Document Type : Review Paper


1 RSK Environment Ltd., 18 Frogmore Road, Hemel Hempstead HP3 9RT, UK.

2 R.M.D. Engineering College, Chennai 601206, Tamil Nadu, India

3 Department of Home Science, School of Sciences, The Gandhigram Rural Institute- (Deemed to be University), Gandhigram 624302, Dindigul, Tamil Nadu, India.

4 Department of Biomarine Resource Valorisation, Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO) Torggarden, Kudalsveien 6, No-8027, Bodo, Norway.


Sustainable source-based hydrogels are now paid much importance for managing water pollution due to their distinctive chemical and physical properties like hydrophilicity, biocompatibility, viscoelasticity, superabsorbancy, softness, fluffiness, and biodegradability. Alginate-based hydrogels can incorporate much water due to their hydrophilic nature.Water pollution often changes groundwater, resulting in the inability to use it. Alginate-based gels remove pollutants through adsorption/desorption, transport, and other conventional techniques. Alginate-based hydrogels can incorporate much water due to their hydrophilic nature. Their composites have been demonstrated to control different water pollutants like inorganic, organic, and pathogenic microbes from various water streams in unique structural forms like a flat membrane, hollow fibber, microspheres, gels, foams, nanofibers, Calcium and sodium alginate-based hydrogel along with other materials like activated charcoal, zeolite, bentonite, graphene, biochars and composites have been proved to be effective blend in managing heavy metal pollutants.This review summarizes the results obtained from the sustainable removal of contaminants from water through the alginate-based hydrogel and the challenges associated with it for practical application in the future.

Graphical Abstract


  • Alginate-based hydrogels can incorporate much water due to their hydrophilic nature
  • Alginate-based composites have unique structural forms like flat membranes, hollow fiber, microsphere etc.
  • Alginate composites are demonstrated to control inorganic, organic, and pathogenic microbes from water streams
  • Alginate is from plant source and could provide an edge over synthetic fossil fuel-based materials


Main Subjects

  1. P. S. Abdul Khalil, , C. K. Saurabh, Y. Y. Tye, T. K. Lai, A. M. Easa, E. Rosamah, M. R. N. Fazita, M. I. Syakir, A. S. Adnan, H. M. Fizree, N. A. S. Aprilia, Seaweed based sustainable films and composites for food and pharmaceutical applications: A review, Renew. Sust. Energ. Rev., 77 (2017) 353-362.
  2. Thakur, S. Pandey, O. A. Arotiba, Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue, Carbohydr. Polym., 153 (2016) 34-46.
  3. Zhao, X. Qin and S. Feng, Preparation of microgel/sodium alginate composite granular hydrogels and their cu2+ adsorption properties. RSC Advances, 6 (2016) 100511-100518.
  4. Wang, B. Gao , Y. Wan, Comparative study of calcium alginate, ball-milled biochar, and their composites on methylene blue adsorption, Enviro. Sci. Pollution Res., 26 (2019) 11535-11541.
  5. Paraskevopoulou, G. Raptopoulos, F. Leontaridou, M. Papastergiou, A. Sakellari ,S. Karavoltsos, Evaluation of Polyurea - Cross-linked Alginate Aerogels for Seawater Decontamination, Gels, 7 (2021) 27.
  6. Li, Y., Zhang, H., Fan, M. et al., A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments, Sci. Rep., 7 (2017)
  7. Hu , A. M. Omer, X. Ouyang , D. Yu, Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution, Int. J. Biol. Macromol., 108 (2018) 149-157.
  8. Zhuang, F. Yu, H. Chen, J. Zheng, Alginate/graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity, J. Mater. Chem., 4 (2016) 10885-10892.
  9. T. Kühn,R. T. Rozenbaum, E. Perrels, P. K. Sharma, Microbial Biopolymer Hydrogel Scaffolds for Stem Cell Encapsulation. Polymers, 9 (2017)149.
  10. Lin, B. Fugetsu, N. Terui, S. Tanaka, Removal of organic compounds by alginate gel beads with entrapped activated carbon, J. Hazard. Mater., 120 (2005) 237-241.
  11. Aziz , M. El Achaby, A. Lissaneddine, K. Aziz, Composites with alginate beads: A novel design of nano-adsorbents impregnation for large-scale continuous flow wastewater treatment pilots, Saudi J. Biol. Sci., 27 (2020) 2499–2508.
  12. Wang, B. Gao, A. R. Zimmerman, X. Lee, Impregnation of multiwall carbon nanotubes in alginate beads dramatically enhances their adsorptive ability to aqueous methylene blue, Chem. Eng. Res. Des., 133 (2018) 235-242.
  13. G. Park, T. W. Kim, M. Y. Chae, Activated carbon-containing alginate adsorbent for the simultaneous removal of heavy metals and toxic organics, Process Biochem., 42 (2007) 1371–1377.
  14. Y. Kim, H. J. Jin, S. S. Park, S. J. Kim, Adsorption equilibrium of copper ion and phenol by powdered activated carbon, alginate bead and alginate-activated carbon bead, J. Ind. Eng. Chem., 14 (2008) 714-719.
  15. Choi, K. Yang, D. Kim, Adsorption of zinc and toluene by alginate complex impregnated with zeolite, and activated carbon, Curr. Appl. Phys., 9 (2009) 694–697.
  16. Do, B. Lee, Removal of Pb2+ using a biochar-alginate capsule in aqueous solution and capsule regeneration, J. Environ. Manage., 131(2013) 375-82.
  17. Li, F. Liu, B. Xia, Q. Du, P. Zhang, D. Wang, Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites, J. Hazard. Mater., 177 (2010) 876-880.
  18. F. Hassan, A. M. Abdel-Mohsen, H. Elhadidy, Adsorption of arsenic by activated carbon, calcium alginate and their composite beads, Int. J. Biol. Macromol., 68 (2014) 125–130.
  19. Jiao, J. Xiong, J. Tao, S. Xu, D. Zhang, Sodium alginate/graphene oxide aerogel with enhanced strength-toughness and its heavy metal adsorption study, Int. J. Biol. Macromol., 83 (2016) 133-141.
  20. Wang, B. Gao, Y. Wan, Entrapment of ball-milled biochar in ca-alginate beads for the removal of aqueous Cd(II). J. Ind. Eng.Chem., 61 (2018) 161-168.
  21. Wang, Y. Feng, X. Zhang, X. Zhang, Alginate-based attapulgite foams as efficient and recyclable adsorbents for the removal of heavy metals, J. Colloid Interface Sci., 514 (2018) 90-198.
  22. Balasubramani, S. Subramaniam, L. Mitu, Batch and column studies on methylene blue using activated carbon/Al2O3 nano-composite and its impregnated calcium alginate beads, J. Adv. Chem., 12 (2016) 5599-5612.
  23. F. Hassan, A. M. Abdel-Mohsen, M. M. G. Fouda, Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption, Carbohydr. Polym., 102 (2014) 192-198. .
  24. Benhouria, Md. A. Islam, H. Zaghouane-Boudiaf, Calcium alginate–bentonite–activated carbon composite beads as highly effective adsorbent for methylene blue, Chem. Eng. J., 270 (2015) 621–630.
  25. Annadurai , R. Juang, D. Lee, Factorial design analysis for adsorption of dye on activated carbon beads incorporated with calcium alginate, Adv. Environ. Res., 6 (2002) 191–198.
  26. Fan, Z. Shi, M. Lian, H. Li, Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity, J. Mater. Chem., 1 (2013) 7433–7443.
  27. Li, Q. Du, T. Liu, J. Sun, Y. Wang, Methylene blue adsorption on graphene oxide/calcium alginate composites, Carbohydr. Polym., 95 (2013) 501–507.
  28. Sui, Y. Li, R. Liu, Y. Zhang, X. Zhao, Biocomposite fiber of calcium alginate/multi-walled carbon nanotubes with enhanced adsorption properties for ionic dyes, Carbohydr. Polym., 90 (2012) 399–406.
  29. Li, K. Sui, R. Liu, X. Zhao, Y. Zhang, Removal of methyl orange from aqueous solution by calcium alginate/multi-walled carbon nanotubes composite fibers, Energy Procedia, 16 (2012) 863–868.
  30. Gong, B. Wang, G. Zeng, C. Yang, Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent, J. Hazard. Mater., 164 (2009) 1517–1522.
  31. A. Sadat, A. M. Ghaedi, M. Panahimehr, Rapid room-temperature synthesis of cadmium zeolitic imidazolate framework nanoparticles based on 1, 1′-carbonyldiimidazole as ultra-high-efficiency adsorbent for ultrasound-assisted removal of malachite green dye, Appl. Surf. Sci., 467 (2019) 1204-1212.
  32. Hassan, A. Shahat, A. El-Didamony, M. El-Desouky, A. A. El-Bindary, Equilibrium Kinetic and Thermodynamic studies of adsorption of cationic dyes from aqueous solution using ZIF-8, Mor. J. Chem., 8 (2020) 624-635.
  33. C. Motshekga, S. S. Ray, A. Maity, Synthesis and characterization of alginate beads encapsulated zinc oxide nanoparticles for bacteria disinfection in water, J. Colloid Interface Sci., 512 (2018) 686–692.
  34. Lin, R. Huang, Y. Cheng, J. Liu, Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection,Water Res., 47 (2013) 3959–3965.
  35. Baek, S. H. Joo, M. Toborek, Treatment of antibiotic-resistant bacteria by encapsulation of ZnO nanoparticles in an alginate biopolymer: Insights into treatment mechanisms, J. Hazard. Mater., 373 (2019) 122–130.
  36. Zhang, D. Kogelnig, C. Morgenbesser, A. Stojanovic, Preparation and characterization of immobilized [A336][MTBA] in PVA–alginate gel beads as novel solid-phase extractants for an efficient recovery of Hg (II) from aqueous solutions, J. Hazard. Mater., 196 (2011) 201-209.
  37. Kica, T. Vincent, A. Trochimczuk, R. Navarro, Tetra-alkylphosphonium Ionic Liquid Encapsulation in Alginate Beads for Cd(II) Sorption from HCl Solutions, Solvent Extr. Ion Exch., 32 (2014) 543-561.
  38. B. Rufato, V. C. Almeida, M. J. Kipper, A. F. Rubira, Polysaccharide-based adsorbents prepared in ionic liquid with high performance for removing Pb(II) from aqueous systems, Carbohydr. Polym., 215 (2019) 272-279.
  39. Guibal, A.F. Pinol, M. Ruiz, T. Vincent, Immobilization of Cyphos Ionic Liquids in Alginate Capsules for Cd(II) Sorption, Sep. Sci. Technol., 45 (2010) 1935-1949.
  40. Czulak, C. Jouannin, T. Vincent, I. Dez, Nitrophenol Hydrogenation Using Pd Immobilized on Ionic Liquid-Alginate Spherical Resins, Sep. Sci. Technol., 47 (2012) 2166-2176.
  41. Deshalinee, Ionic liquid impregnated alginate beads for adsorption of lead. In Project of Universiti Teknologi PETRONAS, 2017.
  42. Pashaei-Fakhri, S. J. Peighambardoust, R. Foroutan, Crystal violet dye sorption over acrylamide/graphene oxide bonded sodium alginate nanocomposite hydrogel. Chemosphere, 270 (2021) 129419.
  43. Mozaffari, A. K. Vanashi, H. Ghasemzadeh, Nanocomposite hydrogel based on sodium alginate, poly (acrylic acid), and tetraamminecopper (II) sulfate as an efficient dye adsorbent, Carbohydr. Polym., 267 (2021) 118182.
  44. Maqbool, S. Sadaf, H. N. Bhatti, S. Rehmat, Sodium alginate and polypyrrole composites with algal dead biomass for the adsorption of Congo red dye: Kinetics, thermodynamics and desorption studies, Surf. Interfaces, 25 (2021) 101183.
  45. Kumari, N. Singh, R. Sharma, M. Yadav, S. Khan, Kinetics and isotherms of adsorption of fluoride onto Fe3O4/graphene/alginate nanocomposite hydrogel, Environ. Nanotechnol. Monit. Manag., 16 (2021) 100590.
  46. P. Santoso, A. Kurniawan, A. E. Angkawijaya, Removal of heavy metals from water by macro-mesoporous calcium alginate–exfoliated clay composite sponges. Chem. Eng. J., 452 (2023) 139261.