/10.1021/nl052326h
  10. Alivisatos, Semiconductor Clusters, Nanocrystals and Quantum Dots Science of the Total Environment 271(1996) 933-937. https://doi.org/10.1126/science.271.5251.933
  11. Fujishima, K. Honda, Nature 238, 37 (1972).
  12. Tojo, T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C 112, 14948 (2008).
  13. S. Wong, S. W. Hsu, K. K. Rao, C. P. Kumar, J. Mol. Catal. A: Chem. 279, 20 (2008)
  14. Wu JM, Qi B (2007) Low-temperature growth of a nitrogen-doped titania nanoflower film and its ability to assist photodegradation of rhodamine B in water. J. Phys. Chem., 111 (2006) 666-673. https://doi.org/10.1021/jp065630n
  15. Mohite, MA. Mahadik, SS. Kumbhar, YM. Hunge, HJ. Kim et al., photoelectrocatalytic degradation of benzoic acid using Au doped TiO2 thin films, J. Photochem Photobiol B 142 (2015) 204-211. https://doi.org/10.1016/j.jphotobiol.2014.12.004
  16. Saha, and V. K.K. Upadhyayula, (2008). Carbon Nanotube-Based Biosensor for Pathogens Concentration and Detection, Final Report submitted to WRRI, New Mexico State University.
  17. Duha Ahmed, Ali L. Abed , Azhar J. Bohan and Jhan Y. Rbat, Effect of (ZnO/MWCNTs) Hybrid Concentrations on Microbial Pathogens Removal, Eng. Tech. J., 33 (2015) 1402-1411.
  18. Kalpana Handore, Sanjay Bhavsar, Amit Horne, Prakash Chhattise, Kakasaheb Mohite, Jalinder Ambekard, Nishigandh Pande, Vasant Chabukswar ,Novel Green Route of Synthesis of ZnO Particles by Using Natural Biodegradable Polymer and Its Application as a Catalyst for Oxidation of Aldehydes, J. Macromol. Sci., Part A: Pure and Applied Chemistry. http://dx.doi.org/10.1080/10601325.2014.967078
  19. Andrea León, Patricia Reuquen, Carolina Garín, Rodrigo Segura, Patricio Vargas, Paula Zapata, Pedro A. Orihuela, FTIR and Raman Characterization of TiO2 Particles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol, Appl. Sci., (49 (2017). http://dx.doi.org/doi:10.3390/app7010049.
  20. Sharmila Devi, R.Venckatesh , RajeshwariSivaraj, Synthesis of Titanium Dioxide Particles by Sol-Gel Technique, International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) 3 (2014).
  21. Wokovich, K.Tyner, W. Doub, N. Sadrieh, LF. Buhse, Particle size determination of sunscreens formulated with various forms of titanium dioxide, Drug. Dev. Ind. Pharm., 35 (2009)1180-9. https://doi.org/10.1080/03639040902838043
  22. Klug, LE. Alexander, X-ray diffraction procedures: for polycrystalline and amorphous materials, Wiley, 1974. https://doi.org/10.1002/xrs.1300040415
  23. Smijs, S. Pavel, Titanium dioxide and zinc oxide particles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci. Appl., 4 (2011) 4:95-112. https://doi.org/10.2147%2FNSA.S19419
  24. Tyner, AM. Wokovich, DE. Godar, WH. Doub, N. Sadrieh, The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance, Int. J. Cosmet. Sci., 33 (2011) 234-44. https://doi.org/10.1111/j.1468-2494.2010.00622.x
  25. Themaa, E. Manikandan, MS. Dhlamini, M. Maaza, Green synthesis of ZnO particles via Agathosma betulina natural extract, Mater. Lett., 161 (2015) 124-7. https://doi.org/10.1016/j.matlet.2015.08.052
  26. Fang, J. Kennedy, E. Manikandan, J. Futter, A. Markwitz, Morphology and characterization of TiO2 particles synthesized by arc discharge, Chem. Phys. Lett., 521 (2012) 86-90. https://doi.org/10.1016/j.cplett.2011.11.046
  27. Y Shen, L. Wang1, H. Zhang, T. Wu, H. Y. Pan, Preparation and characterization of titania/silicone nanocomposite material, IOP Conf. Ser.: Mater. Sci. Eng., 87 (2015) 16-18. https://doi.org/10.1088/1757-899X/87/1/012021
  28. C. Manna, Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles, in: N. Cioffi, M. Rai (Eds.), Nano-Antimicrobials – Progress and Prospects, Springer, New York, (2012) 151-180.
  29. J-Song, C. J-Ming, Li. Z.-Quan, Ji. G-Bin, M.-Bo Zheng, A simple microwaveassisted decomposing route for synthesis of ZnO nanorods in the presence of PEG400, Mater. Lett., 61 (2007) 4409–4411. https://doi.org/10.1016/j.matlet.2007.02.014
  30. Sunita, G. Suresh, N. Madhav, R. Anjali, Copper Oxide Nanoparticles, Synthesis, characterization and their antibacterial activity, J. Cluster Sci., 22 (2011)121–129.
  31. Zhang, G.Chen, Potent Antibacterial Activities of Ag/TiO2 nano composite powders synthesized by aone-potsol–gelmethod, Environ. Sci. Technol., 43 (2009) 2905–2910.
  32. Weisheng, H.Yue-wern, Z. Xiao-Dong, M.Yinfa,Toxicity of cerium oxide nano particles in human lung cancer cells, Int. J. Toxicol., 25 (2006) 451–457.
  33. Haghi , H.Maadi1, 2 Vol. 2. No. 6. November ( 2010), Part II
  34. H, Zhang, G. Chen, Potent antibacterial activities of Ag/Tio2 nanocomposite powders synthesized by a one-potsol-gel method. Environ. Sci. Technol., 34 (2009) 2905-10. https://doi.org/10.1021/es803450f
  35. KB, Holt, AJ. Bard, Interaction of silver (1) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy of micromolar Ag, Biochemistry, 44 (2005) 13214-23. https://doi.org/10.1021/bi0508542
  36. Qin, Y. Shen, HF. Zhang et al., Application and Research of Modified nano Oxide in Antibacterial Finishing of Fabric, Dyeing, 31 (2005) 4-6
  37. AD, Russell, WB. Hugo, Antimicrobial activity and action of silver, Prog. Med. Chem., 31 (1994) 351-70. https://doi.org/10.1016/s0079-6468(08)70024-9
  38. JL, Clement, PS. Jarrett, Antibacterial Silver. Met Based Drugs. 1994;1(5-6):467-82.
  39. H, Zhang, G. Chen, Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method, Sci. Technol., 43 (2009) 2905-10. https://doi.org/10.1021/es803450f
  40. Cook, JW. Costerton, Direct confocal microscopy Comparative Study of Antimicrobial Activities of TiO2 and CdO Nanoparticles against the ... 89 Vol.5 No.2, Spring 2010 IRANIAN JOURNAL OF PATHOLOGY studies of the bacterial colonization in vitro of a silvercoated heart valve sewing. Cuff Int. J. Antimicrob Agents 2000;13(3):169-73.
  41. Raad, HA. Hanna, M. Boktour, G. Chaiban, RY. Hachem, T. Dvorak et al., Vancomycin-resistant Enterococcus faecium: catheter colonization, esp gene, and decreased susceptibility to antibiotics in biofilm, Antimicrob Agents Chemother 49 (2005) 5046−50. https://doi.org/10.1128%2FAAC.49.12.5046-5050.2005
  42. Jones, CT. Muller, M. O’Reilly, DJ. Stickler, Effect of triclosan on the development of bacterial biofilms by urinary tract pathogens on urinary catheters, J. Antimicrob. Chemother., 57 (2006) 266−72. https://doi.org/10.1099/jmm.0.2008/002295-0
  43. Greenberg, C. Steffek, Bio-adhesion to thin films in relation to cleaning, Thin Solid Films 484 (2005) 324−327. https://doi.org/10.1016/j.tsf.2005.03.008
  44. Holt, AJ. Bard, Interaction of silver (I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag, Biochemistry, 44 (2005) 13214−23. https://doi.org/10.1021/bi0508542