Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, Lead City University, Ibadan, Nigeria.,Department of Mechanical Engineering, University of Ibadan, Nigeria.

2 Department of Mechanical Engineering, Lead City University, Ibadan, Nigeria.

Abstract

This study presents a comprehensive numerical investigation into the energy evaluation and determination of dry moisture content of briquettes, a vital aspect of renewable energy production. Utilizing advanced computational fluid dynamics (CFD) modeling and simulations, we explored key parameters impacting briquette combustion, such as moisture content, size, density, and temperature profiles. The research demonstrates that these factors significantly influence combustion behavior, with the CFD model accurately predicting mass loss curves and burnout times. The process was completed in 10 minutes, reaching a temperature of 300K and yielding gases consisting of CO2, CO, and H2O, while the devolatilization front was assumed to be at 325K. The drying front was estimated to occur within the range of 303K to 310K. This knowledge is pivotal in optimizing briquettes as a sustainable energy source, ensuring efficient energy conversion, and reducing environmental impact. By integrating engineering principles, thermodynamics, and computational modeling, our interdisciplinary approach addresses complex challenges in renewable energy. The research findings underscore the importance of refining and validating these models to advance the understanding and utilization of briquettes as a clean and eco-friendly energy alternative. In a world increasingly prioritizing environmental sustainability and energy efficiency, this research aligns with broader efforts to transition towards cleaner and more sustainable energy sources, offering prospects for a greener and responsible energy future.

Graphical Abstract

Highlights

  • Numerical analysis of briquette performance reveals potential energy savings via optimized moisture content.
  • Findings suggest energy savings via optimization of moisture content in briquette production.
  • Briquette moisture optimization could lead to improved efficiency and performance, aiding sustainable energy. 

Keywords

Main Subjects

  1. B. W. Evaristo, N. A. Viana, M. G. Guimarães, A. T. do Vale, J. L. de Macedo, and G. F. Ghesti, Evaluation of waste biomass gasification for local community development in central region of Brazil, Biomass Convers. Biorefinery, 12 (2022) 2823–2834. http://dx.doi.org/10.1007/s13399-020-00821-y
  2. Gilvari, W. de Jong, and D. L. Schott, Quality parameters relevant for densification of bio-materials: Measuring methods and affecting factors - A review, Biomass Bioenergy, 120 (2019) 117–134. http://dx.doi.org/10.1016/j.biombioe.2018.11.013
  3. Huggins, H. Wang, J. Kearns, P. Jenkins, and Z. J. Ren, Biochar as a sustainable electrode material for electricity production in microbial fuel cells, Bioresour. Technol., 157 (2014)114–119. http://dx.doi.org/10.1016/j.biortech.2014.01.058
  4. O. Adeaga, O. O. Alabi, and S. A. Akintola, Experimental investigation of the potential of liquified petroleum gas in vapour compression refrigeration system, LAUTECH J. Eng. Technol., 17 (2003) 1–7.
  5. Picchio, R. Venanzi, W. Stefanoni, A. Suardi, D. Tocci  and L. Pari, Pellet production from woody and non-woody feedstocks : A review on biomass quality evaluation, Energies, 13  (2020) 1–20.https://doi.org/10.3390/en13112937
  6. O. Alabi, G. O. Ogunsiji, and S. A. Dada, Performances Evaluation of Blended Alternative Refrigerant In Vapour Compression Refrigeration System, FUW Trends Sci. Technol. J., 8 (2023)228–234.
  7. Jewiarz, M. Wróbel, K. Mudryk, and S. Szufa, Impact of the drying temperature and grinding technique on biomass grindability, Energies, 13( 2020). http://dx.doi.org/10.3390/en13133392.
  8. Chen et al., Numerical Simulation of Bed Combustion in Biomass-Briquette Boiler, J. Energy Eng., 146 (2020)1–11. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000653
  9. Boldrin et al., Optimised biogas production from the co-digestion of sugar beet with pig slurry: Integrating energy, GHG and economic accounting, Energy, 112 (2016) 606–617. http://dx.doi.org/10.1016/j.energy.2016.06.068
  10. Singh, A. Guldhe, I. Rawat, and F. Bux, Towards a sustainable approach for development of biodiesel from plant and microalgae, Renew. Sustain. Energy Rev., 29 (2014)216–245. http://dx.doi.org/10.1016/j.rser.2013.08.067
  11. Chyuan, W. Chen, A. Farooq, Y. Yang, and K. Teong, Catalytic thermochemical conversion of biomass for biofuel production : A comprehensive review, Renew. Sustain. Energy Rev., 113 (2019) 109266. http://dx.doi.org/10.1016/j.rser.2019.109266
  12. A. Gómez, J. Porteiro, D. Patiño, and J. L. Míguez, CFD modelling of thermal conversion and packed bed compaction in biomass combustion, Fuel, 117 (2014) 716–732. http://dx.doi.org/10.1016/j.fuel.2013.08.078
  13. Chen, Y. Ai, T. Zhang, Y. Rao, H. Yue, and J. Zheng, Numerical Simulation of Biomass Pellet Combustion Process, Int. J. Heat Technol., 37 (2019) 1107–1116.
  14. O. Alabi, O. A. Adeaga, and S. A. Akintola, Numerical Modeling and Investigation of Flow of Incompressible Non-Newtonian Fluids through Uniform Slightly Deformable Channel, 2023 Int. Conf. Sci. Eng. Bus. Sustain. Dev. Goals, 1 (2020) 1–6. http://dx.doi.org/10.1109/SEB-SDG57117.2023.10124471
  15. H. Rahdar et al., A Review of Numerical Modeling and Experimental Analysis of Combustion in Moving Grate Biomass Combustors, Energy Fuels, 33 (2019) 9367–9402. http://dx.doi.org/10.1021/acs.energyfuels.9b02073
  16. Karim and J. Naser, CFD modelling of combustion and associated emission of wet woody biomass in a 4 MW moving grate boiler, Fuel, 222 (2018) 656–674. http://dx.doi.org/10.1016/j.fuel.2018.02.195
  17. Mehrabian et al., A CFD model for thermal conversion of thermally thick biomass particles, Fuel Process. Technol., 95 (2020) 96–108. http://dx.doi.org/10.1016/j.fuproc.2011.11.021
  18. Pradhan, A. Arora, and S. M. Mahajani, Pilot scale evaluation of fuel pellets production from garden waste biomass, Energy Sustain. Dev., 43 (2018) 1–14. http://dx.doi.org/10.1016/j.esd.2017.11.005
  19. Porteiro, J. Collazo, D. Patin, E. Granada, and J. C. Moran, Numerical Modeling of a Biomass Pellet Domestic Boiler, Energy Fuels, 23 (2009) 2043–2051.https://doi.org/10.1021/ef8008458
  20. N. Madanayake, S. Gan, C. Eastwick, and H. K. Ng, Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques, Fuel Process. Technol., 159 (2017) 287–305. http://dx.doi.org/10.1016/j.fuproc.2017.01.029
  21. Granada and J. C. Moran, Mathematical modelling of the combustion of a single wood particle, Fuel Process. Technol., 87 (2006)169–175. http://dx.doi.org/ 10.1016/j.fuproc.2005.08.012
  22. You, X. A. Walter, J. Greenman, C. Melhuish, and I. Ieropoulos, Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors, Sens. Bio-Sensing Res., 6 (2015) 43–50. http://dx.doi.org/10.1016/j.sbsr.2015.11.007
  23. Yao, C. Ramu, A. Procher, J. Littlejohns, J. M. Hill, and J. W. Butler, Potential for Thermo-Chemical Conversion of Solid Waste in Canada to Fuel , Heat , and Electricity, Waste, 1 ( 2023) 689–710. https://doi.org/10.3390/waste1030041
  24. Carter et al., Development of renewable, densified biomass for household energy in China, Energy Sustain. Dev., 46 (2018) 42–52. http://dx.doi.org/10.1016/j.esd.2018.06.004
  25. Elkelawy, H. Alm-Eldin Bastawissi, E. A. El Shenawy, M. Taha, H. Panchal, and K. K. Sadasivuni, Study of performance, combustion, and emissions parameters of DI-diesel engine fueled with algae biodiesel/diesel/n-pentane blends, Energy Convers. Manage.: X 10 (2021) 100058. http://dx.doi.org/10.1016/j.ecmx.2020.100058
  26. Weldekidan, V. Strezov, J. He, R. Kumar, S. Asumadu-Sarkodie, I. N. Y. Doyi, S. Jahan, T. Kan and Graham, Town Energy conversion efficiency of pyrolysis of chicken litter and rice husk biomass, Energy Fuels, 33 (2019) 6509–6514. https://doi.org/10.1021/acs.energyfuels.9b01264
  27. A. Sotannde, A. O. Oluyege, and G. B. Abah, Physical and combustion properties of charcoal briquettes from neem wood residues, Int. Agrophys.,  24 (2010) 189–194.