Document Type : Review Paper

Authors

Production Engineering and Metallurgy Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

Abstract

This study makes experimental evaluations of the corrosion and tip tests of  CP-Ti joint (commercial pure Ti) implant alloys coated with YSZ nanoceramic. A Taguchi design of experiments (DOE) strategy was used to create a thin adhesive covering utilizing dip coating and electrophoretic deposition techniques. An L9-type orthogonal Taguchi array determined how dip coating and electrophoretic deposition factors, such as temperature, voltage, YSZ concentration, time, and the degree of pulverizing the Ti alloy substrate, affected the deposition yield. The Ti alloys were coated using the optimal settings for the dip coating and electrophoretic deposition procedures as previously described, utilizing the output data from the thickness and adhesion experiments used to optimize the conditions of dip coating and electrophoretic deposition. The optimal conditions for electrophoretic deposition were 60 volts, 7 minutes, 15% concentration, and 400 grit of grinding. The optimal dip coating conditions were 60°C temperature, 10 seconds, 1% concentration, and 250 grit size of Grinding. High-resolution scanning electron microscopy (FE-SEM) images of the coated alloys were employed for the examination. The microstructure and thickness of the coated surfaces were further examined using optical microscopy and atomic force microscopy (AFM). The corrosion resistance of the best-coated Ti alloys was examined using electrochemical techniques such as polarizing (Tafel) and cyclic polarization in simulated bodily fluid (SBF). Using a tip tester, the coatings' adhesive strength was evaluated. The coated CP-Ti alloys were contrasted using the following corrosion-resistant values: Both coating alloys enhanced corrosion resistance in Ringer's solution at 37°C. However, the coated CP-Ti alloy by electrophoretic deposition corroded less quickly than the CP-Ti alloy by dip coating (3.031×10-3 vs 1.042×10-3 respectively).

Graphical Abstract

Highlights

  • Coatings that consist of YSZ nano-powder by dip coating on Cp-Ti and Ti-13Zr-13Nb were used.
  • The coating exhibits good adhesion to the Cp-Ti and Ti-13Nb-13Zr alloy.
  • The surface of the composite coatings was free from cracks.
  • CP-Ti and Ti-13Zr-13Nb alloys have good corrosion resistance properties in Ringer’s solution.

Keywords

Main Subjects

  1. Y. Wang, Y.B. Wang, J.P. Lin, YF Zheng, Development and properties of Ti-In binary alloys as dental biomaterials, Mater. Sci. Eng. C Mater. Biol. Appl., 33 (2013) 1601-1606. https://doi.org/10.1016/j.msec.2012.12.070
  2. S. Bhasin, V. Singh, T. Ahmed, B.P. Singh, Studies on titanium-based dental implant material, In: Kriven WM, Hua-Tay L, editors, 27th Annual Cocoa Beach Conf. Adv. Cem. Compos.,-A: Ceram. Eng. Sci. Proc., 24., (2008)245-54.
  3. Okazaki, S. Rao, Y. Ito, T. Tateishi, Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V, Biomaterials, 19 (1998) 1197-215. https://doi.org/10.1016/s0142-9612(97)00235-4
  4. B. Heimann, T Anh Vu, M.L. Wayman, Bioceramic coatings: State-of-the-art and recent development trends, Eur. J. Mineral, 9 (1997) 597 - 616. https://doi.org/10.1127/ejm/9/3/0597
  5. A. Ur Rehman, F.E. Bastan, Q. Nawaz, W.H. Goldmann, M. Maqbool, S. Virtanen, Electrophoretic deposition of lawsone loaded bioactive glass (BG)/chitosan composite on polyetheretherketone (PEEK)/ BG layers as antibacterial and bioactive coating, J. Biomed. Mater. Res., Part A 2, 106 (2018) 3111–3122. https://doi.org/10.1002/jbm.a.36506
  6. A.U. Rehman, M.A. Munawar, D.W. Schubert, Boccaccini AR Electrophoretic deposition of chitosan/gelatin/ bioactive glass composite coatings on 316L stainless steel: A design of experiment study, Surf. Coat. Technol., 358 (2019) 976–986. http://dx.doi.org/10.1016/j.surfcoat.2018.12.013
  7. Wang, C. Wen, P. Hodgson, Y. Li, Biocompatibility of TiO2 nanotubes with different topographies, J. Biomed. Mater. Res., A, 102 (2013) 743-751. https://doi.org/10.1002/jbm.a.34738
  8. B. Heimann, T. Anh Vu, M.L.Wayman , Bioceramic coatings: State-of-the-art and recent development trends, Eur. J. Mineral., 9 (1997) 597–616. https://doi.org/10.1127/ejm/9/3/0597
  9. Narayanan, S.K. Seshadri, T.Y. Kwon, K.H. Kim‏, Calcium phosphate-based coatings on Titanium and its alloys, J. Biomed. Mater. Res., Part B 85 (2008) 279–299. https://doi.org/10.1002/jbm.b.30932
  10. Nouri, C. Wen, Introduction to surface coating and modification for metallic biomaterials,: Surf. Coat. Modif. Met. Biomater., (2015) 3–60. https://doi.org/10.1016/B978-1-78242-303-4.00001-6
  11. Hekmatfar, S. Moshayedi, S.A. Ghaffari, H.R. Rezaei, F. Golestani-Fard, Fabrication of HAp–8YSZ composite layer on Ti/TiO2 nanoporous substrate by EPD/MAO method, Mater. Lett., 65 (2011) 3421-3423. https://doi.org/10.1016/j.matlet.2011.07.048
  12. Ma, C. Wang, K.W. Peng, Electrophoretic deposition of porous hydroxyapatite scaffold, Biomaterials, 24 (2003)  3505-3510. https://doi.org/10.1016/s0142-9612(03)00203-5
  13. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci., 52 (2007) 1 -61. https://doi.org/10.1016/j.pmatsci.2006.07.001
  14. Shahriari, H. Aghajani, Electrophoretic Deposition of 3YSZ Coating on AZ91D Alloy Using Al and Ni-P Interlayers, J. Mater. Eng. Perform., 25 (2016) 4369–4382. https://doi.org/10.1007/s11665-016-2253-7
  15. Dor, S. Rühle, A. Ofir, M. Adler, L. Grinis, A. Zaban, The influence of suspension composition and deposition mode on the electrophoretic deposition of TiO2 nanoparticle agglomerates ,Colloids Surf. A Physicochem. Eng. Asp., 342 (2009) 70-75. https://doi.org/10.1016/j.colsurfa.2009.04.009
  16. Farrokhi-Rad, S.K. Loghmani, T. Shahrabi, S. Khanmohammadi, Electrophoretic deposition of hydroxyapatite nanostructured coatings with controlled porosity, J. Eur. Ceram. Soc., 34 (2014) 97-106. https://doi.org/10.1016/j.jeurceramsoc.2013.07.022
  17. Jia, Z. Lü, X. Huang, Z. Liu, K. Chen, X. Sha, G. Li, W. Su, Editorial Advisory Board, J. Alloys Compd., 424 (2006) 299. https://doi.org/10.1016/S0925-8388(06)01486-1
  18. Maleki-Ghaleh, M. Rekabeslami, M.S. Shakeri, M.H. Siadati, M. Javidi, S.H. Talebian, H. Aghajani, Nano-structured yttria-stabilized zirconia coating by electrophoretic deposition, Appl. Surf. Sci., 280 (2013) 666. https://doi.org/10.1016/j.apsusc.2013.04.173
  19. Q. Cao,R.Vassen,S. Stöver, Ceramic-materials for thermal barrier coatings, J. Eur. Ceram. Soc., 24 (2004) 1–10. https://doi.org/10.1016/S0955-2219(03)00129-8
  20. R. Chen,X.Wu,B.R.Marple,R.S.Lima,P.C.Patnaik, Pre-oxidation and TGO growth behavior of an air-plasma-sprayed thermal barrier coating, Surf.Coat.Technol., 202 (2008) 3787–3796. https://doi.org/10.1016/j.surfcoat.2008.01.021
  21. Antony, F.J. Antony, Teaching the Taguchi method to industrial engineers, Work Study, 50 (2001) 141. http://dx.doi.org/10.1108/00438020110391873
  22. K. Roy, A Primer, on the Taguchi Method Society of Manufacturing Engineers, The United States of America, 1990.
  23. Zaveri, G.D. McEwen, R. Karpagavalli, A. Zhou, Biocorrosion studies of TiO2 nanoparticle-coated Ti–6Al–4V implant in simulated biofluid, J. Nanopart. Res. (2011), doi:10.1007/s11051-009-9699-6.
  24. Tabesh, M. Kharaziha, M. Mahmoudi, E. Shahnam, M. Rozbahani, Biological and corrosion evaluation of Laponite®: Poly(caprolactone) nanocomposite coating for biomedical applications, Colloids Surf. A 583 (2019), https://doi.org/ 10.1016/j.colsurfa.2019.123945.
  25. Goudarzi, F. Batmanghelich, A. Afshar, A. Dolati, G. Mortazavi, Development of electrophoretically deposited hydroxyapatite coatings on anodized nanotubular TiO2 structures: corrosion and sintering temperature, Appl. Surf. Sci., 301 (2014) 250–257. https://doi.org/10.1016/j.apsusc.2014.02.055
  26. Mahmoodi, L. Sorkhi, M. Farrokhi-Rad, T. Shahrabi, Electrophoretic deposition of hydroxyapatite–chitosan nanocomposite coatings in different alcohols, Surf. Coat. Technol., 216 (2013) 106–114. https://doi.org/10.1016/j.surfcoat.2012.11.032
  27. A. Abdeltawab, M.A. Shoeib, S.G. Mohamed, Electrophoretic deposition of hydroxyapatite coatings on Titanium from dimethylformamide suspensions, Surf. Coat. Technol., 206 (2011) 43–50. https://doi.org/10.1016/j.surfcoat.2011.06.034
  28. Molaei, M. Yari,M.R. Afshar, Investigation of halloysite nanotube content on electrophoretic deposition (EPD) of chitosan-bioglass-hydroxyapatite-halloysite nanotube nanocomposites films in surface engineering, Appl. Clay Sci.,135 (2017)75-81. https://doi.org/10.1016/j.clay.2016.09.008
  29. Farrokhi-Rad, S.K. Loghmani, T. Shahrabi, S. Khan mohammadi, Electrophoretic deposition of hydroxyapatite nanostructured coatings with controlled porosity, J. Eur. Ceram. Soc., 34 (2014) 97–106.https://doi.org/10.1016/J.JEURCERAMSOC.2013.07.022