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H I G H L I G H T S   A B S T R A C T  
• Twenty-seven test samples were printed for 

evaluating tensile and compressive strength. 
• A neural network model was developed to 

predict and optimize the process parameters. 
• Temperature had the greatest effect on tensile 

strength, while extrusion width most 
impacted compressive strength. 

 Material Extrusion technology is one of the most widely used Additive 
Manufacturing processes due to its simplicity in use, affordable parts fabricating 
costs, product durability, and possibility for changing materials. Despite having 
many advantages, parts manufactured through this technique fall short in strength 
criteria. The present paper focuses on predicting and optimizing three critical 
printing parameters in additive manufacturing: printing temperature, extrusion 
width, and number of shells. A neural network model was built to predict the 
tensile and compressive strengths and optimize the process parameters for 
maximum strength. The full factorial design experiments found that higher 
strength is achieved at higher temperatures, extrusion width, and number of shells. 
Based on the Analysis of Variance (ANOVA), the most influential parameter on 
tensile strength was printing temperature with (44.2%). in the other hand, the 
extrusion width contributed more than others to compressive strength (51.3%). 
Comparisons between the experimental and the predicted values were 
illustrated.The mean error between the experimental and neural network models 
was (0.42%) for tensile strength and (0.45%) for compression strength, with a 
correlation coefficient equal to (0.996) and (0.992) for the two responses, 
respectively. The current proposed study demonstrates good agreements between 
the predicted model values and the experiment outcomes of tensile and 
compressive strengths. 
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1. Introduction 
Remarkable developments in various AM processes help us manufacture mechanical parts without using traditional tools 

and dies [1,2]. Unlike the conventional methods, where we remove material to produce a component, all the additive 
manufacturing (AM) techniques are based on material addition techniques where the entire component is built layer by layer 
[3,4]. The material extrusion process (MEX) is a better and widely used technique among all standard 3D printing techniques 
[5]. It is not only used to produce visual aids, conceptual models, and prototypes but it is also used to produce functional parts 
such as drilling grids in the aerospace industry and edentulous mandible trays. 

This process uses heat to extrude the filament from a narrow nozzle with approximately ranges (0.36 - 0.6 mm) in diameter 
for building the part [6]. The nozzle moves in a computer-controlled path during the material extrusion for the successive layers 
of the object in a similar manner to the tool movements in CNC machines. Generating the toolpaths for the nozzle movements 
and other functions created by software (slicer) based on the CAD data for the object [7]. The thermoplastic filament is 
continuously supplied from a spool for building the part layers. During the uniform feeding of the filament, the heating element 
inside the printing head changes the material to a semi-liquid state. Liquefying the material helps in extruding the material from 
the nozzle to the print surface [8,9]. Figure 1 shows the main elements of the process. Fabricating a good quality part that meets 
the requirement is essential for product marketing [10]. 
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Figure 1: The main elements in the Material Extrusion process [11] 

The process has various factors that significantly affect printed parts. Achieving the required quality and the preferable 
characteristics is obtained by choosing the optimal combinations of these factors. Using a proper material also greatly impacts 
meeting the required [12,13]. 

Based on the related works, many studies pointed out that mechanical strength plays a critical role in the quality of the parts. 
Srinivasan et al.[14] investigated the influence of varying the layer thickness, infill pattern, and infill density on the tensile 
strength and hardness of the ABS material. They found that layer thickness and infill density are the most important parameters. 
Chockalingam et al. [15] developed a Fuzzy-Logic model for predicting the hardness, tensile, and compression strengths using 
three printing parameters: infill density, number of shells, and layer thickness. To obtain maximum compression strength, Boesch 
et al. [16] used the Taguchi design of experiments to optimize three FDM parameters: infill percentage, infill pattern, and layer 
height. Their study showed that infill percent has the most influence on experimental outcomes.  

Kumar et al. [17] investigated the influence of process parameters like layer thickness, printing speed, and printing 
temperature on the tensile and flexural strength of MEX-processed PLA parts using the Taguchi-CRITIC embedded WASPAS 
approach. Their analysis showed that increased printing speed and temperature decreased the specimens' flexural strength due to 
the lack of sufficient time for the bonding of interlayers. It is also evident that the higher printing speed causes porosity and 
fracture formation, resulting in poor bending strength. Rajpurohit and Dave [18] presented an investigation study for the impact 
of raster width, layer thickness, and raster angle on tensile strength using PLA material. Their result analysis showed that the 
three factors significantly affect tensile strength, and the interaction between raster width and layer thickness that play a critical 
role.  

In recent studies, Artificial Neural Network (ANN) has been used in various subjects. Artificial Intelligence (AI), as well as 
machine learning models, are used in other research to develop a predictive algorithm for the process outputs [19,20]. According 
to the literature, the most analyzed process parameters were infill density, layer height, air gap, raster, and building orientations. 
However, the performed studies for analyzing the impact on compression strength are still limited; further investigations need to 
be undertaken to analyze the influence of other factors, such as extrusion temperature, shell width, printing speed, infill pattern, 
etc., on compressive strength [8, 21]. This research attempts to address this issue. So, this paper uses neural network models to 
optimize the tensile and compression strengths using three process parameters: printing temperature, extrusion width, and 
different shell numbers on PLA material. The term extrusion width includes the width of the inner and outer wall line, the 
top/bottom line, and the infill line.  

2. Methodology 
Three levels for each parameter have been selected to clarify the impact of the printing temperature, extrusion width, and 

the number of shells on the tensile and compression properties of the printed parts. Table 1 shows the considered variables of 
the process and their values. A full factorial design of the experiment was employed to conduct experiments for getting input-
output data. A total of 27 combinations were selected using Minitab software to conduct the experiments to obtain the tensile 
and compression values for the corresponding tests. Figure 2 shows a flow chart for the work progress. 

Table 1: Variables and levels of the process 

No. Parameters Symbols Levels Units 
1 2 3 

1 Temperature T 190 200 210 °C 
2 Extrusion Width W 0.36 0.5 0.64 mm 
3 No. of Shells Sh 2 3 4  
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Figure 2: Step-by-step, the processes of the work progress 

2.1 Specimens Preparation and Testing 
Based on the ASTM standards, the specimens were designed using (D638-I) and (ASTM 695) standards for the tensile and 

compression test by SolidWorks software. After modeling the parts, the CAD files are exported in STL format to enable the 
slicer software to read and slice the models. Cura 5.3 software is the tool for slicing the CAD models into successive layers, 
creating supporting structures, specifying printing variable values, and virtually locating the object within the printer surface. 
Saving the part as a (G code) file is necessary to enable the 3D printer to read the file and create the intended shape. Figure 3a 
shows the CAD model design for the tensile and compression specimens, and the sliced models were clarified in Figure 3b. 

The specimens have been printed using Polylactic Acid (PLA) material on (Creality- Ender 3 pro) printer depicted in Figure 
4a  showing the printing process. The final printed samples for the tensile and compression test are shown in Figures (4b and 4c) 
respectivily. The specimens have various combinations of the three sets of variables. 

The tensile test was performed for the printed specimens from Polylactic acid (PLA) material. This material is good for low-
cost rapid prototyping, accurate and vivid models, props, pastry molds, and containers. In the automotive industry, PLA is 
frequently used to print tools, jigs, and fixtures [22]. The tensile tests have been carried out for the samples using a tensile 
machine (universal testing machine, Model: WDW-50) illustrated in Figure 5a. The specimens are gripped by the upper and 
lower jigs, as shown in Figure 5b, and then they are slightly pulled with the crosshead speed of (5 mm /min) until the specimen 
breaks.  In addition to the tensile test, compressive strength is assessed by subjecting the specimens to compressive loads. The 
same steps were followed in tensile testing, except applying compressive loads is implemented in compression tests as shown in 
Figure 5c. The tests proceed at the cross head of (5 mm /min) until the specimens start deforming significantly or an exceptional 
failure is observed. 
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       (a)                                                                                     (b)    

Figure 3: Steps of preparing the tensile and compression specimens, (a) CAD model design, (b) Slicing the models 

   
(a)  (b) (c) 

Figure 4: Fabricating the test samples, (a) Printing the sample, (b) Tensile test specimens, (c) Compressive test specimens 

   
 (a)  (b)  (c) 

Figure 5: Testing the printed parts, (a) universal testing machine, (b) Tensile test, (c) Compression test 

3. Artificial Neural Network Model 
The feed-forward networks have several neurons in their layers, which are arranged sequentially. The outputs of one layer 

are inputs to the next layer neurons. These layers are characterized by their activation function and neuron number [23,24]. 
Network training is a process that adjusts the networks’ weights to reach the minimum error between the network output and the 
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target, the experimental data. The most common algorithm used to train neural networks and adjust weights is the Back-
propagation algorithm [25,26]. 

Using the obtained data from the tensile and compression tests that were conducted based on the full factorial design of 
experiments, the ANN model has been trained between input and output parameters. The input layer consists of three neurons, 
i.e., printing temperature (T), extrusion width (W), and several shells (Sh) with (27 × 3) matrix of data matrix have been imported 
in the neural fitting tool as shown in Figure 6. The output layer has two neurons, i.e., tensile strength (TS) and Compression 
strength (CS) of the (27 × 2) matrix of data.  

The tangent sigmoid activation function has been used for each layer, and a feed-forward back-propagation network has 
been created. 70% of the sample has been used for training, 15% for testing, and 15% for cross-validation. The back-propagation 
training algorithm based on the Levenberg-Marquardt algorithm trains these networks. Marquardt algorithm is the fastest method 
for training moderate-sized feed-forward neural networks (up to several hundredweights) [27]. 

 
Figure 6: Neural network architecture 

4. Results and Discussion 

4.1 Testing Process Variables' Influence on Tensile and Compression Strengths 
The aim of conducting the experimental runs and tests was to estimate the tensile and compression strengths. Table 2 lists 

the results of the experiments for the two responses. From the result, it can be found that maximum tensile and compression 
strengths (74.93 MPa) and (67.43 MPa), respectively, are obtained at printing temperature (210 °C), extrusion width (0.64 mm), 
and number of shells (4). At high printing temperatures, the successive layers' tendency to bond and attach is higher. Furthermore, 
it is obvious that with thicker extrusion lines, the temperature fluctuations decrease, leading to residual stress reduction. This 
phenomenon increases the part's strength by enhancing the layer's tendency to bond with the previous one. 

Table 2: Experimental results for the tensile and compression strength 

No. of  Run Temperature 
(°C) 

Extrusion Width 
(mm) 

No. of 
Shells 

Tensile 
Strength (Mpa) 

Compression 
Strength (Mpa) 

1 190 0.36 3 53.02 55.43 
2 200 0.64 2 66.18 61.71 
3 200 0.50 3 65.25 61.20 
4 200 0.36 4 64.27 58.15 
5 210 0.36 3 62.51 60.79 
6 210 0.64 2 67.91 65.38 
7 190 0.64 2 58.42 61.02 
8 200 0.36 3 60.78 57.13 
9 210 0.50 2 63.46 63.83 
10 200 0.64 4 73.20 63.77 
11 190 0.50 4 60.99 60.53 
12 190 0.64 3 61.94 61.05 
13 210 0.64 4 74.93 67.43 
14 200 0.64 3 69.70 62.74 
15 210 0.50 4 70.48 65.89 
16 190 0.64 4 65.44 62.07 
17 190 0.36 2 49.50 54.40 
18 200 0.36 2 57.26 56.09 
19 190 0.50 3 57.49 59.51 
20 190 0.36 4 56.52 56.46 
21 190 0.50 2 53.97 58.47 
22 210 0.64 3 71.43 66.41 
23 210 0.36 2 58.99 59.76 
24 210 0.50 3 66.98 64.87 
25 200 0.50 4 68.75 62.22 
26 200 0.50 2 61.73 60.17 
27 210 0.36 4     66.00 61.81 

 
Increasing the extrusion width gives thicker extrusion line sections that improve layer adhesion because the material is 

squished more into the previous layer. This subsequently enhances the overall part strength. In addition to improving the 
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mechanical strength, higher extrusion width can reduce the printing time by decreasing the number of infill lines within the 
printed parts. The impact of the individual variables for each tensile and compression strength are clarified in Figures (7a, and 
7b)  respectively. These plots show the behavior of the single variables on the output, known as the main effects plot or average 
performance. The significance of each parameter on the tensile and compression strengths has been explored utilizing the 
Analysis of Variance (ANOVA) to determine the investigated variables contribution percentage to the outcomes. As it has been 
clarified in the ANOVA tables (Tables 3 and 4), printing temperature has the greatest impact on tensile strength at (47.68%) 
followed by the width of extrusion at (29.67%). On the other hand, the most effective parameter on compression strength was 
the extrusion width (51.36%), while the second significant parameter was the temperature (38.79% contribution). Figures (8a, 
and 8b) illustrates each parameter's contribution percentage on the two outputs. The figures show that the effect of shells number 
on tensile strength is significantly higher than its effect on compression.   

Table 3: Anova results for Tensile strength 

Source DOF SS V F-ratio P% 
Temperature 2 496.4 248.2 11.70 47.37 
Extrusion Width 2 318.5 159.3 7.51 29.67 
No. of Shells 2 190.6 95.3 4.49 17.72 
Error 20 63.7 21.2  5.24 
Total 26 1069.2    

Table 4: Anova results for Compression strength 

Source    DOF SS V F-ratio P% 
Temperature 2 130.4 65.2 8.98 38.79 
Extrusion Width 2 156.5 78.24 12.67 51.36 
No. of Shells 2 17.1 8.5 0.71 5.6 
Error 20 28.3 7.26  4.25 
total 26 332.2  

 
 
 

 

Figure 7: Main effect plot of the mean strength, (a) Tensile strength, (b) Compression strength 
 

  
(a) (b) 

Figure 8: Parameters contribution percentage, (a) Tensile strength, (b) Compression strength 

Figure 9 shows a sample of the fracture tensile specimens at different combinations of printing parameters. From the figure, 
it can be seen that failure occurs in between the layers (inter-layer) first, in the form of delamination, as the bonding between 

  
  (a)    (b) 
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layers is weaker at lower printing temperatures and extrusion width. The failure path inclined at 45o in the same direction as the 
raster lines. As the printing temperature and extrusion width increase, the bonding between filament is more homogenous, leading 
to a smoother fracture surface; therefore, the failure occurs within the layers (in-layer) at 0o as shown in the second and the third 
specimens (10 and 13) in Figure 9. 

 
Figure 9: Fractured tensile specimens at different combinations of parameters 

On the other hand, the 3D-printed PLA specimens did not rupture in a single plane. Instead, it showed irregular breakage 
with a zigzag form or jagged line, as shown in the figure's fourth and fifth specimens (14 and 15). This is due to the inner 
construction where the lines (rasters) of the layers have alternately formed either parallel and 45° or 45° and -45° (135°) angle 
to the tensile applied load. The cross-section of the fracture surface exhibited a loose structure with voids between the layers, 
and a distinct appearance of layer separation was visible. Most of the 3D printed specimens failed at a point close to the grips, 
which has been the common failure pattern for the 3D printed specimens [28]. The reason specimens are ruptured close to the 
grips area is due to the presence of stress concentration at fillet areas due to extrudates. The presence of gaps at the center of the 
specimens can also accumulate stress, leading to premature failure [29]. A uniformly distributed diffusion is required to minimize 
the infill gaps between the PLA extrudates and improve the bond strength. 

According to the tensile strength analysis results, printing temperature was also reported in some previous experimental 
studies. The carried-out investigations that analyzed the influence of some of the process parameters on compressive strength 
are still limited. Table 5 shows some related research findings compared to the current study. 

Table 5: Comparison of previous studies and the current study 

Parameter Findings Ref. 
Temperature Tensile strength is enhanced by its increase.  [30] 

Up to 240 °C, tensile strength increased; beyond 250- °C, 
mechanical properties started to become poorer. 

 [31] 

Extrusion Width It greatly affected tensile strength and improved it by its increase.  [32] 
Tensile strength increased at minimum raster width.  [33] 
It had a significant impact on compressive strength.  [34] 
Its effect was insignificant on compressive strength.  [35] 

No. of Shells Its increase leads to an increase in tensile strength.  [36] 
The compressive strength increased by increasing the vertical walls.  [37] 

Temperature 
Extrusion Width 
No. of Shells 

Tensile and compressive strength increased with increasing the 
parameter values. 

Current study 

4.2 Neural Network Results 
The correlation coefficient was utilized to evaluate the closeness between the model’s output and the experiments outcomes. 

This statistical measure can be formulated as [38]. 
Table 6 depicts the goodness of fit of the ANN model to check the significance of network topology and transfer functions 

at the hidden and output layers. The best value of overall R (0.994) was obtained using the Levenberg- Marquardt algorithm, as 
shown in Figure 10d. The training, validation and testing of the data illustrated in Figures (10a,10b, and 10c) respectively. The 
data reaches its maximum optimal solution at epoch 1, and when validation samples MSE start increasing, the epochs 
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automatically stop, as shown in Figure 11. The correlation coefficient of the two model responses is determined based on 
Equation 1. They were (0.996 and 0.992) for tensile and compressive strengths, respectively 

 𝑅𝑅 = ∑(𝑥𝑥𝑖𝑖− �̅�𝑥) (𝑦𝑦𝑖𝑖− 𝑦𝑦� )
�∑(𝑥𝑥𝑖𝑖− �̅�𝑥)2  ∑(𝑦𝑦𝑖𝑖− 𝑦𝑦�)2 

  (1) 

The result shows good agreements between experimental outcomes and the ANN model with maximum errors of 3.95% and 
2.34% for each tensile strength and compression strength, respectively. The experimental values behavior against the predicted 
model data for the tensile and compression responses are shown in Figures (12a, and 12b) respectively. Based on this 
convergence between the experimental and model outcomes, it is possible to infer that this method is an efficient tool of machine 
learning techniques in predicting the FFF printed parts strength.The current study also used the ANN model to optimize the 
printing variables. A MATLAB algorithm was built to find the optimal printing variables that provide maximum tensile and 
compression strengths. The function generates three vectors; each vector stores 100 elements. The first one was for printing 
temperature T in the range [190, 210], the second vector presents the extrusion width W in the range [0.36, 0.64], and the third 
one for the number of shells Sh in the range [2,4].   

Moreover, the algorithm constructs two three-dimensional arrays with a size of (100,100,100). The computed results of the 
three input vector combinations are stored in the first array simultaneously. In the second array, the compression strength is also 
calculated and saved. The maximum values in these two arrays are the optimal values for each tensile and compression strength, 
and the corresponding variables represent the optimal printing conditions. Table 7 shows the optimal  variables conditions and 
thtaeir corresponding tensile strength and compression strength values. It is noted that the optimum values of (T, W, and Sh) are 
the same for (TS) and (CS).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10: Regression plot for ANN 
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Figure 11: Mean square error plot for ANN 

Table 6: Optimum parameters and their corresponding optimum value of tensile and compression strengths 

No. of 
Run 

Experimental Tensile 
Strength (Mpa) 

Predicted Tensile 
Strength (Mpa) 

Error 
(%) 

Experimental 
Compression 
Strength (Mpa) 

Predicted 
Compression 
Strength (Mpa) 

Error 
(%) 

1 53.02 53.01 0.02 55.43 55.36 0.13 
2 66.18 66.31 0.19 61.71 61.91 0.32 
3 65.25 65.28 0.05 61.20 61.22 0.03 
4 64.27 61.74 3.95 58.15 57.05 1.89 
5 62.51 62.52 0.02 60.79 60.74 0.08 
6 67.91 67.84 0.10 65.38 65.24 0.21 
7 58.42 58.43 0.02 61.02 61.01 0.01 
8 60.78 60.82 0.07 57.13 57.21 0.14 
9 63.46 63.58 0.19 63.83 64.14 0.48 
10 73.20 72.15 1.43 63.77 63.04 1.15 
11 60.99 61.01 0.02 60.53 60.48 0.08 
12 61.94 62.10 0.26 61.05 61.87 1.34 
13 74.93 74.85 0.11 67.43 67.57 0.20 
14 69.70 69.82 0.17 62.74 62.92 0.29 
15 70.48 70.52 0.05 65.89 65.96 0.11 
16 65.44 64.84 0.92 62.07 60.62 2.34 
17 49.50 49.16 0.68 54.40 54.28 0.22 
18 57.26 57.23 0.04 56.09 56.08 0.01 
19 57.49 57.49 0.01 59.51 59.54 0.05 
20 56.52 56.49 0.04 56.46 56.34 0.21 
21 53.97 54.09 0.22 58.47 58.57 0.16 
22 71.43 71.91 0.68 66.41 67.06 0.98 
23 58.99 60.00 1.72 59.76 60.02 0.43 
24 66.98 66.99 0.02 64.87 64.90 0.06 
25 68.75 68.73 0.03 62.22 62.26 0.06 
26 61.73 61.80 0.12 60.17 60.11 0.09 
27 66.00 65.97 0.05 61.81 61.73 0.14 

Table 7: Optimum parameters and their corresponding optimum value of tensile and compression strengths 

Response Temperature (°C) Extrusion Width (mm) No.of Shells Optimum Value (Mpa) 
Tensile 
Strength 

210 0.64 4 74.85 

Compression 
Strength 

210 0.64 4 67.57 
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(a) 
 

 
(b) 

Figure 12: Main effect plot of the mean strength, (a) Tensile strength, (b) Compression strength 

5. Conclusion 
In this work, a neural network model was built to predict and optimize the tensile and compressive strengths of the printed 

parts in the material extrusion process.  The experimental runs for printing the parts were achieved based on the full factorial 
design of experiments to investigate the impact of hot end temperature, extrusion width, and the number of shells as the process 
input parameters on parts strength. From the present work, the following conclusions have been drawn: 

 The result clarified that higher tensile and compressive strengths are achieved with higher printing temperature (210 
°C), higher extrusion width (0.64 mm), and higher number of shells (4).  

 The ANOVA analysis found that temperature is the most effective parameter on tensile strength with (47.68%), while 
the extrusion width has the greatest impact on compression strength at (51.36%). The correlation coefficient for the 
two responses was 0.996 and 0.992, respectively.  

 The predicted model for the tensile and compression strengths agreed well with experiment outcomes, with an error 
average of 0.42% for tensile strength and 0.45% for compressive strength. This indicates that the neural network 
model can be utilized to predict mechanical strength. 

Producing parts from different types of material together in one building structure requires more investigations, requiring 
knowledge and consideration of the different melting points of the used materials. According to practical demands, this 
combination could address the conflicting characteristics of rigidity and toughness or solve some of the existing challenges 
encountered in various implementations. 
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