Document Type : Research Paper


Civil Engineering Dept., Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria.


This paper derives buckling solutions for single variable thick plate buckling problems using the double finite sine transform method (DFSTM). The problem governing partial differential equation (GPDE), originally formulated by Shimpi and others, uses a refined plate theory (RPT) and accounts for transverse shear deformations, rendering it applicable to thick plates. The thick plate is simply supported and subjected to (i) uniform uniaxial compressive load in the x direction. (ii) uniform biaxial compressive load in the x and y axes. The DFSTM was applied to the GPDE, and the problem transformed into an algebraic equation, which was simpler in this case due to the Dirichlet boundary conditions satisfied by the sinusoidal kernel of the DFSTM. Analytical buckling solutions were determined for the two considered cases of uniaxial and biaxial compressive loads in terms of the buckling modes, Poisson’s ratio (m), and thickness (h) to least dimension (a) ratio. Critical buckling loads (Pcr) determined at the first buckling modes agreed with previously obtained Navier solutions for Mindlin, Reddy, and Refined plates. Pcr calculated for ratios of h/a equal to 0.01 converged to the solutions obtained using Kirchhoff-Love plate theory (KLPT), illustrating the applicability of the GPDE to thin and thin plate buckling.

Graphical Abstract


  • The double finite sine transform method was utilized to obtain exact buckling solutions for thick plate problems
  • The method simplified the problem to algebraic ones since the sinusoidal function satisfies the boundary conditions
  • The buckling solutions aligned with exact solutions for thick plates


Main Subjects

  1. C. Ike, Exact analytical solutions to bending problems of SFrSFr plates using variational Kantorovich-Vlasov method, J. Compu. Appl. Mech., 54 (2023) 186 – 203.
  2. C. Ike, Variational Ritz-Kantorovich-Euler Lagrange method for the elastic buckling analysis of fully clamped Kirchhoff thin plate, ARPN J. Eng. Appl. Sci., 16 (2021) 224 – 241.
  3. C. Ike, Generalized integral transform method for bending analysis of clamped rectangular thin plate, J. Comput. Appl. Mech., 53 (2022) 599 – 635.
  4. D. Mindlin, Influence of rotary inertia and shear on flexural motions of isotropic elastic plates, ASME J. Appl. Mech., 18 (1951) 31 – 38.
  5. N. Reddy, A simple higher order theory for laminated composite plates, ASME J. Appl. Mech., 51(1981) 745 – 752.
  6. N. Reddy, A refined non-linear theory of plates with transverse shear deformation., Int. J. Solids Struct., 20 (1984) 881 – 896.
  7. P. Shimpi, Refined plate theory and its variants, AIAA J., 40 (2002) 137 – 146.
  8. P. Shimpi, R.A. Shetty, A. Guha, A single variable refined theory for free vibrations of a plate using inertia related terms in displacements, Eur. J. Mech. A. Solids, 65 (2017) 136 – 148.
  9. U. Nwoji, B.O. Mama, H.N. Onah, C.C. Ike, Flexural analysis of simply supported rectangular Mindlin plates under bisinusoidal transverse load, ARPN J. Eng. Appl. Sci., 13 (2018) 4480 – 4488.
  10. U. Nwoji, H.N. Onah, B.O. Mama, C.C. Ike, Theory of elasticity formulation of the Mindlin plate equations, Int. J. Eng. Technol., 9 (2018) 4344 – 4352.
  11. C. Ike, Equilibrium approach in the derivation of differential equations of homogeneous isotropic Mindlin plates, Niger. J. Technol., 36 (2017) 346 – 350.
  12. C. Ike, Mathematical solutions for the flexural analysis of Mindlin’s first order shear deformable circular plates, J. Math. Models Eng., 4 (2018) 50 – 72.
  13. Norouzzadeh, R. Ansari, H. Rouhi, Isogeometric analysis of Mindlin nanoplates based on the integral formulation of nonlocal elasticity Multidiscip, Model. Mater. Struct., 14 (2018) 810 – 827.
  14. Bao, S. Cen, C. Li, Distortion-resistant and locking free eight node elements effectively capturing the edge effects of Mindlin-Reissner plates, Eng. Comput., 34 (2017) 548 – 586.
  15. Do V.T., Pham V.V., Nguyen H.N., On the development of refined plate theory for static bending behaviour of functionally graded plates, Math. Model. Eng. Probl., 2836763, 2020. https//
  16. Soltani, A. Bassaim, M.S.A. Houari, A. Kaci, M. Benguediab, A. Tounsi, M.Sh. Alhodaly, A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations, Steel Compos. Struct., 30 (2019) 13 – 29.
  17. Kumar. J. Singh, Assessment of higher order transverse shear deformation theories for modelling and buckling analysis of FGM plates using RBF based meshless approach, Multidiscip Model. Mater. Struct., 14 (2018) 891 – 907.
  18. Hadji, M. Avcar, Free vibration analysis of FG porous sandwich plates under various boundary conditions, J. Appl. Comput. Mech., 7 (2021) 505 – 519.
  19. Mohseni, A. Naderi, Effect of higher order shear and normal deformations theory in buckling analysis of thick functionally graded plates, J. Comput. Appl. Mech., 54 (2023) 347 – 364.
  20. C. Onyeka, B.O. Mama, Analytical study of bending characteristics of an elastic rectangular plate using direct variational energy approach with trigonometric function, Emerg. Sci. J., 5 (2021) 916-928.
  21. C. Onyeka, E.T. Okeke, Analytical solution of thick rectangular plate with clamped and free support boundary condition using polynomial shear deformation theory, Adv. Sci. Technol. Eng. Syst. J., 6 (2021) 1427 – 1439.
  22. C. Onyeka, T.E. Okeke, New refined shear deformation theory effect on non-linear analysis of a thick plate using energy method, Arid Zone. J. Eng. Technol. Environ., 17 ( 2021) 121 – 140.
  23. C. Onyeka, B.O. Mama, T.E. Okeke, Exact three-dimensional stability analysis of plate using a direct variational energy method, Civ. Eng. J., 8 (2022) 60 – 80.
  24. C. Onyeka, C.D. Nwa-David, T.E. Edozie, Analytical solution for the static bending elastic analysis of thick rectangular plate structures, Eng. Technol. J., 40 (2022)1548 – 1559.
  25. C. Onyeka, T.E. Okeke, B.O. Mama, Static elastic bending analysis of a three-dimensional clamped thick rectangular plate using energy method, High Tech Innov. J., 3 (2022) 267 – 281.
  26. C. Onyeka, E.D. Nwa-David, B.O. Mama, Static bending solutions for an isotropic rectangular clamped/simply supported plate using 3-D plate theory, J. Comput. Appl. Mech., 54 (2023) 1–18.
  27. C. Onyeka, T.E. Okeke, C. Nwa-David, B.O. Mama, Analytical elasticity solution for accurate prediction of stresses in a rectangular plate using exact 3-D theory, J. Comput. Appl. Mech., 54 (2023) 167-185.
  28. C. Onyeka, B.O. Mama, C.D. Nwa-David Stress analysis of transversely loaded isotropic three-dimensional plates using a polynomial shear deformation theory, Eng. Technol. J., 41 (2023) 603 – 618.
  29. N. Onah, M.E. Onyia, B.O. Mama, C.U. Nwoji, C.C. Ike, First principles derivation of displacement and stress function for three-dimensional elasto static problems, and application to the flexural analysis of thick circular plates, J. Comput. Appl. Mech., 51 (2020) 184 – 198.
  30. Singh, A. Kumar, Vibration and the buckling response of functionally graded plates, according to a refined hyperbolic shear deformation theory, Mech. Compos. Mater., 59 (2023) 725 – 742.
  31. Nareen, R.P. Shimpi, Refined hyperbolic shear deformation plate theory, Proc. Inst. Mech. Eng. C., J. Mech. Eng. Sci. 229 (2015) 2675 – 2686.
  32. J.M. Ferreira, C.M.C. Roque, Analysis of thick plates by radial basis functions, Acta Mech., 217 (2011) 177 – 190.
  33. T. Gomaa, M.H. Baluch, H.H. Abdel-Rahman, A.K. Mohammed, Finite element modelling of thick isotropic plates, Eng. Comput., 8 (1991) 361 – 378.
  34. Zargaripoor, A. Bahrami, M. Nikkah Bahrami, Free vibration and buckling analysis of third-order shear deformation plate theory using exact wave propagation approach, J. Comput. Appl. Mech., 49 (2018) 102 – 124.
  35. Malikan, V.C. Nguyen, A novel one-variable first order shear deformation theory for biaxial buckling of a size-dependent plate based on Eringen’s nonlocal differential law, World J. Eng., 15 (2018) 633 – 645.
  36. Zhong Y., Xu Q., Analysis bending solutions of clamped rectangular thick plate, Math. Probl. Eng., 7539276, 2017.
  37. N. Reddy, N.D. Phan, Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory, J. Sound Vib., 98 (1985) 158 – 170.
  38. A. Deepak, R.A. Shetty, K.K. Sudheer, G.L. Dushyanthkumar, Buckling analysis of thick plates using a single variable simple plate theory, J. Mines. Metals Fuels, 2021 (2021) 67 – 72.
  39. Timoshenko, S.P., Gere, G.M., Theory of Elastic Stability 2nd Edition, McGraw Hill Book Company, New York, 1961.
  40. T. Thai, D.H. Choi, Analytical solutions of refined plate theory for bending, buckling and vibration analyses of thick plates, Appl. Math. Modell., 37 (2013) 8310 – 8323.
  41. Srinivas, A.K. Rao, Buckling of thick rectangular plates, AIAA J., 7 (1969) 1645 – 1646.
  42. H. Hashemi, K. Khorshidi, M. Amabili, Exact solutions for linear buckling of rectangular Mindlin plates, J. Sound Vib., 315 (2008) 318 – 342.
  43. E. Onyia, E.O. Rowland-Lato, C.C. Ike, Galerkin-Kantorovich method for the elastic buckling analysis of thin rectangular SCSC plates, Int. J. Eng. Res. Technol., 13 (2020) 613 – 619.
  44. E. Onyia, E.O. Rowland-Late, C.C. Ike, Galerkin-Vlasov variational method for the elastic buckling analysis of SSCF and SSSS rectangular plates, Int. J. Eng. Res. Technol.,13 (2020) 1137 – 1146.
  45. A. Oguaghamba, C.C. Ike, Galerkin-Vlasov method for the elastic buckling analysis of Kirchhoff plate with one free edge and three simply supported edges under uniform uniaxial compression, ARPN J. Eng. Appl. Sci., 15 (2020) 1574 – 1581.
  46. N. Onah, C.U. Nwoji, C.C. Ike, B.O. Mama, Elastic buckling analysis of uniaxially compressed CCSS Kirchhoff plate using single finite Fourier sine transform method, Modell. Meas. Control, B, 87 (2018) 107 – 111.
  47. E. Onyia, E.O. Rowland-Late, C.C. Ike, Elastic buckling analysis of SSCF and SSSS rectangular thin plates using the single finite Fourier sine integral transform method, Int. J. Eng. Res. Technol., 13 (2020) 1147 – 1158.
  48. C. Ike, M.E. Onyia, E.O. Rowland-Lato, Generalized integral transform method for bending and buckling analysis of rectangular thin plate with two opposite edges simply supported and other edges clamped, Adv. Sci. Technol. Eng. Sys. J., 6 (2021) 283 – 296.
  49. U. Nwoji, H.N. Onah, B.O. Mama, C.C. Ike, E.U. Ikwueze, Elastic buckling analysis of simply supported thin plates using the double finite sine transform method, Explorematics J. Innovative Eng. Technol., 1 (2017) 37 –47.
  50. A. Oguaghamba, C.C. Ike, Single finite Fourier sine integral transform method for the determination of natural frequencies of flexural vibration of Kirchhoff plates, Int. J. Eng. Res. Technol., 13 (2020) 470 – 476.
  51. O. Mama, O.A. Oguaghamba, C.C. Ike, Single finite Fourier sine integral transform method for the flexural analysis of rectangular Kirchhoff plate with opposite edges simply supported, other edges clamped for the case of triangular load distribution, Int. J. Eng. Res. Technol., 13 (2020) 1802 – 1813.
  52. P. Shimpi, P.J. Guruprasad, K.S. Pakhare, Single variable new first-order shear deformation theory for isotropic plates, Lat. Am. J. Solids Struct., 15 (2018) e124, 1-25.