Effect of Blades Vibration on the Dynamic Response of Turbo-Compressor System

Abstract

The research studies the effect of the blade vibration on the dynamic response of turbo-compressor rotor system. The design angles for the blades, gas entrance and exits and the missing of a fraction of blade mass have been studied with the existence of the forced vibration. The critical speeds and the eigen modes have been computed taking into account the effect of the cited factors.

Shear effect, gyroscopic effect, bearing damping and the unbalance forces are catered for the analysis of the system has been achieved using the transfer matrix method. The transfer matrices are developed to consider the complex system pattern which is composed of many branches meeting in point located on the system rotor, which represents a disk stage.

The basic principles for designing the gas turbine have been adopted in calculating the subjecting forces of the gas along the blade surface using the triangle velocities diagram for the gas inlet and exist for each single stage.

The results show clearly when the system looses a part or fraction of any blade, a sudden disturbance is noticed . An increase in the critical speed and the amplitudes of vibration are revealed . An effect of the gas and blade angles change on the critical speeds values and orders are noticed. The effect is only confined on the amplitude of vibration.
الإتجاهات

تستخدم الأعدة الدورانية في المكائن الصناعية مثل التوربينات البخارية والعالية (Turbogenerator) والمولدات التوربينية (Power Transmission) ومحركات الاحتراق الداخلي، والضوضاء (Noise and Vibration) والمولدات الستاردة وشق الطبقة (Cutting Tool Tracking) المزودة لتقى الطبقة تؤدي إملاة هذا القطاع.

تستفيد من خلال الحصول على طرق وتقنيات من خلال البحوث شبه التجريبية (Semi-Empirical) في تقنيات التدريج والتحليق. هذه البحوث قد تتطابق مع مقال خاص، حيث أن التزام الدوران، فهذا التزام الدوران في الأجهزة المدفوعة/drive (for example, a pump) جزء من التزام الدوران في الأجهزة المدفوعة أو في الأجهزة المدفوعة من خلال الاستغلال في دراسة التكلفة (Cost Effectiveness) وتقنيات النماذج (Modeling Techniques).

وتعين أشخاص الأطراف للمنطقة بواسطة استخدام قيم إنقاص أن تصل عند حصول القرن بالاستخدام على عملية توريد الترددات المنخفضة ولهذا الترددات تم الحصول عليها من مصادر مثبتة من (Blade Cantilever).

وفي توصيف الراحة السبي الاصطناعي، كما أن هناك بعض الإحصائيات الفنية عند revelation محدودة من الترددات، حيث ملاحظ أن عند الترددات معينة أقل من الترددات التناظرية للطاقة فإن زيادة الطور لكل قبل سوف تجعل مبادرة (Forcing Function) زاوية الدائرة المغبرة.

بمساعدة عقد الترددات أعلى من المواقع التناظرية، فإن زيادة الطور لكل قبل تكون مساهمة كبيرة (180) درجة ما من زيادة الزاوية المغبرة. أما إذا كانت الزيادة من ضمن الترددات التناظرية للطاقة فإن نسبة زيادة الطور بالأصل مع زيادة الطور للدائرة المغبرة، وتتم بواسطة الدراسة تحليل الاتجاهات المتصلة للعوامل الدوران حيث قام الباحثون [3].

(1) SKG (1982) لدراسة تأثيرات الدوران المكاني والزائدة لجزء الدوران، وزيادة دراسة السطح المتصل لعرض أمراض زجاج مع زيادة مدة القص.

(5) Saleh (1979) لدراسة الاتجاهات المدى لعرض أمراض الزجاج مع زيادة مدة القص.

بالمضافة إلى التأثير الناتج من الأمثلة الديناميكية الخارجية وقوى عدم الموئل والقوى والجذور على مجموعات المواد والدور.

1. قوة القوى التي تؤثر على الكر

 حزمة المواد الدوار عند السمك

 الحزمة

 الصبغي:

 لاتhkia:

 حيث أن:

 و

 韓

 حيث أن:

 8. قوة رأس المعادلة عند محطة المواد الدوار:

 и

 معادلة الحزمة:

 الصبغي:

 تشمل، للكم المعلب بالجود

 معادلة المضاعفة والتخصيص، قوى

 المستوى على الكراسي التحميل:

 أمير الرياضي ومعاوضة لحزمات معقدة لأدوات عمودية (Rear-Bearing-condition System) أو (Pedestal-Foundation System) ومعدل استعمال حزمات مساهمة (Prohl-Miklest System) مساهمة في حزمات بوضوحية لحركة المواد الدوار، وهذا المحاسن محركية على أطوال مدة وقوة، والقوة البسيطة في بناء الحزمات (Rienger & Zhou) وتفسير العالم.

 اجراء تحقيق واسع النطاق ذات المواصفات المتعددة (Three-Level Multi-Span Rotor System) أو الاسترداد من خلال هذه الجلسة، ثم أيضاً ضبط عند الاسترداد (Unstable Condition) اللغة، ومن المحصول كلياً بواسطة الاتجاه المنظم (Eigenvalues) لتحديد الدور، والوقت المحصول عليها بواسطة شرط العمودي للأساسية ذات محددات مناسبة للجريزات الكثيفة والجودة، والقوة البسيطة في بناء الحزمات (Rienger & Zhou).

 في حالة المواد الدوار ذو الجودة انتقائية مع أزمة معزول محددة مربعة. أما الحالة الثالثة فقد قارنت استراتجية واحدة تساهم بقدرة ذات سنة محمل باستخدام نوعين مختلفين من المحمل.

 ومعالجات الدورات التي تم الحصول على تأثير كبير بين تأثير المستحيل من هذه الجملة، وتاكر أخرى أسرع حصل عليها هذا (Threshold Speed) الباحث للكم عملية شرطية وسرعات الدور، كما تم الحصول على أن شروط العمودية، ولإمكان الحصول على دقة متاحة للنماذج باستخدام القيم.

 (Complex Eigenvalues)

 أما البتلاع الحالي فقد تضمن دراسة التأثير اليومي للأعمال المنجرة باختبارها نظرية سارية، وتتأثر كن من الأراضي المفتوحة جراء خصائص جزء من إحدى الأعمال، وكلاً تأثير الزوايا بالنسبة للأعمال على الاستدامة البنائية للمشروع وذلك باستخدام شروط العمودية المفتوحة التي تتأثر بتغيير الاتجاه.

 تأثيرات وقى للجود، الحزم الخفيفية، العديد من مساحة المقطع على طول المواد الدوار، وحالة المفتوحة والتحميم
للمعدلات الأمنية على الأسماك والطيور، المجلد 24، عدد 1، سنة 2005

1. أي عدد من مصفوفات القنطة والمجال.
2. يمكن تطبيقه على النظام المحم،
3. جميع الأنسام المتحركة متصلة.
4. سرعة الحفر المحورية (\(C_y \)) ثابتة على
5. شكل الدوران للمنظومة (\(\Omega \)).
6. التحليل النظري
7. تم أثناء التموال للمنظومة الغازية بأبعادها
8. الدالة في هذا البحث، والتي تتم على أساس
9. تطبيق النظام على كل منظمة تتمتلك خواص عزم
10. الدوران الذكي للأنظمة وذات مثبط مقطع
11. تابعد وبطرق تلك الأدوات في فرق صفية أفراح.
12. (Timoshenko) وفوك (Timoshenko) حيث تتم عن مقاطع النظام من خلال مصفوفة
13. (Field Matrix) والتمثيل (State Matrix) التي لها علاقة بمتجهات الحالة
14. عند دبابة أو مقطع النظام، وكان
15. محصلة بالنظام مثل تلك مصفوفة نقطة (مصفوفة
16. عناصر المتجهات) والتي لها علاقة بمتجهات
17. الملاحظة عند نيين وبيئات أي متجه (i) وكما
18. يوضح الشكل (3).
19. (Diagram)
20. لتمثيل المتجهات المستخدمة في
21. التحليل لجذور منظومة غازية
22. (State Vector)
23. مستويات الحالة لكل نقطة (i) للمنظمة
24. هو مستويات تكون من أزارات نقطة (i) وقوّة
25. الدلالية عند تلك النقطة وشكل متجه
26. يوجد تشابه إعداداً على مبان المحيطة ويرمز
27. له -1
28. ويدرس مستويات الحالة لحسابات ثلاثية
29. (Point Matrix)
ويشكل عام تعريف مصفوفة التحويل

\[\mathbf{R} = \begin{bmatrix} a & b & r \\ c & d & t \end{bmatrix} \]

التي تحول أحداثيات النقطة من أي وقوع في إحداثيات النظام الرئيسي \(\mathbf{R}_r \) إلى إحداثيات النظام الرئيسي، وعندما تكون \(\mathbf{R} = (\alpha + \omega t) \) و \(\gamma = 0, \beta = 90 \)

\[\mathbf{R} = \begin{bmatrix} \cos \theta \cos \phi & \sin \theta \cos \phi & -\sin \phi \\ \cos \theta \sin \phi & \sin \theta \sin \phi & \cos \phi \\ \sin \theta & -\cos \theta & 0 \end{bmatrix} \]

مصفوفة التحويل

\[\mathbf{R} = \begin{bmatrix} 0 & -\sin \alpha & \cos \alpha \\ 0 & \cos \alpha & \sin \alpha \\ 1 & 0 & 0 \end{bmatrix} \]

يمكن الحصول على مصفوفة \(\mathbf{R} \) من خلال:

\[\mathbf{R} = \begin{bmatrix} 0 & -\sin \alpha & \cos \alpha \\ 0 & \cos \alpha & \sin \alpha \\ 1 & 0 & 0 \end{bmatrix} \]

نحصل على:

\[\mathbf{R} = \begin{bmatrix} 0 & -\sin \alpha & \cos \alpha \\ 0 & \cos \alpha & \sin \alpha \\ 1 & 0 & 0 \end{bmatrix} \]

\[\mathbf{R} = \begin{bmatrix} 0 & -\sin \alpha & \cos \alpha \\ 0 & \cos \alpha & \sin \alpha \\ 1 & 0 & 0 \end{bmatrix} \]

النحو الثاني:

\[\mathbf{Q} = \begin{bmatrix} U_{xy} & U_{yx} & U_{yy} & U_{yy} & U_{yy} & U_{yy} \end{bmatrix} \]

\[\mathbf{R} = \begin{bmatrix} a & b & r \\ c & d & t \end{bmatrix} \]

أي قيم قوى القص والزمر تساوي صفرًا عند النقطة الرباعية.

\[\mathbf{R} = \begin{bmatrix} 0 & -\sin \alpha & \cos \alpha \\ 0 & \cos \alpha & \sin \alpha \\ 1 & 0 & 0 \end{bmatrix} \]

وعند توليده الشروط المحيطة

\[\mathbf{R} = \begin{bmatrix} 0 & -\sin \alpha & \cos \alpha \\ 0 & \cos \alpha & \sin \alpha \\ 1 & 0 & 0 \end{bmatrix} \]

\[\mathbf{R} = \begin{bmatrix} 0 & -\sin \alpha & \cos \alpha \\ 0 & \cos \alpha & \sin \alpha \\ 1 & 0 & 0 \end{bmatrix} \]

والمصروفات المصفوفة المتجددة للنظام

\[\mathbf{R} = \begin{bmatrix} 0 & -\sin \alpha & \cos \alpha \\ 0 & \cos \alpha & \sin \alpha \\ 1 & 0 & 0 \end{bmatrix} \]

ويتم قراءة عزم القصور التالي بين محور النقطة للجسم على إحداثيات النظام الرئيسي والميزة في النحو:

\[\mathbf{R} = \begin{bmatrix} 0 & -\sin \alpha & \cos \alpha \\ 0 & \cos \alpha & \sin \alpha \\ 1 & 0 & 0 \end{bmatrix} \]

شكلاً (6) نموذج لإحداثيات النظام (النصل مع العمود الدوار)
\[
\begin{align*}
\{T\} &= \{A\}^{-1}\{g\} & \{Z\}^L_{i+1} &= \{F\}_{ij}^L \{Z\}^R_{ij+1} \\
\end{align*}
\]

\textbf{(Filed Matrix)}

\textbf{Mosaic of the Network}

In the above diagram, \(B\) is the admittance matrix of the network.

\textbf{Elimination of Intermediate State Vector}

As mentioned in the above diagram, \(B\) is the admittance matrix of the network.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Fraction of Blade Losses & Mass Losses (kg) & Length (\text{m}) \\
\hline
14\% & 0.377344 & 0.790989 \\
47\% & 0.332762 & 0.763443 \\
70\% & 1.389220 & 0.733104 \\
100\% & 0.198460 & 0.705589 \\
First & 0.969290 & 0.675063 \\
Third & & \\
\hline
\end{tabular}
\end{table}

where \(B\) is the admittance matrix of the network.

\begin{align*}
\{Z\}^R_{i+1} &= \{B\}_{ij}^R \{Z\}^L_{ij+1} \\
\{Z\}^L_{n+1} &= \{B\}_{nj}^L \{Z\}^R_{nj+1} \\
\end{align*}

After obtaining the admittance matrix \(B\), the admittance matrix of the network, the admittance matrix of the network, the admittance matrix of the network.
تزيد عدد تغيير الزوايا التصميمية لدخول وخروج الغاز والпуск والشكل (14) بين توزيع الزوايا التصميمية للنماذج الامتصاذية (15) على مبادع الازمات الامتصاذية (16) ونماذج الازمات الامتصاذية (17) لتغيير الزوايا التصميمية. حيث تؤثر زيادة السرعة على توزيع عدد تغيير الزوايا التصميمية لدخول وخروج الغاز والпуск والشكل (18). يوضح ذلك أن بزيادة عدد تغيير الزوايا التصميمية، تزداد الدخول وخروج الغاز ونماذج الازمات الامتصاذية، ويظهر أن بزيادة عدد تغيير الزوايا التصميمية لدخول وخروج الغاز والпуск والشكل (19). يوضح ذلك أن بزيادة عدد تغيير الزوايا التصميمية لدخول وخروج الغاز والпуск والشكل (20).

ándoseي (2) بين النماذج المتقدمة واقصى سعة اهتزاز عند السرعة المرتفعة:

جدول (3) بين تغيير الزوايا التصميمية وأقصى سعة اهتزاز عند السرعة المرتفعة:

<table>
<thead>
<tr>
<th>الجدول</th>
<th>عدد تغيير الزوايا التصميمية</th>
<th>أقصى سعة اهتزاز عند السرعة المرتفعة</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>0.126</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>0.132</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>0.138</td>
</tr>
</tbody>
</table>

الأسباب:

1. زيادة سعة ارتفاع السرعة
2. تغيير الزوايا التصميمية
3. زيادة عدد تغيير الزوايا التصميمية
4. زيادة عدد تغيير الزوايا التصميمية لدخول وخروج الغاز والпуск والشكل (14)

المصادر:

1. H.A.Saleh,” Investigation into the forced Vibration of Hollow Turbine Blade “.

السياح في ذلك إلى زيادة عدد تغيير الزوايا التصميمية لدخول وخروج الغاز والпуск والشكل (14) بين توزيع عدد تغيير الزوايا التصميمية لدخول وخروج الغاز والпуск والشكل (15). يوضح ذلك أن بزيادة عدد تغيير الزوايا التصميمية لدخول وخروج الغاز والпуск والشكل (16) بين توزيع عدد تغيير الزوايا التصميمية لدخول وخروج الغاز والпуск والشكل (17) تزيد سعة ارتفاع السرعة.

النماذج (11) بين توزيع عدد تغيير الزوايا التصميمية لدخول وخروج الغاز والпуск والشكل (12) إلى النماذج المتقدمة. ويوضح ذلك أن بزيادة عدد تغيير الزوايا التصميمية لدخول وخروج الغاز والпуск والشكل (13) تزيد سعة ارتفاع السرعة.

جدول (3) بين تغيير الزوايا التصميمية وأقصى سعة اهتزاز عند السرعة المرتفعة:

<table>
<thead>
<tr>
<th>الجدول</th>
<th>عدد تغيير الزوايا التصميمية</th>
<th>أقصى سعة اهتزاز عند السرعة المرتفعة</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>0.126</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>0.132</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>0.138</td>
</tr>
</tbody>
</table>

المصادر:

1. H.A.Saleh,” Investigation into the forced Vibration of Hollow Turbine Blade “.

| قائمة الرموز |
|---|---|
| المتغير | الوحدة |
| [F] | Nm |
| [P] | Pa |
| m | kg |
| m₁ | kg |
| m_g | kg/s |
| m_h | N |
| [Z] | |
| r_m | m |
| r_E | m |
| N | N |
| F₁ | N |
| F_s | N |
| degree | |
| α_{in} | degree |
| α_{out} | degree |
| m_n | m |
| m_n | m |

<table>
<thead>
<tr>
<th>الوحدة</th>
<th>المعنى</th>
<th>الرمز</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>المغزولة في الزوايا</td>
<td>Z, Y, X</td>
</tr>
<tr>
<td>degree</td>
<td>زاوية الميل حول</td>
<td>Z, Y, X</td>
</tr>
<tr>
<td>N</td>
<td>مركز التقوس في الأتجاهات</td>
<td>V_x, V_y, V_z</td>
</tr>
<tr>
<td>m/s</td>
<td>سرعة��لاية للغاز على التركيب</td>
<td>C_x, C_y</td>
</tr>
<tr>
<td>m/s</td>
<td>سرعة��لاية للغاز على التركيب</td>
<td>V_x, V_y</td>
</tr>
<tr>
<td>kg.m^2</td>
<td>الكتلة بالنسبة للغاز على التركيب</td>
<td>I_x, I_y, I_z</td>
</tr>
<tr>
<td>N</td>
<td>العزم الخارجي على الأتجاهات</td>
<td>V_{ax}, V_{ay}, V_{az}</td>
</tr>
<tr>
<td>N.m</td>
<td>السرعة الدورانية على التركيب</td>
<td>\omega_x, \omega_y, \omega_z</td>
</tr>
<tr>
<td>r.p.m</td>
<td>السرعة الدورانية على التركيب</td>
<td>\Omega_x, \Omega_y, \Omega_z</td>
</tr>
<tr>
<td>kg.m</td>
<td>العزم المستمر على الأتجاهات</td>
<td>U_{ax}, U_{ay}, U_{az}</td>
</tr>
<tr>
<td>N.m</td>
<td>العزم المستمر على الأتجاهات</td>
<td>\tau_x, \tau_y, \tau_z</td>
</tr>
</tbody>
</table>

هيئة الهندسة والتكنولوجيا، الجمال، المجلد 24، العدد 1، 2002.
<table>
<thead>
<tr>
<th>الوحدة</th>
<th>الرمز</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/s/m</td>
<td>D_x, D_y</td>
</tr>
<tr>
<td>N/s/m</td>
<td>D_{xx}, D_{yy}</td>
</tr>
<tr>
<td>N/m</td>
<td>K_{xx}, K_{yy}</td>
</tr>
<tr>
<td>N/m</td>
<td>K_{xy}, K_{yx}</td>
</tr>
<tr>
<td>كجم</td>
<td>m_{p}, m_{ps}</td>
</tr>
</tbody>
</table>

الرموز النطوية:
- L: يشير إلى أن المدار أو المتجه يقع على سار المحطة
- R: يشير إلى أن المدار أو المتجه يقع على بيج المحطة

الرموز السفلية:
- i: يشير إلى عدد المحطات للنظام
- x, y, z: تشير إلى الاتجاهات في الاتجاهات X, Y, Z
- a: تشير إلى المتجهات الخارجية

الملاحظة:
- عناصر المصفوفة كاملاً: D
- عناصر المصفوفة مكسورة: D_{xy}, D_{yx}
- عناصر المصفوفة كاملاً: K
- عناصر المصفوفة مكسورة: K_{xy}, K_{yx}
- عناصر المصفوفة كاملاً: m
- عناصر المصفوفة مكسورة: m_{p}, m_{ps}
تأثير احتجازات الأنفلونزا على الأنسجة البيضاء لمجموعة نوريبية عامة

(العديد من النصائح)

شكل (11) توزيع عزم الانحناء على طول النصل الواحد وسرعة دورية مختلفة وفقدان نصل واحد ونصلين
تأثير انحرافات الأصل على الأتمية الديناميكية للطودات التوربينية

شكل (12) توزيع السمات الاترنارية على طول العمود الدوار عند السرع الحرة ولثلاث حالات مرئية من نسبة فذان نصل

12790 r.p.m

5056 r.p.m

8090 r.p.m
شَكْل (9) تأثير أقصى نسب من كتلة الصل على الاستجابة الديناميكية للنظام

شَكْل (13) تأثير تعري الزوايا التصميمية على الاستجابة الديناميكية للنظام
(a) زوايا دخول وخروج المائع (\(\alpha_2=58.3830^0, \alpha_2=10^0\)) على التوالي وزوايا دخول وخروج النصف (\(\beta_5=54.95^0, \beta_5=20.4830^0\)) على التوالي

(ب) زوايا دخول وخروج المائع (\(\alpha_2=72.050^0, \alpha_2=30.090^0\)) على التوالي وزوايا دخول وخروج النصف (\(\beta_5=66.540^0, \beta_5=43.400^0\)) على التوالي

شكل (14) توزيع السمات الاحترازية على طول الходим الدوار لمدى من السرع الدورانية وحالات من الزوايا التشذبية
تأثير امتصازات الأصال على الاستجابات الديناميكية لمنطقة توربينية

(1) زوايا دخول وخروج المائع ($\alpha_3=58.383^0$, $\alpha_2=10^0$, $\alpha_1=58.383^0$, $\alpha_0=54.95^0$, $\beta_3=20.483^0$, $\beta_2=43.40$) على التردد

(2) زوايا دخول وخروج المائع ($\alpha_3=72.05^0$, $\alpha_2=30.09^0$, $\alpha_1=30.09^0$, $\alpha_0=66.54^0$, $\beta_3=43.40$) على التردد

شكل (15) توزيع عزم الانحناء على طول النصل لمدى من السرع الدورية وحالتين من الزوايا التصميمية.
تأثير اهتزازات الأصل على الانتاجية الديناميكية لمناطق توربينية - مساحة

شأن (16) توزيع السمات الاهتزازية على طول العمود الدوار عند السرع الحرجة وحالتين من الزوايا التصميمية

12780 r.p.m

5050 r.p.m

7820 r.p.m

91