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1 Itrtrodlction:
Subjected to shear, Ioose sand

conhacts and denso sfuld

dilates. Whether sand is in a

loose or deme state dePends not
only orr the density of the sand

but also on the confining
pressure applied. Furthermore-

ior a sand that initialty is i,
either a loose or a de[se state,

there is an ultimate state of
shear failurc at which the
volumetric strain mte is zero.

This ultimate state is the well-
known steady or c tical state.

Li and Dafalias (2000) Pointed
out that the classical shoss

dilatancy theory (Rowe, 1962)

in its exact form i8lored the
exha energy loss due to the

static and kinematical
constaints a1 Pafiicle contacts

and led to a unique relahonshiP

between the st ess ratio and

dilatancy. lt has been shown (Li
and Dafalias, 2000) that, in
order to model sand behavior
over a fulI range of density
states, additional dependence of
dilatancy on the material
irtefna! state is teeded, and the
material state must be described

in refetence to the

cr;tiral/steady state line in the
e-p-4 space.

In addition, due mainly to
the process of deposition under
earth gravity, th€ b€havior of in
situ sand is inherently
anisotropic, msar ng the stress_

strain-strength relations for the

same sand may Yary.as th€
stress tensoa rotates relative to
t}le orientation of the soil
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fabric. Exp€rimenlal investiga-
tions in th6 past 15 yea$ on

flow liquefaction of earth
structures have revealed that
the influence of inherent fabric
anisotropy on the residual
shength of a granular soil is so

drastic that the inherent
anisotropy can no longer be

ignored ir sand modeling.
However, dtle primarily to
insufiicient understanding of
the physical mechanisms and io
the complexity of the
underlying mathematical

theories, the issue is in general

not rigorously ueated i11 current
modeling practice. In fact, for
simplicity, quite a number of
existing sand models either
totally ignore the infl0encc of
inherent fabric anisohopy or
simply introduce biased
pammeters to differont
orientations without satisrying
basic objectivity rcquirements.
These models are somewhat
far-fetcbed when the influence
of fabric anisotropy is
sigoificant and the loading
conditions are complex, (Li,
2002).

2, Importa[ee of Anisotro-
pv in Satrd:

Undmined cyclic triarial iest
has been widely performed for
evaluating liquefaction
pheaomena in sandy deposit. In
cyclic triaxial test, the 45o

inclined plane in the specimen
represents the shear Plane
(q?ically the horizontal plane)
in the gound, and the cyolic
shear stress (i.e. fie half of the
deviator stess) on the 45o

inclircd pla.e simulates the
cyclic ioading during
earthquake. 'fhis assumption is

reasonable if the soil is

isotropie in mechanical
behavior. However, many
researche6 recenlly repo ed

strong anisotopic nature of
sandy materials in undEined
shear (Nakata ot al., '1998 and
Yoshimine et al-, 1998). Figwe
(l) shows the resuh of
undrained triaxial compression
and extension tests in
monotonic loading (test data

from Yoshimine et al., 1998).
The stress path indicates that
the triaxial extension loading
exhibited much more
compressive behavior and

resulted in much smallea
strength compared with the test
result from triaxial compression
loading. Such p.ominent
anisotropic nature may also
affect the undBined behavior of
the material during cyclic
triaxial loading test, especially
when initial shear stess is

applied to the triaxial specimefl
before undrained cyclic
loading.
In the morlotoric loading tests,

it was found that the undrained
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behavior was seriously affected

by the anisotopic naturc of the

saDd deposit. Triaxixl extension

exhibited much softer behavior
comoared with trinial
comnression. The effect of
initi;l shear on ihe undmined

moaotonic loading was minor
than that of the shear direction,

though slight ilc.ease of shear

resistance was observed when

initial sheal stress level was

higher, (Yoslimine, 2002).

3. Modelins of Inherent
Anisotropv:
Vaid and Ch€m (1985) were

aqrong the fi.st to sho)v,

through undrained triaxial tests,

that the crilical state strcngth of
sand measuled in extension was

much Iower thsn that in tria,xial

compression under otherwise

identical conditions. and that

the significant difference was

direcdy associated with the soil
dilatarcy. lnvestigations at the

microscopic level have shown

that even after a very la€e
macroscopic shear deformation,
ihe preferred orientation of the

particles in a granular material

has only undergone a lunlted
chanee- In other \aords, the

inher-ent {abric anisotloPY of
the sand may well endure aftcr

the onset of the critical state.

Nakata et al. (1998) Pefolmed
a se es of hollow cYlinder

undrained torsional tests that

allowed to control dle

directions of Principal stresses

in reference to the dircction of
soil deposition, as measu€d bY

the atrgle d. shown in Figure
(2). and the mtios between the

principal stresses ris measured

bv b : (6)' or)/(or - o3). The
;st rcsults confirmed that the

sand resPonses, and in
particular the sand dilatancy
and the stress Paths towards

critical state failure, were

indeed significantly affected bY

the directions of the PrinciPal
stresses aelative to the

orientation of soil specimer}.

This means that the inherent

fabric anisotroPy of a granular

soil could have a sig$ifican1

impact on the dilatancY and the
.'irical state failure ofthe soil.

In this Paper, the

ALTERNAT model will be

applied to model the effect of
iritial stress anisotropy on the

cyclic behaviour of sand.

4. Tbe AI,TERNAT Mod€l:
The ALTERNAT model

described in this PaPer forms

the major comPonent of a

double hardening model for the
mechanical behaviour of sand

unde. alt€mating loadiDg

The oodel was developed

by MolenkamP (1987) at Delft
Geotechnics. ln Figure (3), the
yield surfaces of both Plastic
models, namely the
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"comDressile" model and the

"aeviatoric" model are shown

in th€ stress space of the

isotropic stess, s, and the

d€viatoric stess, t.
The kinematic rule relates

the change of the anisokopy lo

the change of the stress ll is

hased on the assumption that

the boundary between the

elastic and elasto-Plastic

subspaces does not change

during continued loading after a

stress rsveIsal. The volufle
change as described bY the

model is based on the dilataocy

theorv (Rowe, lq62 and l9?1)

in *hict the effect of load

historv does not occur'
Foi morotonic and

altemating loading. th!
hardening modulus is assumed

Lo depend on h\o load hislory
effects. One effectconcems the

stess-induced anisotoPy_ It is
desc bed bY the distribution of
the kinematic hardening

moalulus in stless sPace, which

depends on the distribution of
the kinematic ]ield sudaces in

stress space. The other effect

involves the effect of the

densification duc 10 altemaiing
loading. It is described bY the

so-oalled load history function,

K. Through this function, the

hardening modulus becomes

also dependent on the initial
density and the instantaneous

d€nsity. { Molenkamp. I9B7)

4.1 Defioitioo of Kinematic
Plsstic Modcl and Kioematic
Rule:
ffi the elastic and Plastic

strains and the stress I together

with their rates, tho constitutive

models in the curre[t state can

be defineal ofl the cartesian co-

.otational base vectors, li
Th€ elastic model will bo of

the fotm, (Molenkamp, 1 987):

s!. - function(ls )

.... (1)

Tte irreversible Eulerian strain

mtes or ircremellts, i(r, arc

described bY a Plastic kinematic

harde[ing model of the form,

(1987):

dG oF t.
, s- 'atd Lii

11,i =

in which: F(lr,.1)=i
surface.
C (T,r ,2,)=0:

potential.
H (r,r 1,, N,',,

hardening.

T, = Zti-Ett. Pseudo

slrcss .... (3)

\l : plastic defomation'
: tensor o[ arrisotroP\

#pr."enting thc cfftcr oi lhe

anisotropic fabric

t
Q\
: yield

plastic

,:
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I : quantity describing the
size of the kinematic yield
surface; the so- called
hardening parameter.

h: id€m for plastic potential.
Figue (4) illustrates the above
conditions.

ln the description of this
motion, ihe following stresses
are relevant:-
t : stess at last stress

rcvercal,

L : stress at the beginning of
a new shess increment,

I* : stress at the end of a
new stress increment,
Besides, the following tensoN
of anisotropy are relevant.

E : tensor of anisotropy ofthe
yield sudace which ]vas just
acdvar€d hefore the last stress

€, : teflsor of anisotropy of
the yield surface which was
just activated by the stress at
the beginning of the new stress
increment, and

€id : tensor ol anisotropy of
f ield surl'ace at the
thg ne\! stress

increment.
Finally, the following

hardening parameters play a

X : hardening parameter of ihe
yield surface iust before the
stess reversal, and

?G" Le*: hardening Paramete6
of the yield surfbce at the start

and end of the incremenl,
respectively.
The problem is how to frnd E,*
and 6"* while : ** is known.
Tho flrst condition of the
motion of the new kinemalic
yield surface describes that
both the now yield surface
(with ( .J and the yield
surface at stress reveBal (with

C) have to be tangent to each
other at fhe shess point of stress

reversal, Z, (Lade, 1979), thus:
aF _ dF _-( 

=- 
lL4tl= .f 12.6-.2*l

... (4)
for some constant C. The
dedvation of th,3 above
equation is rcported by Fattah
(r999).

4,2 The Yield Surface For
The Deviatoric Model:
For the continuum model of a
unifom stack of rigid discs, a

kind ofkinematic yisld surlaces
was found, in which the
relevart measure of sfuess

appeared to be a shear stress
ievel (Molenkamp, 1980). For
the present kinematic model, a
similar measure of relevant
shess is introduced, namely the
shear stress Ievel which is
defined by:

end of
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I, -

lt !,
33

io which: t'j = deviatoric stess.
Ir = ol 6 ij : first stress

invariant.
This relevant measure of stress

is dimensionless.
For the tensor of anisofopy,
also a dimensionless deviatoric
tensor,6, is introduced, thus €,ij
( 1 

: 0. The rclevant measure

of the pseudo shear stress level
becomes:

X.. t..
---.L = ,.L- t ..... (6r
LI,tl

in which: Xij : dev;atoric
pseudo stress tensor.

Substituting Equation (6) in
(5) leads to the ps€udo stress

tensor, T;, being defured as

follows:
I T,ra = \+6,i ; = ",- 1, 

3

.... (7)
The yield surface for the
deviatoric model is ofthe fonn:

F = ttg,,t,,t,,b = o

.... (8)
in which Ir, I, and 11 are three
invanants of the pseudo shess
Tr,.
The expression ahosen fo. the
yield surface Fd should reduce
to a generally accepted

expression for monotonic
loading when Eij = 0. T]re
expression as intoduced bY

Lade and Duncan (1975) is

used:

r" = !L-Zl- fdt A= 0rr -'
.... (e)

in which:

fo = lL -27. I,
measure of the sheaf stress

Ievel, co[stant at a kinematic
yield surface.

43 The Plastic Potcntial for
the Deviatoric Model:
In a plastic material model, l}e
plastic potential describes the
ratio of the Eulerian strain
rates. For simplicity, it is
assumed that the ralios of the
plastic Eulerian strain mtes can
be desc bed in the following
way:

, I dG') . ac,ti=1oq+^ l=^^
I ao, ) oo,,

.... (10)
in which:

a Gdd

^ €ii = 0 ... (rl)

..... (s)
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deviatodc tensor

dGd AG
namely:

F = 
=--21-fd 

= o

.... (13)
in which: I', . l'. are the first
and third invariatts of the
pseudo stoss T"i. The pseudo
stress T'1 has the same
isotropic component as the
pseudo stress Ti; = o;; - 11/3 as
used for the yield surface but a
smaller deviatoric part, namely:

and

(12)

d is the angle of nohcoaxiali0)
which is tbe angle bet\reen the
principal directions of shess
and the Eulerian strrin rates.

Like the yield surface, thc
deliatoric component of the
plastic potential Cdd is based on
the failure surface of Lade and
Duncan (r97s).

d oo 0 oo,

r; = o;-+€,t = !td,nnr"@u-!d,-te,l

r, = !a,*nr'1rt-+d,)
thus:

where

(t- RT)(6,, - (r)L+ Rro,
RT is a material

o1)

(1s)

I ia\ial compression, il was
lound thati

Thus to each pseudo stress, Tij
of the yield surface, another
pseudo sfess, T'ij is concemed
using the samc tensor of
anisotropy (ij lrl3, and the same
isotropic component but a
smaller deviatoric component
as shown in Figure (5).

4,4 Stress Dilatatrcv:
Molenkamp (1980) elaborated
the sfiess dilatancy theory for
triarial compression and
triaxial extension tests. For
loading towards failure in

-"lig- q-p+ qL
f

(t +zx1+ 1E11- g!
J

.... (16)

V

;

in which:

K = tas'1t11 + !!t'2
V : volumehic strain, and

1: deviato c strain
and Oo is the interpaficle
friction angle. It is assumed
that, (Molenkamp, 1980):
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t" = i- -@--0,) 4:-)' .taJd
...(17)

in which:

0r = interparticle tiction
angle at very low isotropic
stress s,

S., : interparticle friction
angle at very high isotropic
stress,

S", = pammeter desc bing the
rate by wich S. changes from O,
to 0"" with increasing isotropic
stress level (s,rya), (see Fig[re
6), ald

Pa = atmospheric pressurc.
For loading towards failure

in triaxial extension, it was
found that:

Ji6- l-6tzr1!
s

Q+ 11-"6,6- 4!
,'

... (18)
In order to distinguish between
loadiDg and unloading, the
following quantity is defined:

acd h
O o,

and unloading occurs if the
quadity is between 0 and -1.

During failure, the
daviatorio stress does not
change an,,rnore, while ihe
shear stuain kceps increasing-
At the ffitical state, the volume
change stops. This is illustrated
in Irigure (7).

4.5 Stress Induced Anisotropv
Described bY the Kinematie
Ilarde[inq:
Fo. simplicity, the functional
form of the kirematic
hardening Hr,i" is chosen as
follows:

H Kn, = H Kt,,t Ib z) Q0)
ifl which:

lr - invariants of the pseudo
stress Ti,

The kinematic hardening
Hkj" can be calculated from
experimental data as follows:

t
i

... (21)

... (19a)
The quantity of EquatioD

(l9a) calt vary between +l and
-1. Loading is defined by:

The cuIve ofthe shear shess
level (t/s)" in dmined triaxial
compression at an isotropic
pressure (s/Pa ) - 1 is related to
the deviatoric strain (see Figure
8) by, (Molenkamp, 1985):d cdd t..0. _ #

d oit .,,1t o,t
Y, Y,

<1

t;J. =
.... (19b)

,180
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... Q2)
in which:

n : quantity larger that l.
Yr, Y2 = two approximatioil-E t
of the shear stress level ve$us
plastic deviatoric shain curve
of drained triaxial compression
ats=Pa.
Details ofthe functions Yl ard
Y2 are given by Molenkamp
(1987) and lattah (1999).

4,6 EIIect of Densification
Described bY the Load
Eistorv Function:
'flre ioad history function
describes the effects of
densification due to cyclic
preloading. With inc.easiog
number of cycles and related
densification, the load history
function, K, will also ircrease.

It is assumed that this
component of the hardening
can be relaled to the
instantaneous density at tho last
stress reversal. The expression
for K should become infinite at
ma\rmum dcrsiiication,
because in such a case, neitier
plastic densificatjon nor plastic
shear strains will occur and
the hardening Hd ofthe present
plastic model will be infinite.

4.7 Kinematic Rule for Th€
Devi.toric Model:
The kinematic rule, as applied
in AITERNAT model, is based
on t}le assumption fiat the

kinematic yield surfaces remain
tangent to each other at the
sfess reversal points.

In order to illustrate the
structure of lhe kinematics of
the model- th€ motion of the
yield surfaces during altemating
loading is described for several
phases of loadiflg, unloading
and reloading. hitiauy, it is
assumed that the principal
directions of stress coincide
with the co-rolational base
vectors and that the material is
isohopic initially. If in the
initial state, the material is
isotropic, then the yield
surfaces in the pi-pJane will be
centercd on the isotropic axis
(see Figuc qa).

During initial loading from
some isotropic state as shown
in ligu.e (9b) to some shear
shess Ievel (point 2), all the
yield surfaces with lower
hardening parameter, f (I),
than point 2 are displaced and
they arc passing through point 2
while being tangenl to the
isotropic yield surface through
poirt 2.

During unloading liom poinl
2 towards for instance point 3
as shown in Figure (9c), the
total behaviour is ;nitially
elastic, because at low
hardening parameters t'(1), the
present deviatoric model is
completely rigid. All yield
surfaces with a lower hardening

481
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oammeter f 11 tbar the

i,ield surface Passing through

Lorh points ) and J are

displaced during this change

and they are Passing tlrough
point I lvhile being tangent- to

the yield surfaces Passtng

through both Points 2 and l'
During retoading fiom Point 3

to point 4 and funher. (see

Figure 9d). similar stages are

passed through like the case oi
unloading liom Point 2 to Polnt
'l thus the initial total elastrc

behaviour is followed bY an

incrcasing mte of Plastic
deformation further on.

lf during furrler loading the

lowest isotropic Yield surface

(through point 2) is Passed as

for instance during loading

from point 4 uP to Point 5 as

shown in Figures {9d and e).

then all the Yield surfaces with

lower hardening Parameter f
(I) than the isotropio Yield

surface through Point 5 are

displaced and are Passing
throueh point 5 while being

tansent to this isotropic Yield
suriace. ]t shoutd be noted that

the same situation would have

been obtained if Point 5 had

been reached dilectly bY

loading fiom the isotroPic state'

A parameter called "aoisot"
is iotroduced describing

whether the inBer rcgion of the

relevant Yield surface with

hardening Parameter IK and

tensor of anisotropY EK consists

of:
a) anisotropic Yield surfaces,

then anisot:1.
b) isotropic Yield surtuces'

ther alrisot : O. 1n this

exceDtional case, atl smaller

kinernatic Yield surfaces have

EK as t€nsor of anisotropy, tJIe

"ora"ot "tt"sa 
auY be inside the

yield surface dx.
Molerkamp

described different
loadhg conditions,
which are:

(1987)
possible

some of

l. Loading stafiirg a! a shess

situated on the outErmost

isotropic Yield surface'

2. Loading starting at a slr€ss

inside the outermost Yield
surface and leading to a

new stress situated on the

outermost isotropic Yield
surfac€.

3. Loading starting at a stress

inside the outermost Yield
surface and leading to a

new stess situated inside

the out6most Yield sulface'

4.8 Decision on The T\Be of
Behaviour:
The stress incrcmefi ddB due to

a strain inciement de, is given

by the elasticitY matril Dkhj ,

(Mo1en1..amp, 1987):

do", = Dnr7", (23)

The quantity that determLfl€s

whethir this incrernent leads

out ofthe current Yield surface,

482
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F = 0 is defued bv
(Molenkamp, 1987):

ar. = lF ao;, (24)
o o,

dFu > 0 indicates an incremenr
leading outside the curent
yield surface.
In case of elasto_olastic
behavioul the strain incremcnt
is given by:

AF
d"e - D;d.Z+lc a., d"i

...,.. (25)
Ihe quantity

Ati
dFq = !!_4o.1 ,ro,

d on,
describes the direction of the
slress incremenl with resDect to
the curent yield surface. .It.
elastic and elasto plastic
bebavrour can be defined by:

dFq >o,E>0 hudning

dFe <o,E<0 soltehing
for elasto-plastic behaviour.

dF" <o
behaviour.

l'or elastic

5:" lefinitiotr of the lpitiat
-G d"fir,tion of the initial

state, the effect of the load
history has to be accounted forIn the common case of a
horizontal layer wjth ontv
monotonic and uniforo loadini

after sedimentatiotr, the initial
state can be described by three
characteristic leld surfaces as
shown iu Figure 00) in which
Tr, T, and 13 are rhe principal
sresses. The larger yieJd
surtace can be defined by the
Iardening paramercr X,. thus t'1

_ 
ti (X,). tten rhe equivalerrt

shear $ress Ierel (t/s). in
rriaxial compression and the
equivalent stress L can be
calculated.

fte second characteristic
yieJd surface F, is deterrnined
by assuming that in the initiai
statq the effective horizontal
stress, oh,, is related to the
effcctire vedical stress, o,.. b!K. (tfie coellcienr of lateral
stress at rest). ln Figure (10),
Irlls pornl is indicatcd bv the
stress point 11.

The computer Drosam
(INISTAT) has Ueen wittJn ;n
FORTRAN - 't7 Language
oependtng on the subpfogams
grv€n by Molenkamp (1987.)
and other subprogams. The
prograrn has the capability of
delrn tg the initial state and
giving the points required toplot the chamcteristic vield
surfaces. The parameters oi the
double hardening elasto_Dlastic
kinemadc fiardening model
ALTERNAT havi been
colle(ed by Motenkamp ( l9g7)
and are also rearranced bv
Faftah (1999). rn r;gu;e ltij
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the position of the relevant
yield surfaces are shon11 in the
pi-plaDe at ar isotropic stess s
=1 for differe4t values of K".
The effect of different initial
states of a{isotropy are
considered. These irilial states
of anisotropy are described bv
the magnitude ofK".

6. Zero-Dilataocv Rule:
Dilarancy is independent of the
incrcment of stress or its
direction for a lxed stress
point, and can be apprcximated
by a linear function of stress
ratio, (Zienkiewicz et al.,
1987)1

Vdg = -= (1+ dl)tMp- ql
r

....Q7)
where: q = t/s and o.E is
constant.

This simple rule p.edicts
zero dilatancy whenever the
Iine:

4 = Ms .... (28)

is reached.
Genemlization to three-
dimensional stress conditions
can be done if a law of a Mohi-
Coulomb q?e is assumed
(Zienkiewicz and Pande, l9?7)
for the zero dilatancy line.
giving (Zienkiewicz et al.,
1987)

M, = 6 stn C; i (3 - sin lr sir 3r)
... Qe)

where 6 is Lode's angle defined
by Molenlamp (1987) as:

sia3s = 3J6J-+ ,

wherei O- =

l!. s. !
... (30)

a constant
residual angie of friction.
J3 = the fitud invarianr of the
deviatoric pseudo stress temor.

The compulel p16g1.6111

(STRESCON) was wdtten in
order to veritr the capabjlity of
the ALIERNAT model in
simulating cyclic ioading. The
description of this program and
its subroutines was given by
Molenkamp (t987) and lattah
( 1 999). The stress path that was
considered is given in Figure
(12). The plot of the shear
shess Ievel t/s versus isotropic
stress s of this strcss path is
depr'cted in Pigure 0l ).
The zero dilatancy rule had
often been refened to as the
"critical state
"characteristic state line,, .ot
"line of phase ta {ormation,,
a term coined by Ishihara et al.
(1975). The zero dilatancv
Iines arc illustrated in Figu;
(13).

The addition of the above
definition of the zero-dilalancy
lrne rs a modification on the
ALTERNAT model made .hv
the author.
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The numerical results for the
shains are shown in Figures
(14), (15) and (16). Several
cases were co$idercd iI *hich
ihe values of I( were varied
and some of the results are

prcsented here. A comparison
betwee[ Iigures (15c) and
(16c) shows that the stress

dilalancy increases as the value
of Ko increases at the stafi of
loading. As the number of
incrcments increases, th€ effect
of K, decreases. This can be

attributed to fie densificotion
that oight take plac€ under
cyclic loading till the sand

reaches a stable coodition.
It is noticed from Figures

(14a), (15a) and (l6a) that the
shear strain increases for a

given value of t/s as the value
oftro increases.

The initial condition of
Figure (10b) depicts Ko-stress

situation for Ko = 0.7. From
this state, the deviatoric stress

is decreased till it has a zero

value.
In Figures (17), (18) and

(19), the effect of the in;tial
stess aiisot opy through the
coefficient of lateral stuess at
rest on both the invarianl Y, the
maximum shear strain and the
sphedcal (volumetric) stain is
preselrted.

It can be concluded that the
maximum shear strain inqeases
with the increase of the

coefflicient of latelal stress at
rest. On the other hand, the
maximum spherical strain
decreases with the increase of
the coefficient of la&ral stress

at rest unlil a value of about
(K"=0.72), above this value, the
sphe cal strain increases. This
behaviour reflects the stress

dilatancy that takes place in
dense sand where the values of
K. are high.

Conclusiops:
In this paper, the kinematic
double hardening model
AITERNAT is applied to
simulate the cyclic behaviour of
sard. The effect of initial stress

anisotropy through the values
of the coefficient of lateral
stess at rest is studied. The
followio conclusions can be

obtained:
1. Different values of the

coefficient of lateral stress at
rest K, revealed different
positions of the relevant
yield surlaces shown in Pi-
plane at an isotropic stress s
: 1. This reflects tie effect
of different initial sktes of
stress anisotropy which is

descdbed by the magnitude
ofl! in this paper.

2. The shess dilatancy increases
as the value of Iq increases

at the start of loading. As
the number of increments
incrcases, the effect of K.
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decreases. This can be
aftributed to the
dersificatior that might take
place under cyclic loading
till the sand reaches a stabie
conditior

3 The maximum shear strain
increases with the inffease
of the coefficient of lateral
stress at rcst. Ofl the other
hand, &e maximum
sphe.ical (volumet c) strain
decreases with the increase
of the coefficienl of lateral
stress at rcst until a value of
about (K.=0.72) is reached,

above this value, the
maximum spherical stmin
increases. This behaviour
rcflects the stress dilatancy
that takes place in dense

sand where the values of K.
are high.
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Fig. (l) - Stress path liom undrained triaxial compression and
extension tests (data from yoshininc et ai, 1998).

Fig (2) - Rotation ofprincipal stress
(aIter Yoshimine et al., l99g).
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s

Iiig (3) - The yield surlaces ofthe ALTERNAf model.

Fig (4) - Definition ofthe kinematic hardening and the motion
ofthe kinematic yield surfaces.
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s

S/Pa

Fig (6) - Definition oflhe paranteters lor stress dilatancy-

Fig (5) - The ]ield -surtucc alrd the plastic potenliel
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X\

2n
>:

Dev atorrc Slrali 7

Irig (7) - Definition offie crilicil -rtare and stress dilaranl:y

t1
Deviatonc Strain z

Fig (E) - Approxirnation lor thc stre!s-strain cur!e in drained
triaxial compression test, (after Molerrkanlp, 1985).
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(e)

Notei Tr, Tr and Tr are the principal stresses.

l ig (9) Thc motion ofrhe yield surfaces durirg altemating
l.radiLlg, (afier Molenkanrp- 1987).

(a)
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Fig (10) - Definition of the initial state in the pi-plane-
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Fig (11) - Kinematic yield surfaces in pi-plane for the initial

state at different values of K,.
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strains and dilat.rnoy ratio. Ko=0 7.

9

3 ",

o0loo'0]?000,100050003001004]2001r
Spherca Sfz.. V

(b)

495

I
t)



E!9'919q[n(]L!!! lol ll \o j 11105

08

go4

I
6
800
o-oz

Eig.(15) - (Contioued).

oa

-60 4C-20 0c 20 40 60 40100
Dilatancy Raiic, \il i

3 o oo0

6,*,

(a)

ao oo 4o 3o 120160200240
Dilalancy Ralio V/','

(c) 
"196

spherica stE n, v
(b)

Fig.( l6lNum.rical prcdiclion of shear

strains, spherical sleins and dilaLanc]

ratio, Ko=0.85.

-9

g

il
@ -o,z

04
-8.0



0.30

> 0.24

0.10

0.00

Elg. & Technoloev. vol.24. No.5.2005

4.1 0.8
Coeiiicienr ofLateral Srress ai Resl. (,)

Y -12*ov-ob-oclt ll t\2
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