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H I G H L I G H T S  
 

A B S T R A C T  

 The governing differential equation is 

derived for an elastic half-space problem 

with horizontal inextensibility. 

 The potential theory is applied to solve the 

Westergaard problem for a point load on the 

boundary. 

 The approach adopts first principles to 

derive the governing equations, highlighting 

limitations and scope. 

 Results are validated by comparison with 

literature sources. 

 The Westergaard half-space problem has been solved using the potential 

theory in this work. It is a classical theme in elasticity theory that seeks 

to find the displacements and stresses in the half-space caused by known 

boundary loads. It has important applications in analyzing stresses and 

displacement fields in soil due to applied points and distributed loads on 

the boundary caused by structures placed on the soil. It is governed by 

stress–strain, strain-displacement, and equilibrium equations. Horizontal 

inextensibility is assumed in developing the problem, simplifying the 

displacement formulation to a three-dimensional (3D) Laplace equation. 

The potential theory is applied to find the vertical displacement. Stress–

displacement equations obtained from the simultaneous use of the 

kinematic and stress-strain equations are used to obtain the stress fields. 

The specific problem of point load at the origin was considered and 

solved. The equilibrium of internal vertical stresses and the external 

vertical load is used to find the integration constant. Hence, vertical 

displacements were found. The stress fields were found from the stress–

displacement equations. The expressions for the vertical displacements 

and stresses were found to be exact within the framework of the theory 

used, as they satisfied all the governing equations of the problem. 

However, the solutions become unbounded at the origin due to the 

singularity of the vertical displacement and stresses. The obtained 

solutions are identical to previously obtained solutions. 
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1. Introduction 

Elastic half-space problems are problems in the mathematical theory of elasticity concerned with the determination of 
stresses and displacements in the three-dimensional (3D) semi-infinite medium due to loads assumed concentrated or 
distributed, which may be applied either on the boundary surface or in the semi-infinite medium [1–3]. Thus, elastic half-space 
problems involve 3D media defined over the region  where the   plane is the boundary plane [4 – 6]. When the vertical point 
load is applied on the surface, the problem is described as a Boussinesq problem [7– 9]. When a horizontal point load is 
applied to the surface, the problem is called a Cerrutti problem [8–10]. 

The classical problem in the mathematical theory of elasticity of finding fields of stresses and displacements in an 
isotropic, homogeneous, semi-infinite linear elastic medium subjected to vertical concentrated loads applied on the boundary 
was first considered, analyzed, and determined by Boussinesq [11–13]. 

Boussinesq developed analytical solutions to the problem by using Green’s function of the three-dimensional Laplace 
equation to determine the stress equilibrium fields in the semi-infinite elastic medium [14 – 16]. Boussinesq further obtained 
solutions for the distributions of stresses and displacements in the half-space using the classical theory of linear small 
displacement elasticity and potential theory [17–20]. 

Chan [20] presented a seminal work on analytical methods and illustrated their applications to the solutions of 
geomechanics problems. Ferretti [21] studied homogeneous linear elastic and isotropic half-spaces under loads applied 
perpendicularly to the boundary surface and particularly studied distributed loadings on such boundary surfaces. Sadd [22] 
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presented the fundamental principles of the elasticity formulation of elastic half-space problems. Bowles [23] presented elastic 
half-space problems and vividly studied the Boussinesq and Westergaard stress distribution theories of elastic half-space. 
Further studies of the elastic half-space problems of Kelvin, Boussinesq, Flammant, Cerrutti, Melan, and Mindlin are found in 
Podio-Guildguli and Favata [24] and also in Sitheram and Gounda-Reju [25]. Teodorescu [26] and Davis and Salvadurai [27] 
published a treatise on the theory of elasticity and its application to geomechanics and geotechnical problems. Abeyartne [28] 
and Zhon and Gao [29] studied spatial problems of elastic half-space. 

Khapilova and Zaletov [30] derived mathematical expressions for the fields of stresses and displacements in an axially 
symmetrical elastic half-space problem with the boundary fixed elastically outside the circular loaded area. They then used 
their obtained expressions for distributed loads over circular areas on the half-space to formulate analytical expressions for 
point load on an isotropic elastic half-space with a fixed surface. They found that in the limiting case where the coefficient of 
proportionality is zero, their obtained analytical expressions reduced to the analytical expressions previously obtained as 
solutions for stresses and displacements for the Boussinesq problem of vertical point load on elastic half-space. 

Other significant research works on elastic half-space theory are found in Morshedifard and Eskandari-Ghadi [31], 
Tekinsay et al. [32],  Anyaegbunem et al [33], Ojedokun and Olutoge [34], Westergaard [35], Ike [36 – 44], Ike et al. [45, 46] 
and Onah et al [47]. 

Morshedifard and Sakandari-Ghadi [31] studied transversely isotropic elastic half-space under loading from flexible 
structure using coupled boundary element – finite element silone and assuming three-dimensional dynamic interactions. 
Tekinsey et al. [32] presented approximate solutions for stress fields for non-isotropic elastic half-space made of clay soil.  

Ojedokun and Olutoge [34] applied Bousssinesq and Westergaard’s stress distribution theories to investigate the failure of 
the foundation of a collapsed telecommunication mast. Anyaegbunam et al. [33] published an article in which they argued the 
non-existence of the Westergaard stresses solution for point load acting on the boundary of a horizontally rigid half-space, also 
termed the Westergaard half-space. In their paper, they showed that Westergaard's solutions for stresses do not satisfy one of 
the stress boundary conditions: the boundary  should be free of shear stresses. They thus argued that the Westergaard theory 
does not give the exact solution for a point load in the surface of a Westergaard half space. 

Westergaard [35] assumed zero value for the Poisson’s ratio of the soil continuum to completely present lateral strain and 
thus allow only vertical deformation of the soil half-spaces. Westergaard [35] consequently developed, for the first time, 
vertical stress equations applicable to a soil continuum with simplified assumptions due to a point load acting on the boundary 
of the continuum. 

Ike [36] used Elzaki transformation method to find closed-form solutions to elastic half-plane problems in polar 
coordinates using Airy stress function of expressing the 2D elasticity problem. Ike [37] also used Fourier integral transform 
method to obtain closed-form solutions to 2D elastic half-plane problems using Love stress function approach. Ike [38] used 
the Hankel transformation method to solve the closed-form Westergaard half-space problem for concentrated and line load. He 
distributed real loads acting on the surface of the Westergaard half-space. Ike [38] found that the Hankel transform method is 
ideal for solving the problem because of the axisymmetric nature of the vertical point load at the origin of Westergaard half-
space problem and the simplification offered by the Hankel transformation for axisymmetric problems. The point load solution 
was then used as the integral kernel in [38] to develop line solutions and distributed real loads. The stress solutions derived by 
Ike [38] were identical with previous stress solutions derived by Westergaard and others. 

Ike [40] used the Mellin transform method to obtain closed-form stress solutions for two-dimensional elasticity problems 
formulated in-plane polar coordinates. Ike [41] used the cosine integral transformation method to obtain closed-form 
expressions for stresses caused by point load on the Westergaard half-space. Ike [42] used the Fourier cosine transform method 
to solve the 2D elasticity problem of point load on an elastic half-plane. Ike [43] used the exponential Fourier transform 
method to obtain stress solutions for elastic half-plane problems. Ike [44] derived closed-form solutions to Navier’s equations 
for axisymmetric elasticity problems of the elastic half-space. Ike et al. [45] solved elastic half-space problems using Trefftz 
displacement potential function method. Ike et al. [46] used Bessel function and potential method to solve the axisymmetric 
elasticity problem of elastic half-space. Onah et al. [47] used the Boussinesq displacement function method to derive vertical 
stresses and displacement fields due to distributed loads on elastic half-space. 

Gibson [48] studied the non-homogeneous isotropic elastic half-space problem subjected to loading normal to its plane 
boundary. In the work, the non-homogeneity was considered by assuming that Young’s modulus of the half-space varied with 
depth. The researcher in [48] presented a detailed study of an incompressible elastic half-space with Young’s modulus E(z) 
increasing linearly with depth, z. 

Cawler and Christian [49] developed and implemented computer codes/programs for the finite element analysis of non-
homogeneous elastic half-space problems under circular foundation loadings. They fixed that their computer program results 
were identical to theoretical results obtained from straightforward applications of theoretical answers in the literature. 

Te-Martirosyan [50], Flovin [51], Sitharam and Govindaraju [52] and Taylor [53] have studied stresses elastic half-space 
problems of the Boussinesq and Westergaard types. Taylor [53] extended the fundamental (point load) solution for the 
Westergaard elastic half-space under point load to find the vertical stresses due to uniformly distributed load over a rectangular 
foundation using the superposition method and evaluating the resulting multiple integration problems. 

Bhushan and Haley [54] presented novel solutions for stress fields in embedded foundations in a Westergaard half-space, 
which were not previously available. They also compared settlements based on Boussinesq, Mindlin, Westergaard, and 
Mindlin-Westergaard (embedded Westergaard) half-space vertical stress distributions. Sadek and Shahrour [55] used finite 
element modeling to investigate the influence of elastoplasticity on the Boussinesq solutions for stresses in an elastic half-
space. In their work, they compared the Boussinesq elastic stress distribution with the elastic stresses from elastoplastic finite 
element analysis and found that plasticity reduces the attenuation of the critical stresses in the soil mass, implying that the 
elastic stresses from Boussinesq theory is an underestimation for the areas contributing to soil settlements. 
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Ike [56] used Love stress function method to solve axisymmetric elasticity problems of the elastic half-space. He obtained 
general expressions for stresses and displacements due to point and uniformly distributed loadings on the Boussinesq elastic 
half-space. The paper aims at solving Westergaard's half-space problems using potential theory. The objectives include to: 

 Formulate the governing Cauchy-Navier equilibrium equation for the Westergaard problem. 1)
 Express the displacement formulation of the equilibrium of the Westergaard half-space as a three-dimensional 2)

Laplacian problem in Cartesian Coordinates. 
 Obtain the general solution for stresses and displacements in the Westergaard half-space subject to vertical point 3)

load applied at a reference point on the surface by using potential theory. 

2. Theoretical Framework 

2.1 Westergaard’s Theory Assumptions 

The assumptions of the Westergaard’s theory are as follows: [35, 38, 41]. 
The elastic (soil) medium is semi-infinite in extent. Still, it contains many close spaces horizontal sheets with an 

insignificant thickness of an infinite rigid material that allows only vertical strain and restrains lateral strain. 
Westergaard’s assumptions are close to practical reality, particularly for overconsolidated and laminated sedimentary or 

stratified soils showing considerable anisotropy. 
Westergaard’s assumptions are close to practical reality, particularly for overconsolidated and laminated sedimentary or 

stratified soils showing considerable anisotropy. Westergaard’s stress analysis in soil continuum under loaded foundation areas 
applies to stratified soils. 

2.2 Framework of The Theory of Elastic Half-Space Problems 

Elastic half-space problems simultaneously satisfy the kinematic equations, generalized Hooke’s stress-strain relations, 
and the differential equations of equilibrium [4-6], [57-59]. 

2.2.1 Kinematic equations 

The kinematic equations for small displacement linear elasticity are six equations relating strains to displacements [8-10], 
[60-62].  

2.2.2 Constitutive equations 

The generalized Hooke’s stress–strain relations are six equations [44-46,63]. 

2.2.3 Differential equations of equilibrium 

The differential equations of equilibrium for elastostatic problems where body forces are disregarded are a set of three 
equations [45-47,60,63]. 

2.2.4 Navier-Lame displacement equations of equilibrium 

2.2.4.1 Stress–displacement equations 

The stress–displacement equations obtained by substituting the strain–displacement relations in the stress-strain equations 
are: 

   (1)  
where            are normal strains in the           coordinate directions respectively,             are shear strains, ux, 

uy and   are the displacement field components in the x, y and z coordinate directions. 
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   (2)  

   (3)  

 

   is the volumetric strain,  G is the shear modulus, E is the Young’s modulus and  is the Poisson’s ratio. xx, yy, zz are 

the normal stresses; xy, xy and xz are the shear stresses.  is Lamés constant. 

The Navier-Lame displacement equations of equilibrium obtained by substituting the stress–displacement equations in the 

differential equation of equilibrium give the three sets of partial differential equations. For equilibrium in the x direction, 

 

   (4)  

Simplifying gives: 

   (5)  

   (6)  

where 
2
 is the Laplacian. 

   (7)  

Similarly, for equilibrium in the y direction, 

  (8)  

For equilibrium in the z-direction, 

   (9)  

2.3 Governing Partial Differential Equations of Equilibrium For Westergaard Problems – Displacement 

Formulation 

The governing partial differential equations (PDEs) of equilibrium for Westergaard problems can be obtained in a 

displacement formulation from the simplification of the Navier-Lamé PDEs. For Westergaard problems, the assumptions of 

horizontal inextensibility results in: 
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  (10)  

Then, the Navier-Lamé PDEs reduce to: 

   (11)  

   (12)  

   (13)  

   (14)  

Equilibrium in the z direction gives: 

    (15)  

   (16)  

Expanding, we have 

   (17)  

   (18)  

   (19)  

   (20)  

   (21)  

   (22)  
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   (23)  

   (24)  

   (25)  

The governing PDE for equilibrium in the z direction is thus a 3D Laplacian equation in x, y, and ()z and can thus be 

solved using potential function methods [64-66]. 

3. Solution by Potential Function Method 

The general solution for uz is a potential function in the x, y, z space given as [64], [65], [66]: 

  (26)  

   (27)  

The symbol, c1 is integration constant. 

Proof that        
         ) ) )     is a solution to Equation (29). 

By partial differentiations, 

   (28)  

   (29)  

   (30)  

Then, 

   (31)  

The obtained general solution to uz is valid at all points in the infinite half-space except at the origin, 

where      and the problem becomes indeterminate. The general solution for zz is obtained using the stress displacement 

relations. 

   (32)  
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   (33)  

   (34a) 

   (34b)  

   (34c) 

4. Results 

4.1 Point Load at The Origin of The Westergaard Half-Space 

A point load Q0 applied at the origin O on a Westergaard half-space shown in Figure 1 is considered. 

 

Figure 1: Point load Q0 applied at the origin O on a Westergaard half-space 

The equilibrium of the applied vertical load and the vertical stresses is used to obtain the integration constant c1. Hence, for 

an equilibrium of vertical load and the vertical stresses, we have: 

   (35)  

   (36)  

By coordinate transformation from Cartesian to cylindrical polar coordinates, 

   (37)  

where J is the Jacobian of the transformation and                    

r is the radial coordinate,  is the angular coordinate, and z is the depth coordinate. 

The relations between 3D Cartesian coordinates (x, y, z) and cylindrical coordinates (r, , z) are 
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   (38)  

The Jacobi matrix or Jacobian |J| of the coordinate transformation ( , , )x y z   ( , , )r z  is: 

                                        (39a) 

   (39b)  

   (39c) 

   (39d)  

   (39e)  

   (40) 

   (40a) 

  (41) 

Hence, 

   (42)  

Stresses:  

   (43)  
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   (44)  

   (45)  

   (46)  

               (47)  

   (48)  

  (49) 

Iw is the Westergaard vertical stress influence coefficient. 

Also, xx and yy are found in Equation (33), and xy, yx are found in Equation (34a). The shear stresses yz and xz are 

found using Equations (34b) and (34c). 

  (50) 

   (51)  

   (52) 

   (53) 

   (54) 

  (55)  
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Table 1: Values of Westergaard vertical stress influence coefficient Iw for various values of r/z 

                         for  = 0 (r is the radial distance from the point load, z is the depth) 

r/z Iw (Present work) Iw  [23, 35, 38, 41] 

0 0.3183 0.3183 

0.1 0.3090 0.3090 

0.2 0.2836 0.2836 

0.3 0.2483 0.2483 

0.4 0.2099 0.2099 

0.5 0.1733 0.1733 

0.6 0.1411 0.1411 

0.7 0.1143 0.1143 

0.8 0.0925 0.0925 

0.9 0.0751 0.0751 

1.0 0.0613 0.0613 

1.10 0.0503 0.0503 

1.20 0.0417 0.0417 

1.30 0.0347 0.0347 

1.40 0.0292 0.0292 

1.50 0.0247 0.0247 

1.60 0.0210 0.0210 

1.70 0.0180 0.0180 

1.80 0.0156 0.0156 

1.90 0.0135 0.0135 

2.0 0.0118 0.0118 

3.0 0.0038 0.0038 

4.0 0.0017 0.0017 

5 0.0009 0.0009 

6 0.0005 0.0005 

10 0.0001 0.0001 

 0 0 

5. Discussion 

This paper presents the Westergaard problem in the theory of elasticity as a 3D Laplacian equation in transformed 

transverse (depth) coordinates using a displacement formulation. The formulation was accomplished by simultaneously 

considering the horizontal inextensibility assumptions of the Westergaard problem in the generalized constitutive relations, the 

small displacement kinematic equations, and the differential equations of equilibrium. The resulting Navier-Cauchy 

equilibrium equations in displacement terms yield the Laplacian problem in transformed depth coordinates. The theory of 

potential functions is then used to obtain the general solutions to the Westergaard problem. The general solutions obtained are 

the displacements and stresses at any point in a Westergaard half-space. They are expressed in terms of an integration constant 

c1 as Equations (26), (32), (33), (34a), (34b) and (34c). 

The classical Westergaard problem of a point load acting at the origin of the half-space was considered. The equilibrium of 

internal vertical stresses and external load was used to obtain the previously unknown integration constant as Equation (40). 

Then the displacements and stresses become Equations (41), (47), (51), (53), (33) and (34a). 

Vertical stresses are the most significant of the stresses due to their role in producing elastic displacements and 

settlements. The vertical stresses are presented using dimensionless factors in Table 1 and compared with previous results by 

Ike [38] obtained using Hankel transformation method. Ike [41] obtained using the cosine integral transformation method, 

Bowles [23] and Westergaard [35]. Table 1 shows that the present results are identical to those obtained using the Hankel 

transformation method. 

6. Conclusion 

This study uses the potential function method to derive the solutions for stresses in a Westergaard half-space due to a 

vertical point load acting at the origin of the Cartesian coordinate. 

This paper has presented the solutions to Westergaard's half-space problems of the theory of elasticity using potential 

theory. The considered problem has significant applications in soil mechanics where it is applied to calculate vertical stresses 

in soil continuum due to applied structural load considered to be acting at a point on the soil boundary. The conclusions of the 

study are as follows: 

 The simultaneous consideration of the small-displacement strain–displacement relations, the generalized stress–1)

strain laws, and the differential equations of equilibrium together with the horizontal inextensibility assumption 

result in a displacement formulation of the Westergaard problem. 

 The resulting displacement formulation is a 3D potential problem in transformed z coordinates governed by 3D 2)

Laplacian in terms of the x, y, and transformed z coordinates. 

 The problem is then amenable to potential methods of solving 3D Laplacian equations. 3)
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 The general solution for the 3D Laplacian equation is obtained in terms of an integration constant that can be 4)

determined for specific Westergaard problems. 

 The general solution is obtained for the displacements and stresses at any point in the Westergaard half-space. 5)

 The specific problem of point load acting at the origin on the Westergaard half-space is solved by using the 6)

requirement of equilibrium of internal vertical stresses and the applied point load to obtain the integration 

constant. 

 The vertical displacements and the stresses obtained are identical to previously obtained results presented using 7)

the Hankel transforms method and the cosine integral transform method.  

 The solutions for the vertical stress field are conveniently expressed in terms of vertical stress influence factors, 8)

tabulated in Table 1. Table 1 shows the values of Iw obtained in the study are identical to previous results by using 

Hankel transform method and by using the cosine integral transform method. 

 The expressions obtained for the vertical displacements and stresses are exact within the framework of the theory 9)

deployed since they satisfy the governing equations of the problem. 

 The solutions are unbounded at the origin due to the singularities in the expressions for the vertical displacement. 10)

 

Notations 

      Cartesian coordinates in three-dimensional geometry 

R,      Cylindrical polar coordinates 

2D two-dimensional 

3D three-dimensional 

  infinity 

         displacement components in the x, y, and z coordinate directions, respectively. 

            normal strains in the x, y, and z coordinate directions, respectively. 

   volumetric strain 

            shear strains 

  Poisson’s ratio 

  Lamés constant 

G shear modulus 

E Young’s modulus 

            normal stresses 

            shear stresses 

   Laplacian operator 

PDE Partial Differential Equation 

PDEs Partial Differential Equations 

   ) Parameter defined in terms of   

   transformed z coordinate, defined in terms of    ) and z. 

   integration constant 

  radial coordinate in space defined in terms of x, y, and    ) z 

   point load acting on the Westergaard half-space 

  origin of Westergaard half-space 

| | Jacobian of coordinate transformation from 3D Cartesian coordinates to cylindrical polar coordinates 

  integration 

   Westergaard vertical stress influence coefficient 

 

  
 

partial derivative with respect to   

  radial coordinate 

|    | determinant 

   double integral 

  depth coordinate 

  angular coordinate 

  radial coordinate 
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