Document Type : Research Paper

Authors

1 Production Engineering and Metallurgy Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 a Production Engineering and Metallurgy Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

3 Mechanical Mechatronics Dept., Collage of Engineering, Salahaddin University, 44001 Erbil, Iraq. Institute of Machine Element, Engineering Design and Manufacturing, TU Bergakademie Freiberg, 09599 Freiberg, Germany.

Abstract

Material Extrusion technology is one of the most widely used Additive Manufacturing processes due to its simplicity in use, affordable parts fabricating costs, product durability, and possibility for changing materials. Despite having many advantages, parts manufactured through this technique fall short in strength criteria. The present paper focuses on predicting and optimizing three critical printing parameters in additive manufacturing: printing temperature, extrusion width, and number of shells. A neural network model was built to predict the tensile and compressive strengths and optimize the process parameters for maximum strength. The full factorial design experiments found that higher strength is achieved at higher temperatures, extrusion width, and number of shells. Based on the Analysis of Variance (ANOVA), the most influential parameter on tensile strength was printing temperature with (44.2%). in the other hand, the extrusion width contributed more than others to compressive strength (51.3%). Comparisons between the experimental and the predicted values were illustrated.The mean error between the experimental and neural network models was (0.42%) for tensile strength and (0.45%) for compression strength, with a correlation coefficient equal to (0.996) and (0.992) for the two responses, respectively. The current proposed study demonstrates good agreements between the predicted model values and the experiment outcomes of tensile and compressive strengths.

Graphical Abstract

Highlights

  • Twenty-seven test samples were printed for evaluating tensile and compressive strength.
  • A neural network model was developed to predict and optimize the process parameters.
  • Temperature had the greatest effect on tensile strength, while extrusion width most impacted compressive strength.

Keywords

Main Subjects

  1. Rashia Begum, M. Saravana Kumar, M. Vasumathi, M. Umar Farooq, and C. I. Pruncu, Revealing the compressive and flow properties of novel bone scaffold structure manufactured by selective laser sintering technique, Proc. Inst. Mech. Eng. Part H J. Eng. Med., 236 (2022)526–538. https://doi.org/10.1177/09544119211070412
  2. A. Praveena, N. Lokesh, A. Buradi, N. Santhosh, B. L. Praveena, and R. Vignesh, A comprehensive review of emerging additive manufacturing (3D printing technology): Methods, materials, applications, challenges, trends and future potential, Mater. Today Proc., 52 (2022)1309–1313. https://doi.org/10.1016/j.matpr.2021.11.059
  3. U. Farooq, S. Anwar, R. Ullah, and R. H. Guerra, Sustainable machining of additive manufactured SS-316L underpinning low carbon manufacturing goal, J. Mater. Res. Technol., 24 (2023)2299–2318. http://dx.doi.org/10.1016/j.jmrt.2023.03.122
  4. J. Solomon, P. Sevvel, and J. Gunasekaran, A review on the various processing parameters in FDM, Mater. Today Proc., 37 (2021)509–514. https://doi.org/10.1016/j.matpr.2020.05.484
  5. Harris et al., Hybrid deposition additive manufacturing: novel volume distribution, thermo-mechanical characterization, and image analysis, J. Brazilian Soc. Mech. Sci. Eng., 44 (432) 2022.
  6. Patel, C. Desai, S. Kushwah, and M. H. Mangrola, A review article on FDM process parameters in 3D printing for composite materials, Mater. Today Proc., 60 (2162–2166) 2022.https://doi.org/10.1016/j.matpr.2022.02.385
  7. Alafaghani and A. Qattawi, Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method, J. Manuf. Process., 36 (164–174) 2018. https://doi.org/10.1016/j.jmapro.2018.09.025
  8. Jaisingh Sheoran, H. Kumar, A. J. Sheoran, and H. Kumar, Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research, Mater. Today Proc., 21 (1659–1672) 2020. https://doi.org/10.1016/j.matpr.2019.11.296
  9. A. Oudah, H. B. Al-Attraqchi, and N. A. Nassir, The effect of process parameters on the compression property of acrylonitrile butadiene styrene produced by 3D printer, Eng. Technol. J., 40 (2022)189–194. https://doi.org/10.30684/etj.v40i1.2118
  10. Asif, M. Q. Saleem, and M. U. Farooq, Performance evaluation of surfactant mixed dielectric and process optimization for electrical discharge machining of titanium alloy Ti6Al4V, CIRP J. Manuf. Sci. Technol., 43 (2023)42–56. https://doi.org/10.1016/j.cirpj.2023.02.007
  11. R. Khosravani, J. Schüürmann, F. Berto, and T. Reinicke, On the post-processing of 3D-printed ABS parts, Polymers (Basel)., 13,2021,1559.https://doi.org/10.3390/polym13101559
  12. R. J. Hynes et al., Effect of stacking sequence of fibre metal laminates with carbon fibre reinforced composites on mechanical attributes: Numerical simulations and experimental validation, Compos. Sci. Technol., 221,2022,109303. https://doi.org/10.1016/j.compscitech.2022.109303
  13. F. Jasim, T. F. Abbas, and A. F. Huayier, The effect of infill pattern on tensile strength of PLA material in fused deposition modeling (FDM) process, Eng. Technol. J., 40 (2022)1–8.http://doi.org/10.30684/etj.2021.131733.1054
  14. Srinivasan, T. Pridhar, L. S. Ramprasath, N. S. Charan, and W. Ruban, Prediction of tensile strength in FDM printed ABS parts using response surface methodology (RSM), Mater. Today Proc., 27 (2022)1827–1832. http://dx.doi.org/10.1016/j.matpr.2020.03.788
  15. Chockalingam, C. W. Chin, and G. K. Krishnan, Prediction of mechanical properties of 3D printed aluminium PLA: A fuzzy logic approach, ARPN J. Eng. Appl. Sci., 16 (1641–1646) 2021.
  16. Boesch, A. Siadat, M. Rivette, and A. A. Baqai, Impact of fused deposition modeling (FDM) process parameters on strength of built parts using Taguchi’s design of experiments, Int. J. Adv. Manuf. Technol., 101 (2019)1215–1226. https://doi.org/10.1007/s00170-018-3014-6
  17. S. Kumar, M. U. Farooq, N. S. Ross, C.-H. Yang, V. Kavimani, and A. A. Adediran, Achieving effective interlayer bonding of PLA parts during the material extrusion process with enhanced mechanical properties, Sci. Rep., 13,2023,6800.https://doi.org/10.1038/s41598-023-33510-7
  18. R. Rajpurohit and H. K. Dave, Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer, Int. J. Adv. Manuf. Technol., 101 (2019)1525–1536. https://doi.org/10.1007/s00170-018-3047-x
  19. Yang, A. Boroomandpour, S. Wen, D. Toghraie, and F. Soltani, Applying Artificial Neural Networks (ANNs) for prediction of the thermal characteristics of water/ethylene glycol-based mono, binary and ternary nanofluids containing MWCNTs, titania, and zinc oxide, Powder Technol., 388 (2021)418–424. https://doi.org/10.1016/j.powtec.2021.04.093
  20. Tian, N. I. Arshad, D. Toghraie, S. A. Eftekhari, and M. Hekmatifar, Using perceptron feed-forward Artificial Neural Network (ANN) for predicting the thermal conductivity of graphene oxide-Al2O3/water-ethylene glycol hybrid nanofluid, Case Stud. Therm. Eng., 26 (101055) 2021.https://doi.org/10.1016/j.powtec.2021.04.093
  21. Dey and N. Yodo, A systematic survey of FDM process parameter optimization and their influence on part characteristics, J. Manuf. Mater. Process., 3 2019. https://doi.org/10.3390/jmmp3030064
  22. H. Tümer and H. Y. Erbil, Extrusion-based 3D printing applications of PLA composites: a review, Coatings, 11 (390) 2021.https://doi.org/10.3390/coatings11040390
  23. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, State-of-the-art in artificial neural network applications: A survey, Heliyon, 4 (e00938) 2018.https://doi.org/10.1016/j.heliyon.2018.e00938
  24. A. Nema, M. A. Tawfik, and M. H. Sadoon, Improvement of Surface Roughness in Single Point Incremental Forming Process by the Implementation of Controlled Vibration, Eng. Technol. J., 40 (2022)217–225. https://doi.org/10.30684/etj.v40i1.2244
  25. H. Abdulridha, A. J. Helael, and A. A. Al-duroobi, Prediction the Influence of Machining Parameters for CNC Turning of Aluminum Alloy Using RSM and ANN, Eng. Technol. J., 38 (2022)887–895.https://doi.org/10.30684/etj.v38i6A.705
  26. Rostami, D. Toghraie, M. A. Esfahani, M. Hekmatifar, and N. Sina, Predict the thermal conductivity of SiO2/water–ethylene glycol (50: 50) hybrid nanofluid using artificial neural network, J. Therm. Anal. Calorim., 143 (2021)1119–1128. https://doi.org/10.1007/s10973-020-09426-z
  27. Al-Shathr, Z. M. Shakor, H. S. Majdi, A. A. AbdulRazak, and T. M. Albayati, Comparison between artificial neural network and rigorous mathematical model in simulation of industrial heavy naphtha reforming process, Catalysts, 11 (1034) 2021.https://doi.org/10.3390/catal11091034
  28. Zhou, S.-J. Hsieh, and C.-C. Ting, Modelling and estimation of tensile behaviour of polylactic acid parts manufactured by fused deposition modelling using finite element analysis and knowledge-based library, Virtual Phys. Prototyp., 13 (177–190) 2018. https://doi.org/10.1080/17452759.2018.1442681
  29. S. Uddin, M. F. R. Sidek, M. A. Faizal, R. Ghomashchi, and A. Pramanik, Evaluating mechanical properties and failure mechanisms of fused deposition modeling acrylonitrile butadiene styrene parts, J. Manuf. Sci. Eng., 139 (2017)81018. https://doi.org/10.1115/1.4036713
  30. Trivedi and P. K. Gurrala, Fuzzy logic based expert system for prediction of tensile strength in Fused Filament Fabrication (FFF) process, Mater. Today Proc., 44 (2021)1344–1349. https://doi.org/10.1016/j.matpr.2020.11.391
  31. Guessasma, S. Belhabib, and H. Nouri, Thermal cycling, microstructure and tensile performance of PLA-PHA polymer printed using fused deposition modelling technique, Rapid Prototyp. J., 26 (2022)122–133. https://doi.org/10.1108/RPJ-06-2019-0151
  32. R. Rajpurohit and H. K. Dave, Effect of process parameters on tensile strength of FDM printed PLA part, Rapid Prototyp. J., 24 (2018)1317–1324. https://doi.org/10.1108/RPJ-06-2017-0134
  33. C. Onwubolu and F. Rayegani, Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process, Int. J. Manuf. Eng., (2014)1–13. https://doi.org/10.1155/2014/598531
  34. Chin Ang, K. Fai Leong, C. Kai Chua, and M. Chandrasekaran, Investigation of the mechanical properties and porosity relationships in fused deposition modelling‐fabricated porous structures, Rapid Prototyp. J., 12 (2006)100–105. https://doi.org/10.1108/13552540610652447
  35. K. Sood, R. K. Ohdar, and S. S. Mahapatra, Experimental investigation and empirical modelling of FDM process for compressive strength improvement, J. Adv. Res., 3 (2012)81–90.https://doi.org/10.1016/j.jare.2011.05.001
  36. R. Tripathy, R. K. Sharma, and V. K. Rattan, Effect of printing parameters on the mechanical behaviour of the thermoplastic polymer processed by FDM technique: A research review, Adv. Prod. Eng. Manag., 17 (2022)279–294.https://doi.org/10.14743/apem2022.3.436
  37. Berihun Sitotaw, D. Marcel Muenks, Y. Kostadinov Kyosev, and A. Kechi Kabish, Investigation of Parameters of Fused Deposition Modelling 3D Prints with Compression Properties, Adv. Mater. Sci. Eng., 2022, 2022. https://doi.org/10.1155/2022/4700723
  38. M. M. H. AL-Khafaji, Neural Network Modeling of Cutting Force and Chip Thickness Ratio For Turning Aluminum Alloy 7075-T6, Al-Khwarizmi Eng. J., 14 (2018)67–76.https://doi.org/10.22153/kej.2018.10.004