Document Type : Research Paper

Authors

Production Engineering and Metallurgy Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

Abstract

Fused deposition modeling (FDM) is an additive manufacturing (AM) technique frequently used to create prototypes and parts with intricate geometrical designs. It is gaining popularity since it enhances products by removing the need for expensive equipment. The materials used, the printing process, and the parameters influence the mechanical properties of printed objects. The quality and functionality of the parts are impacted by FDM process parameters. This study focused on the impact of six parameters on the mechanical and physical properties of samples printed using the FDM machine (Creality Ender-5 Pro). The infill density percentage, infill pattern, layer thickness, shell thickness, number of top/bottom layers, and the percentage of infill overlap have been taken as the process parameters. The compressive strength has been calculated using the ASTM D695 compression test. The results illustrated how printing parameters affected samples' mechanical and physical properties, which were proven by the ultimate compression stress UCS and the percentage of compression average deviation. The analysis of variance shows the significance of infill density (100%) for UCS, while layer thickness (0.15 mm) is significant for compression average percentage deviation. For instance, the increase in the infill density from 20% to 100% shows that the strength climbed from 4 MPa to 56.5 MPa. Similarly, reducing layer thickness from 0.3 mm to 0.15 mm results in a diminished dimensional accuracy deviation from 1.65% to 0.446%, approximately three times less than that of the specimen with a 0.3 mm layer thickness.

Graphical Abstract

Highlights

  • The impact of infill parameters on compressive strength and the dimensional accuracy deviation of PLA was investigated
  • Infill density had the most impact on strength, while layer thickness had the greatest impact on dimensional accuracy.
  • The model fits the data well, with a max of 0.44% and 0.948% error for strength and average deviation, respectively.

Keywords

Main Subjects

  1. S S. Fafenrot, N. Grimmelsmann, M. Wortmann, and A. Ehrmann, Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling, Materials, 10 (2017) 1199. https://doi.org/3390/ma10101199
  2. M. Ahmad and S. Y. Ezdeen, Effect of coating on the specific properties and damping loss factor of ultem 1010, Zanco J. Pure Appl. Sci., 33 (2021) 105–116. http://dx.doi.org/10.21271/zjpas
  3. F. Abbas, F. M. Othman, and H. B. Ali, Effect of infill Parameter on compression property in FDM Process, Dimensions, 12 (2017) 24–25.
  4. A. Naser and M. T. Rashid, The Influence of Concave Pectoral Fin Morphology in the Performance of Labriform Swimming Robot, Iraqi J. Electr. Electron. Eng., 16 (2020) 54–61. https://doi.org/10.37917/ijeee.16.1.7
  5. A. Aldeen, B. A. Sadkhan, and B. Owaid, Hand bone orthosis manufacturing using 3d printing technology, J. Eng. Sustain. Dev., 24 (2020) 451–458. https://doi.org/10.31272/jeasd.conf.1.50
  6. Rismalia, S. C. Hidajat, I. G. R. Permana, B. Hadisujoto, M. Muslimin, and F. Triawan, Infill pattern and density effects on the tensile properties of 3D printed PLA material, in: Conference Series: J. Physics., 1402 (2019) 44041. https://doi.org/10.1088/1742-6596/1402/4/044041
  7. M. Mwema and E. T. Akinlabi, Fused Deposition Modeling: Strategies for Quality Enhancement, Springer Br. Appl. Sci. Technol., 1st ed., 2020.
  8. A. Soud, I. A. Baqer and M. aR. Ahmed, Experimental Study of 3D printing Density Effect on the Mechanical Properties of the Carbon-Fiber and Polylactic Acid Specimens, J. Eng. Technol., 37 (2019) 128–132. https://doi.org/10.30684/etj.37.4A.3
  9. M. Othman, T. Fadhil, and A. H. B. Ali, Influence of process parameters on mechanical properties and printing time of FDM PLA printed parts using design of experiment, J. Eng. Res., 8 (2018) 2248–9622.
  10. L. Dezaki and M. K. A. Mohd Ariffin, The Effects of Combined Infill Patterns on Mechanical Properties in FDM Process, Polymers, 12 (2020) 2792. http://dx.doi.org/10.3390/polym12122792
  11. S. Kumar, M. U. Farooq, N. S. Ross, C. H. Yang, V. K. and A. A. Adediran, Achieving effective interlayer bonding of PLA parts during the material extrusion process with enhanced mechanical properties, Scientific Reports, 13 (2023). http://dx.doi.org/10.1038/s41598-023-33510-7
  12. V. Ambade, S.W. Rajurkar, G. K. Awari, Effect of Infill Density and Infill Pattern on the Compressive Strength of Parts Printed by PLA Filament using FDM, Int. J. Res. Anal. Rev., 10 (2023).
  13. S. Bedan, T. F. Abbas, E. A. Hussein, Prediction and Investigation of the interactive impact of shell thickness and infill density on the mechanical properties and the mass of ABS prints, J. Hunan Univ., (Web of Sciences) 50 (2023). http://dx.doi.org/10.55463/issn.1674-2974.50.1.20
  14. Sivaraos, K. Kumaran, R. Dharsyanth, M. Amran, S. M. Shukor, S. Pujari, D. Ramasamy, U. K. Vatesh, A. S. M. Al-Obaidi, S. Ramesh, K. Y. S. Lee, Predictive Modeling of Dimensional Accuracies in 3d Printing using Artificial Neural Network, J. Eng. Sci. Technol., 18 (2023) 2148 – 2160.
  15. U. Farooq, S. Anwar, R. Ullah, R. H. Guerra, Sustainable machining of additive manufactured SS-316L underpinning low carbon manufacturing goal, J. Mater. Res. Technol., 24 (2023) 2299-2318. http://dx.doi.org/10.1016/j.jmrt.2023.03.122
  16. Popović, M. Pjević, A. Milovanović, G. Mladenović, M. Milošević, Printing parameter optimization of PLA material concerning geometrical accuracy and tensile properties relative to FDM process productivity, J. Mech. Sci. Technol., 37 (2023) 697–706. http://dx.doi.org/10.1007/s12206-023-0113-6
  17. Harris, H. Mohsin, J. Potgieter, K. M. Arif, S. Anwar, A. AlFaify & M. U. Farooq, Hybrid deposition additive manufacturing: novel volume distribution, thermo-mechanical characterization, and image analysis, J. Braz. Soc. Mech. Sci. Eng., 44 (2022). http://dx.doi.org/10.1007/s40430-022-03731-4
  18. F. Abbas, K. K. Mansor, H. B. Ali, The Effect of FDM Process Parameters on the Compressive Property of ABS Prints, J. Hunan Univ. Nat. Sci., 49 (2022). http://dx.doi.org/10.55463/issn.1674-2974.49.7.17
  19. Abas, T. Habib, S. Noor, B. Salah, and D. Zimon, Parametric Investigation and Optimization to Study the Effect of Process Parameters on the Dimensional Deviation of Fused Deposition Modeling of 3D Printed Parts, Polymers, 14 (2022) 3667. http://dx.doi.org/10.3390/polym14173667
  20. Kumar, S. Teraiya, V. K. Koriya, FDM Fabricated PLA Parts: An Experimental Study of Effect of Process Parameters on Mechanical Properties under Compressive and Flexural Loading, Int. J. Mod. Manuf. Technol., 2 (2022) http://dx.doi.org/10.54684/ijmmt.14.2.111
  21. R. Begum, M S. Kumar, M Vasumathi, M. U. Farooq, C. I. Pruncu, Revealing the compressive and flow properties of novel bone scaffold structure manufactured by selective laser sintering technique, J. Med. Eng., (2022) 1–13. http://dx.doi.org/10.1177/09544119211070412
  22. F. Abbas, H. B. Ali, K. K. Mansor, Influence of FDM Process Variables' on Tensile Strength, Weight, and Actual Printing Time when using ABS Filament, Int. J. Mod. Manuf. Technol., 1 (2022) http://dx.doi.org/10.54684/ijmmt.2022.14.1.7
  23. B. Ali, M. Khlif, D. Hammami and C. Bradai, Optimization of structural parameters on hollow spherical cells manufactured by Fused Deposition Modeling (FDM) using Taguchi method, Cellular Polymers, 41 (2022) 3-20. http://dx.doi.org/10.1177/02624893211043324
  24. Parab, N. Zaveri, Investigating the Influence of Infill Pattern on the Compressive Strength of Fused Deposition Modelled PLA Parts, in: Proc. Int. Conf. Intell. Manuf. Autom., (2022) 239–247. http://dx.doi.org/10.1007/978-981-15-4485-9_25
  25. A. B. Syed, Q. Rhaman, H. M. Shahriar, M. M. A. Khan, Grey-Taguchi Approach for Optimizing Fused Deposition Modeling Process in Terms of Mechanical Properties and Dimensional Accuracy, Int. Conf. Eng. Res. Edu. Sch. Appl. Sci. Technol., SUST, Sylhet, 2021.
  26. Abeykoon, P. S. Amphorn, A. Fernando, Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures, Int. J. lightweight mater. manuf., 3 (2020) 284-297. http://dx.doi.org/10.1016/j.ijlmm.2020.03.003
  27. Tanga, J.Liua, Y. Yangc, Y. Liua, S. Jianga, W. Hao, Effect of process parameters on mechanical properties of 3D printed PLA lattice structures, Composites Part C: 3 (2020) 100076. http://dx.doi.org/10.1016/j.jcomc.2020.100076
  28. K. Mauryaa, V. Rastogib, P. Singh, Fabrication of prototype connecting rod of PLA plastic material using FDM prototype technology, Indian J. Eng. Mater. Sci., 27 (2020) 333-343.
  29. F. Buys, A. N. A. Aznan, and H. Anuar, Mechanical properties, morphology, and hydrolytic degradation behavior of polylactic acid/natural rubber blends, in: IOP Conference Series: Mater. Sci. Eng., 290 (2018) 12077. http://dx.doi.org/10.1088/1757-899X/290/1/012077
  30. Ishfaq, M. U. Farooq, C. I. Pruncu, Reducing the geometrical machining errors incurred during die repair and maintenance through electric discharge machining (EDM), Int. J. Adv. Manuf. Technol., 117 (2021) 3153–3168. http://dx.doi.org/10.1007/s00170-021-07846-1
  31. U. Farooq, S. Anwar, H. A. Bhatti, M. S. Kumar, M. A. Ali, M. I. Ammarullah, Electric Discharge Machining of Ti6Al4V ELI in Biomedical Industry: Parametric Analysis of Surface Functionalization and Tribological Characterization, Materials, 16 (2023) 4458. http://dx.doi.org/10.3390/ma16124458
  32. U. Farooq, S. Anwar, M. S. Kumar, A. AlFaify, M. A. Ali, R. Kumar, R. Haber, A Novel Flushing Mechanism to Minimize Roughness and Dimensional Errors during Wire Electric Discharge Machining of Complex Profiles on Inconel 718, Materials, 15 (2022) 7330. http://dx.doi.org/10.3390/ma15207330
  33. Krishna M. A., Pritish S., Dinesh B., et al, Analyzing the Impact of Print Parameters on Dimensional Variation of ABS specimens printed using Fused Deposition Modelling (FDM), Sensors International, 3 (2022) http://dx.doi.org/10.1016/j.sintl.2021.100149
  34. A. Oudah, H. B. Al-Attraqchi, N. A. Nassir, The Effect of Process Parameters on the Compression Property of Acrylonitrile Butadiene Styrene Produced by 3D Printer, J. Eng. Technol., 40 (2022) 189-194. http://dx.doi.org/10.30684/etj.v40i1.2118
  35. U. Farooq, M. A. Ali, Y.He, A. M. Khan, C. I. Pruncu, M. Kashif, N. Ahmed, N. Asif, Curved profiles machining of Ti6Al4V alloy through WEDM: investigations on geometrical errors, J. Mater. Res. Technol., 9 (2020) 16186-16201. http://dx.doi.org/10.1016/j.jmrt.2020.11.067
  36. Ishfaq, S. Anwar, M. A. Ali, M. H. Raza, M. U.Farooq, S. Ahmad, C. I. Pruncu, M. Saleh, B. Salah, Optimization of WEDM for precise machining of novel developed Al6061-7.5% SiC squeeze-casted composite, J. Manuf. Sci. Technol., 111 (2020) 2031–2049. http://dx.doi.org/10.1007/s00170-020-06218-5
  37. Asif, M. Q. Saleem, M. U. Farooq, Performance evaluation of surfactant mixed dielectric and process optimization for electrical discharge machining of titanium alloy Ti6Al4V, CIRP J. Manuf. Sci. Technol., 43 (2023) 42–56. http://dx.doi.org/10.1016/j.cirpj.2023.02.007
  38. K.Goyal, N.Sharma, R. D. Gupta, G. Singh, D. Rani, H. K. Banga, R. Kumar, D. Y. Pimenov, K. Giasin, A Soft Computing-Based Analysis of Cutting Rate and Recast Layer Thickness for AZ31 Alloy on WEDM Using RSM-MOPSO, Materials, 15 (2022) 635. http://dx.doi.org/10.3390/ma15020635
  39. U. Farooq, M. P. Mughal, N. Ahmed, N. A. Mufti, A. M. Al-Ahmari, Y. He, On the Investigation of Surface Integrity of Ti6Al4V ELI Using Si-Mixed Electric Discharge Machining, Materials, 13 (2020) 1549. http://dx.doi.org/10.3390/ma13071549
  40. P.Mughal, M. U. Farooq, J. Mumtaz, M. Mia, M. Shareef, M. Javed, M. Jamil, C. I. Pruncu, journal of the mechanical behavior of biomedical materials 113 (2021) 104145, Surface modification for osseointegration of Ti6Al4V ELI using powder mixed sinking EDM, J. Mech. Behav. Biomed. Mater., 113 (2021) 104145. http://dx.doi.org/10.1016/j.jmbbm.2020.104145