Document Type : Research Paper

Authors

1 Civil Engineering Dept., Al- Iraqia University, Baghdad, 10053, Iraq.

2 Civil Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

3 Ministry of Construction, Housing, Municipalities and Public Works, Building Research directorate, Baghdad, 10011, Iraq.

Abstract

This study investigates the dynamic properties of Reactive Powder Underwater Concrete (RPUWC), a novel composite integrating attributes of Reactive Powder Concrete and underwater cast concrete. The study focuses on assessing the impact resistance, dynamic modulus of elasticity, rigidity, and Poisson's ratio. The influence of micro steel fibers (MS) at different volume fractions (1%, 1.25%, and 1.5%) and different anti-washout admixture (AWA) dosages (0.5 %, 0.7%, and 0.9%) are examined. The findings indicate that increasing the MS content improves crack resistance and energy absorption, resulting in a substantial 155.6% enhancement in the first crack resistance when using 1.5% MS. Additionally, ultimate resistance improves by 158%. Furthermore, there are significant increases in the dynamic and modulus of rigidity as the MS percentage rises. The impact of AWA is rather limited, with a reduction in the dynamic modulus of 18.3% for 0.7% AWA and 30% for 0.9% AWA. Likewise, the modulus of rigidity decreases by 13% for 0.7% AWA and 23.9% for 0.9% AWA. Moreover, strong positive correlations between non-destructive testing (NDT) and ASTM C 215 equations are observed. This investigation addresses a significant knowledge gap, shedding light on optimizing underwater structures' performance by comprehending their dynamic response under varied MS and AWA ratios.

Graphical Abstract

Highlights

  • AWA promotes fiber distribution within the concrete mix
  • AWA molecules' bonding could promot fiber's impact on dynamics characterization.
  • Increasing microsteel fiber (MS) content from 1% to 1.5% significantly enhances impact resistance

Keywords

Main Subjects

  1. H. K. Joseph J. Assaad, Yehia Daou, Simulation of Water Pressure on Washout of Underwater Concrete Repair, ACI Mater. J., 106 (2009) 529-536. https://doi.org/10.14359/51663336
  2. Yan, W. Cui, and L. Qi, Simulation of underwater concrete movement in flowing water using DEM-CFD coupling method, Constr. Build. Mater., 319 (2022). https://doi.org/10.1016/j.conbuildmat.2021.126134
  3. Lai, W. Sun, S. Xu, and C. Yang, Dynamic properties of reactive powder concrete subjected to repeated impacts, ACI Mater. J.,110 (2013) 463–472. https://doi.org/10.14359/51685793
  4. Giner, V T Baeza, F J Ivorra and Ó. Zornoza, E Galao, Effect of steel and carbon fiber additions on the dynamic properties of concrete containing silica fume, J. Mater., 34 (2012) 332–339. https://doi.org/10.1016/j.matdes.2011.07.068
  5. J. Giner, V T Ivorra, S Baeza and B. Zornoza, E Ferrer, Silica fume admixture effect on the dynamic properties of concrete, Constr. Build. Mater., 25 (2011) 3272–3277. https://doi.org/10.1016/j.conbuildmat.2011.03.014
  6. M. Heniegal, A. A. El Salam Maaty, and I. S. Agwa, Simulation of the behavior of pressurized underwater concrete, Alexandria Eng. J., 54 (2015) 183–195. https://doi.org/10.1016/j.aej.2015.03.017
  7. Carrillo, J. Ramirez, and J. Lizarazo-marriaga, Modulus of elasticity and Poisson ’ s ratio of fi ber-reinforced concrete in Colombia from ultrasonic pulse velocities, J. Build. Eng., 23 (2018) 18–26. https://doi.org/10.1016/j.jobe.2019.01.016
  8. Wei, Huinan Liu and Y. Zhou, Ao Zou, Dujian Li, Toughening static and dynamic damping characteristics of ultra-high performance concrete via interfacial modulation approaches, Cem. Concr. Compos., 136 (2022) 104879. https://doi.org/10.1016/j.cemconcomp.2022.104879
  9. H. Lai, Transient dynamic response of submerged sphere shell with an opening subjected to underwater explosion, Ocean Eng., 34 (2007) 653–664. https://doi.org/10.1016/j.oceaneng.2006.06.008
  10. I. Jubeh, D. M. Al Saffar, and B. A. Tayeh, Effect of recycled glass powder on properties of cementitious materials contains styrene butadiene rubber, Arab. J. Geosci., 12 (2019). https://doi.org/10.1007/s12517-018-4212-0
  11. A. Tayeh, D. M. Al Saffar, A. S. Aadi, and I. Almeshal, Sulphate resistance of cement mortar contains glass powder, J. King Saud Univ. - Eng. Sci., 32 (2019) 495-500. https://doi.org/10.1016/j.jksues.2019.07.002
  12. A. Tayeh, D. M. Al Saffar, A. S. Aadi, and I. Almeshal, Sulphate resistance of cement mortar contains glass powder, J. King Saud Univ. - Eng. Sci., 32 (2019) 495-500. https://doi.org/10.1016/J.JKSUES.2019.07.002
  13. Wang, L. Gu, and L. Zhao, Beneficial Influence of Nanoparticles on the Strengths and Microstructural Properties of Non-dispersible Underwater Concrete, KSCE J. Civ. Eng., 25 (2021) 4274–4284. https://doi.org/10.1007/s12205-021-1471-1
  14. Wang, S. Jiang, E. Cui, W. Yang, and Z. Yang, Strength gain monitoring and construction quality evaluation on non-dispersible underwater concrete using PZT sensors, Constr. Build. Mater., 322 (2022) 126400. https://doi.org/10.1016/j.conbuildmat.2022.126400
  15. Ali Sikandar, N. R. Wazir, M. A. Khan, H. Nasir, W. Ahmad, and M. Alam, Effect of various anti-washout admixtures on the properties of non-dispersible underwater concrete, Constr. Build. Mater., 245 (2020) 118469. https://doi.org/10.1016/j.conbuildmat.2020.118469
  16. -G. Baluch, Khaqan Baluch, Sher Q. Yang, Hyung-Sik Kim and S. Kim, Jong-Gwan Qaisrani, Non-Dispersive Anti-Washout Grout Design Based on Geotechnical Experimentation for Application in Subsidence-Prone Underwater Karstic Formations, Materials (Basel)., 14 (2021)1587. https://doi.org/10.3390/ma14071587
  17. M. Al-Saffar, B. S. Al-Shathr, and S. K. Abed, Evaluating Fresh Properties of Non-Dispersive Reactive Powder Concrete: A Novel Approach, Math. Model. Eng. Probl., 10 (2023) 1324–1332.https://doi.org/10.18280/mmep.100426
  18. Soutsos and P. Domone, Portland cements, in Construction Materials, Fifth edition. | Boca Raton : CRC Press, [2017]: CRC Press, 137–154, 2017. https://doi.org/10.1201/9781315164595-16
  19. ASTM C 1240-03, Standard specification for use of silica fume as a mineral admixture in hydraulic-cement concrete, mortar, and grout, ASTM Int., 15 (2003) 1–6.
  20. 2R-10: Guide to Underwater Repair of Concrete. 2010.
  21. Otsuki, M. Hisada, S. Nagataki, and T. T. Kamada, An Experimental Study on the Fluidity of Antiwashout Underwater Concrete, ACI Mater. J., 93 (1996) 20–25. https://doi.org/10.14359/9792
  22. H. Khayat and A. Yahia, Effect of Welan Gum-High-Range Water Reducer Combinations on Rheology of Cement Grout, ACI Mater. J., 94 (1997) 365-372. https://doi.org/10.14359/321
  23. Baluch, S. Q. Baluch, H.-S. Yang, J.-G. Kim, J.-G. Kim, and S. Qaisrani, Non-Dispersive Anti-Washout Grout Design Based on Geotechnical Experimentation for Application in Subsidence-Prone Underwater Karstic Formations, Materials (Basel)., 14 (2021) 1587. https://doi.org/10.3390/ma14071587
  24. Y. Moon and K. J. Shin, Evaluation on steel bar corrosion embedded in antiwashout underwater concrete containing mineral admixtures, Cem. Concr. Res., 36 (2006) 521–529. https://doi.org/10.1016/j.cemconres.2005.09.014
  25. Y. Moon and K. J. Shin, Frost attack resistance and steel bar corrosion of antiwashout underwater concrete containing mineral admixtures, Constr. Build. Mater., 21(2007) 98–108. https://doi.org/10.1016/j.conbuildmat.2005.06.050
  26. H. Marsh, Henry N. Woolridge, J. F. Ball, Claire Batson, Gordon B. Burnett, Eric F.P. Criswell, Marvin E. Davis, Frank H. Fekete, Frank W. Fernon, Price Forsyth, Robert B. Godfrey, Howard J. Henager, R. L. Henry, G. C. Hoff, and G. Horeczko, Measurement of Properties of Fiber Reinforced Concrete, ACI J. Proc., 75 (1978) 433–439. https://doi.org/10.14359/10941
  27. ASTM Standard C215, Standard Test Method for Fundamental Transverse , Longitudinal , and Torsional Resonant Frequencies of Concrete Specimens, ASTM Stand., 1–7, 2008, https://doi.org/10.1520/C0215-19
  28. Mastali and A. Dalvand, The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces, Compos. Part B Eng., 92 (2016) 360–376. https://doi.org/10.1016/j.compositesb.2016.01.046
  29. J. Cantwell and J. Morton, The impact resistance of composite materials — a review, Composites, 22 (1991) 347–362. https://doi.org/10.1016/0010-4361(91)90549-V
  30. El-Newihy, P. Azarsa, R. Gupta, and A. Biparva, Effect of Polypropylene Fibers on Self-Healing and Dynamic Modulus of Elasticity Recovery of Fiber Reinforced Concrete, Fibers, 6 (2018) 9. https://doi.org/10.3390/fib6010009
  31. B. Najim and M. R. Hall, Mechanical and dynamic properties of self-compacting crumb rubber modified concrete, Constr. Build. Mater., 27 (2012) 521–530. https://doi.org/10.1016/j.conbuildmat.2011.07.013
  32. Pan, R. C. Yu, G. Ruiz, X. Zhang, Á. De La Rosa, and Z. Wu, Evolution of the FPZ in steel fiber-reinforced concrete under dynamic mixed-mode loading, Constr. Build. Mater., 377 (2022) 131110. https://doi.org/10.1016/j.conbuildmat.2023.131110
  33. Grzeszczyk, K. Jurowski, K. Bosowska, and M. Grzymek, The role of nanoparticles in decreased washout of underwater concrete, Constr. Build. Mater., 203 (2019) 670–678. https://doi.org/10.1016/j.conbuildmat.2019.01.118
  34. Kamal H. Khayat; Mohammed Sonebi, Effect of Mixture Composition on Relative Strength of Highly Flowable Underwater Concrete, ACI Mater. J., 98 (2001) 289–295. https://doi.org/10.14359/10278
  35. Sonebi and K. H. Khayat, Effect of Mixture Composition on Relative Strength of Highly Flowable Underwater Concrete, ACI Mater. J., 98 (2001) 233–239. https://doi.org/10.14359/10278
  36. R. Abid, A. N. Hilo, N. S. Ayoob, and Y. H. Daek, Underwater abrasion of steel fiber-reinforced self-compacting concrete, Case Stud. Constr. Mater., 11 (2019) e00299. https://doi.org/10.1016/J.CSCM.2019.E00299
  37. R. S. De Silva, P. G. Ranjith, M. S. A. Perera, B. Wu, and T. D. Rathnaweera, The Influence of Admixtures on the Hydration Process of Soundless Cracking Demolition Agents (SCDA) for Fragmentation of Saturated Deep Geological Reservoir Rock Formations, Rock Mech. Rock Eng., 52 (2019) 435–454. https://doi.org/10.1007/s00603-018-1596-9.
  38. M. Malhotra and V. Sivasundaram, Resonant frequency methods, Handb. Nondestruct. Test. Concr., 1–7, 2004.
  39. H. Khayat, Effects of Antiwashout Admixtures on Properties of Hardened Concrete, ACI Mater. J., 93 (1996) 134–146. https://doi.org/10.14359/1412