Document Type : Review Paper

Authors

Mechanical Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

Abstract

Various industrial applications, including rotating and reciprocating machinery, depend on gears. Therefore, a sudden breakdown of the gears could result in substantial financial losses. Due to this, extensive studies have focused on defect diagnosis. Both machinery maintenance decisions and preventive maintenance techniques have been aided by vibration analysis. An increased vibration is a warning sign that a machine is about to malfunction or break down. Observing and evaluating the machine's vibration pulses can identify the nature and extent of the issue and, as a result, predict when the machine will fail. The vibration signal may identify gearbox defects early on and diagnose its problems. Hence, this research highlights the main crucial steps that can be followed for defect detection and identification, mainly based on vibration analysis methodologies. It provides an application methodology for various signal-processing techniques used successfully in rotating machinery. The study briefly explains the applied methods to diagnose problems that depend on hybrid artificial intelligence approaches, such as fuzzy sets, expert systems, and neural networks. The key aspect of the present paper is the parametric comparison of the performance of various artificial Intelligence systems used in rotary machines. As such, the paper reports a comprehensive study of the gearbox defect diagnosis and provides useful analysis, which would be helpful for the usage of such techniques in the engineering industry.

Graphical Abstract

Highlights

  • his paper provides a review of signal processing methods
  • Artificial intelligence-based approaches are applied for gearbox defect diagnosis
  • Vibration instrumentation tools are utilized in signal processing analysis of mechanical systems

Keywords

Main Subjects

  1. Lei, J. Lin, M. J. Zuo, Z. He, Condition monitoring and fault diagnosis of planetary gearboxes: A review, Measurement, 48 (2014) 292–305. https://doi.org/10.1016/j.measurement.2013.11.012
  2. Liu, B. Yang, E. Zio, X. Chen, Artificial intelligence for fault diagnosis of rotating machinery: A review, Mech .Syst .Signal Process., 108 (2018) 33–47. https://doi.org/10.1016/j.ymssp.2018.02.016
  3. Glowacz et al., Fault diagnosis of angle grinders and electric impact drills using acoustic signals, Appl. Acoust., 179 (2021) 108070. https://doi.org/10.1016/J.APACOUST.2021.108070
  4. J. Saucedo-Dorantes, M. Delgado-Prieto, J. A. Ortega-Redondo, R. A. Osornio-Rios, R. de J. Romero-Troncoso, Multiple-fault detection methodology based on vibration and current analysis applied to bearings in induction motors and gearboxes on the kinematic chain, Shock Vib., 2016 (2016) 5467643. https://doi.org/10.1155/2016/5467643
  5. B. Zoungrana, A. Chehri, A. Zimmermann, Automatic classification of rotating machinery defects using machine learning (ML) algorithms, in Human Centred Intell. Syst. Springer, (2021) 193–203. https://doi.org/10.1007/978-981-15-5784-2_16
  6. Elango, J. G. Aravind, S. Boopathi, Vibration analysis of bearing by using mechanical stethoscope, Int. J. Adv. Sci. Res., 3 (2018) 1137–1149.
  7. Vashishtha, S. Chauhan, S. Kumar, R. Kumar, R. Zimroz, A. Kumar, Intelligent fault diagnosis of worm gearbox based on adaptive CNN using amended gorilla troop optimization with quantum gate mutation strategy, Knowl. Based. Syst., 280 (2023) 110984. https://doi.org/10.1016/j.knosys.2023.110984
  8. C. Brito, G. A. Susto, J. N. Brito, M. A. V. Duarte, An explainable artificial intelligence approach for unsupervised fault detection and diagnosis in rotating machinery, Mech. Syst. Signal. Process., 163 (2022) 108105. https://doi.org/10.1016/j.ymssp.2021.108105
  9. Li, Y. Yang, Z. Wu, K. Yan, H. Shao, J. Cheng, High-accuracy gearbox health state recognition based on graph sparse random vector functional link network, Reliab. Eng. Syst. Saf., 218 (2022) 108187. https://doi.org/10.1016/j.ress.2021.108187
  10. Brito, G. Susto, J. Brito, M. Duarte, Fault Diagnosis using eXplainable AI: A transfer learning-based approach for rotating machinery exploiting augmented synthetic data, Expert. Syst. Appl., 232 (2023) 120860. https://doi.org/10.1016/j.eswa.2023.120860
  11. Li, A comprehensive survey of sparse regularization: Fundamental, state-of-the-art methodologies and applications on fault diagnosis, Expert. Syst. Appl., 229 (2023) 120517. https://doi.org/10.1016/j.eswa.2023.120517
  12. Kumar, C. P. Gandhi, Y. Zhou, R. Kumar, J. Xiang, Latest developments in gear defect diagnosis and prognosis: A review, Measurement, 158 (2020) 107735. https://doi.org/10.1016/j.measurement.2020.107735
  13. Zhu, S. Tang, S. Yuan, Multiple-signal defect identification of hydraulic pump using an adaptive normalized model and S transform, Eng. Appl. Artif. Intell., 124 (2023) 106548. https://doi.org/10.1016/j.engappai.2023.106548
  14. Zhu et al., A review of the application of deep learning in intelligent fault diagnosis of rotating machinery, Measurement, 206 (2023)112346. https://doi.org/10.1016/j.measurement.2022.112346
  15. Rajabi, M. S. Azari, S. Santini, F. Flammini, Fault diagnosis in industrial rotating equipment based on permutation entropy, signal processing and multi-output neuro-fuzzy classifier, Expert. Syst. Appl., 206 (2022) 117754. https://doi.org/10.1016/j.eswa.2022.117754
  16. F. Dahmer dos Santos, J. L. dos S. Canuto, R. C. Thom de Souza, L. B. R. Aylon, Thermographic image-based diagnosis of failures in electrical motors using deep transfer learning, Eng. Appl. Artif. Intell., 126 (2023) 107106. https://doi.org/10.1016/j.engappai.2023.107106
  17. Liu . L. Zhang, A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings, Measurement, 149 (2020) 107002. https://doi.org/10.1016/j.measurement.2019.107002
  18. M. Ramírez-Sanz, J.-A. Maestro-Prieto, Á. Arnaiz-González, A. Bustillo, Semi-supervised learning for industrial fault detection and diagnosis: A systemic review, Isa. Trans., (2023). https://doi.org/10.1016/j.isatra.2023.09.027
  19. Chatterjee , N. Dethlefs, Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future, Renew. Sust. Energ. Rev., 144 (2021) 111051. https://doi.org/10.1016/j.rser.2021.111051
  20. P. Leo Kumar, State of The Art-Intense Review on Artificial Intelligence Systems Application in Process Planning and Manufacturing, Eng. Appl. Artif. Intell., 65 (2017) 294–329. https://doi.org/10.1016/j.engappai.2017.08.005
  21. Gangsar , R. Tiwari, Signal-based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review, Mech. Syst. Signal. Process., 144 (2020) 106908. https://doi.org/10.1016/j.ymssp.2020.106908
  22. Ciuriuc, J. I. Rapha, R. Guanche, J. L. Domínguez-García, Digital tools for floating offshore wind turbines (FOWT): A state of the art, Energy. Rep., 8 (2022) 1207–1228. https://doi.org/10.1016/j.egyr.2021.12.034
  23. Wang, L. Cheng, L. Feng, K. Y. Lin, L. Zhang, W. Zhao, Tracking and predicting technological knowledge interactions between artificial intelligence and wind power: Multimethod patent analysis, Adv. Eng. Inform., 58 (2023) 102177. https://doi.org/10.1016/j.aei.2023.102177
  24. Mc, Data Acquisition, 2012.
  25. Jaber, A. A., Design of an intelligent embedded system for condition monitoring of an industrial robot. Springer, 2016.
  26. D. Majumder, J. K. Roy, S. Padhee, Recent advances in multifunctional sensing technology on a perspective of multi-sensor system: A review, IEEE Sens J., 19 (2018) 1204–1214. https://doi.org/10.1109/JSEN.2018.2882239
  27. W. Cheung, M. J. Starling, P. D. McGreevy, A comparison of uniaxial and triaxial accelerometers for the assessment of physical activity in dogs, J .Vet. Behav, 9 (2014) 66–71. https://doi.org/10.1016/j.jveb.2013.11.003
  28. Xianzhong, J. Zhuangde, L. Peng, G. Lin, J. Xingdong, A novel PVDF based high-Gn shock accelerometer, J. Phys. Conf. Series, 13 (2005) 25. https://doi.org/10.1088/1742-6596/13/1/025
  29. Goyal ,B. S. Pabla, Condition-based maintenance of machine tools—A review, CIRP J. Manuf. Sci .Technol., 10 (2015) 24–35. https://doi.org/10.1016/j.cirpj.2015.05.004
  30. Salami, M. J. E., Gani, T. Pervez, Machine condition monitoring and fault diagnosis using spectral analysis techniques, 2001.
  31. B. Chaudhury, M. Sengupta, K. Mukherjee, Vibration monitoring of rotating machines using MEMS accelerometer, Int. J .Sci .Eng. Res., 2 (2014) 2347-3878.
  32. M. Contreras-Medina, R. J. Romero-Troncoso, J. R. Millan-Almaraz, C. Rodriguez-Donate, FPGA based multiple-channel vibration analyzer embedded system for industrial applications in automatic failure detection, Int. Symp. Ind. Embed. Syst., (2008) 229–232. https://doi.org/10.1109/SIES.2008.4577705
  33. Goyal , B. S. Pabla, The vibration monitoring methods and signal processing techniques for structural health monitoring: a review, Arch. Comput. Methods Eng., 23 (2016) 585–594. https://doi.org/10.1007/s11831-015-9145-0
  34. Rossi, Vibration analysis for reciprocating compressors, ORBIT Mag., 32 (2012)10–15.
  35. H. Mohd Ghazali , W. Rahiman, Vibration analysis for machine monitoring and diagnosis: a systematic review, Shock Vib., 2021 (2021) 9469318 . https://doi.org/10.1155/2021/9469318
  36. Boyce, M. P., Gas turbine engineering handbook. Elsevier, 2011.
  37. Sarhan, A. Matsubara, S. Ibaraki, Y. Kakino, Monitoring of cutting force using spindle displacement sensor, 2004.
  38. M. Saimon et al., A low-cost fiber based displacement sensor for industrial applications, TELKOMNIKA Telecommun. Com. Elect. Cont., 17 (2019) 555–560. http://dx.doi.org/10.12928/telkomnika.v17i2.9754
  39. J. Rothberg et al., An international review of laser Doppler vibrometry: Making light work of vibration measurement, Opt. Lasers Eng., 99 (2017) 11–22. https://doi.org/10.1016/j.optlaseng.2016.10.023
  40. Scheffer , P. Girdhar, Practical machinery vibration analysis and predictive maintenance. Elsevier, 2004. https://doi.org/10.1016/B978-0-7506-6275-8.X5000-0
  41. Howard, A Review of Rolling Element Bearing Vibration Detection, Diagnosis, and Prognosis, 1994.
  42. Gangsar , R. Tiwari, Multiclass fault taxonomy in rolling bearings at interpolated and extrapolated speeds based on time domain vibration data by SVM algorithms, J. Fail. Anal. Preven., 14 (2014) 826–837. http://dx.doi.org/10.1007%2Fs11668-014-9893-4
  43. Lahdelma, On the use of jerk and snap in condition monitoring of machinery–review and case studies, Insight: Non-Destr. Test. Cond. Monit., 63 (2021) 457–464. https://doi.org/10.1784/insi.2021.63.8.457
  44. Vishwakarma, R. Purohit, V. Harshlata, P. Rajput, Vibration analysis & condition monitoring for rotating machines: a review, Mater. Today Proc., 4 (2017) 2659–2664. https://doi.org/10.1016/j.matpr.2017.02.140
  45. Bartelmus, F. Chaari, R. Zimroz, M. Haddar, Modelling of gearbox dynamics under time-varying non-stationary load for distributed fault detection and diagnosis, Eur. J. Mech., 29 (2010) 637– 646. https://doi.org/10.1016/j.euromechsol.2010.03.002
  46. Jiang, Y. Liu, X. Li, A. Chen, Gear fault diagnosis based on SVM and multi-sensor information fusion, J. Cent. South .Univ. Sci.Technol., 41 (2010) 2184–2188.
  47. Fu, K. Liu, Y. Xu, Y. Liu, Rolling bearing diagnosing method based on time domain analysis and adaptive fuzzy-means clustering, Shock Vib., 2016 (2016) 9412787. https://doi.org/10.1155/2016/9412787
  48. Leite et al., Detection of localized bearing faults in induction machines by spectral kurtosis and envelope analysis of stator current, IEEE Trans. Ind. Elect., 62 (2014) 1855–1865. https://doi.org/10.1109/TIE.2014.2345330
  49. Wei, Y. Li, M. Xu, W. Huang, A review of early fault diagnosis approaches and their applications in rotating machinery, Entropy, 21 (2019) 409. https://doi.org/10.3390/e21040409
  50. Zou , J. Chen, A comparative study on time–frequency feature of cracked rotor by Wigner–Ville distribution and wavelet transform, J. Sound .Vib., 276 (2004) 1–11. https://doi.org/10.1016/j.jsv.2003.07.002
  51. Dalpiaz, A. Rivola, Condition monitoring and diagnostics in automatic machines: comparison of vibration analysis techniques, Mech. Syst. Signal Process., 11 (1997) 53–73. https://doi.org/10.1006/mssp.1996.0067
  52. Al-Badour, M. Sunar, L. Cheded, Vibration analysis of rotating machinery using time–frequency analysis and wavelet techniques, Mech .Syst .Signal Proc., 25 (2011) 2083–2101. https://doi.org/10.1016/j.ymssp.2011.01.017
  53. J. Staszewski, K. Worden, G. R. Tomlinson, Time–frequency analysis in gearbox fault detection using the Wigner–Ville distribution and pattern recognition, Mech. Syst. Signal. Proc., 11 (1997) 673–692. https://doi.org/10.1006/mssp.1997.0102
  54. Climente-Alarcon, J. A. Antonino-Daviu, M. Riera-Guasp, R. Puche-Panadero, L. Escobar, Application of the Wigner–Ville distribution for the detection of rotor asymmetries and eccentricity through high-order harmonics, Electr. Power. Syst. Res., 91 (2012) 28–36. https://doi.org/10.1016/j.epsr.2012.05.001
  55. E. Huang et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, A Math Phys. Eng. Sci., 454 (1998) 903–995. https://doi.org/10.1098/rspa.1998.0193
  56. S. Safizadeh, A. A. Lakis, M. Thomas, Using short-time fourier transform in machinery diagnosis, Proc. WSEAS, (2005)200–494.
  57. Rani, N. Kumar, J. Kumar, N. K. Sinha, Machine learning for soil moisture assessment, Deep. Learn. Sustain. Agric., (2022) 143–168. https://doi.org/10.1016/B978-0-323-85214-2.00001-X
  58. Poyhonen, M. Negrea, A. Arkkio, H. Hyotyniemi, H. Koivo, Support vector classification for fault diagnostics of an electrical machine, Int. Conf. Signal Proc., 2 (2002) 1719–1722. https://doi.org/10.1109/ICOSP.2002.1180133
  59. R. Castelino, H. S. Kumar, P. P. Srinivasa, G. S. Vijay, Artificial neural network-based vibration signal analysis of rotary machines-case studies, Proc. Int. Conf. Emer. Trends. Eng., (2014) 211–218.
  60. Lasurt, A. F. Stronach, J. Penman, A fuzzy logic approach to the interpretation of higher order spectra applied to fault diagnosis in electrical machines, Int. Conf. Ame. Fuzzy. Infor. Proc. Soc., (2000) 158–162. https://doi.org/10.1109/NAFIPS.2000.877411
  61. T. Han, B. Yang, Z. Yin, Feature‐based fault diagnosis system of induction motors using vibration signal, J. Qual. Maint .Eng., 13 (2007) 163-175. https://doi.org/10.1108/13552510710753069