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Abstract
In this paper a higher order finite strip formulation based on
the auxiliary nodal line (ANL) technique for both free and Sforced
vibration analysis of box-girder bridges is presented. The free
vibration analysis has been performed using the subspace iteration
method. The dynamic response of both stiffened plate and box-
girder bridge under moving vehicles is investigated.
The vehicle is idealized as a single moving force. Four examples
have been studied to show the good performance of the higher order
finite strip with one ANL for free and forced vibration analysis of
plate, stiffened plate and box-girder bridges. Guyan reduction (mass
reduction) technique is adopted to eliminate the auxiliary nodal line
parameters for both bending and in-plane actions.

Keywords: Box-Girder Bridge, Dynamic Response, Finite Strip,
Forced Vibration Analysis, Free Vibration Analysis, Moving Force
Model.
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Length of strip
Damping matrix
Width of strip
Strain matrix
Coefficient matrix for the displacement function
Rigidity matrix
Modulus of elasticity
Displacement function
Force vector
Thickness of strip
=mmr/a
Particular harmonic number
Mass matrix
Vector of bending moments
= [C} sink_y
Specified number of harmonic terms in a solution
Transformation matrix
Stiffness matrix
Time
Velocity of vehicle
Vector of nodal displacements
Span-wise direction
Harmonic funetion
Parameters of Newmark time integration scheme
Vector of curvatures
Eigen vector
Mass per unit volume

Poisson’s ratio
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Introduction
It is well recognized that the
dynamic response analysis of

box-girder bridges (as a
structure of  considerable
complexity) which  exhibit
constant material and

geometrical properties in the
fongitudinal direction can be
easily simplified by using the
finite strip simulation. The
basic function of a box-girder
bridge is to carry ftraffic.
Bridges are subjected to
dynamic loads in the form of
vehicular traffic, which causes
them to vibrate. The top flange
of a box-girder bridge is loaded
by groups of either point loads
or patch loads, which represents
the wheel Ioading of the
moving vehicles. For
simplicity, engineers increase
the static live load on bridges
by a factor called the impact
factor (/) to account for the
dynamic behavior.

The free vibration analysis
must be made first before the
forced vibration analysis in
order to determine the
fundamental natural frequency
of the bridge to avoid
resonance. Moreover, the effect
of bridge damping on the
dynamic response depends on
the assumption used for the
bridge damping.  Viscous
damping usually assumed for

Natural frequency (rad/sec)
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bridges and its formulation is
based on the determination of
the first two natural frequencies
of the bridge.

During the past decades,

extensive works have been
undertaken to study the factors
affecting the dynamic behavior
of bridges. Hutton and Cheung
[i] presented a lower order
finite strip solution of the
dynamic response of slab-on-
girder and box-girder bridges.
Canet er al. [2] in 1989 used the
simple two node linear strip
element for dynamic response
of thick and thin prismatic shell
type structures. Examples for
free and forced vibration
analysis of the plates and
bridges have been presented.
In 1997, Senthilvasan er al. [3]
developed a spline finite strip
analysis for dynamic response
of curved box-girder bridges.
The bridge was considered as
an assemblage of curved folded
plates discretized by spline
finite strip. Natural frequencies
of curved box-girder bridge has
been calculated and dynamic
response to a moving vehicle is
also carried out in their study. It
was included in their study that
the dynamic response increases
with the speed of the vehicle;
and the dynamic deflections in
some cases are lower for higher
speed of the vehicle.
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An investigation of the
effect of dynamic loads on the
dynamic amplification factors
of an existing continuous
bridge has been presented in
1998 by Fafard et al [4].
Experimental testing has been
conducted and two vehicle
models, having seven and
eleven DOF, are considered in
the analysis of the vehicle-
bridge interaction. A finite
element model to analyze the
bridge has been developed. It is

concluded that the current
design codes  tend to
underestimate dynamic

amplification factors, especially
for  long-span  continuous
bridges.

In the present study, a
higher order finite strip with

sixth order bending strips
combined with third order in-
plane displacement function

have been used for the dynamic
response of box-girder bridges
in both free and forced
vibration analysis. The vehicle
has been represented by single
moving force with the same
velocity as the vehicle,

Basic Concepts
Derivation of the Stiffness
Matrix

The finite strip method is
based on combining Fourier
expansions along

the
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longitudinal “prismatic”
direction of the structure with
polynomials along the

transverse direction [2]. Thus,
the finite strip method may be
thought of as a special form of
the finite element method. The
procedure assumes that the
structure under analysis is
divided intoc a number of
narrow  longitudinal  finite
strips, each of which may have
independent  material  and
geometric properties [1].

The higher order finite strip
with one auxiliary nodal line
(ANL) used herein has (6+3)
order of polynomial functions
which incorporates the 6™ order
strip for bending combined
with an in-pfane 3" order strip.

The 6™ order bending
displacement function for a
simply supported strip with one
ANL can be given as [5]

wixy) = Y|t ! sk, y
ni=1
(D
in which:
k,=mmla
¥ : Span-wise direction
a: Span length

r: Number
harmonics

[C*1=[C,,C,,.......C, Jare

coefficients (from boundary
conditions) and functions of x

of
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only; and can be defined as
following:

C,=1-398° +1628° ~2768"
+2165° —645"°

C,=x(1-85+255° — 388"
+2857 -857)

C, =488% - 2245’ + 43257
—3848° + 1285°

C, =x(-85S+328% —408° +165")

G =x" 2-125+265" -245° +85")
Cs =—98% +628° — 15687

+16857 —645°

G, =x(S-75" +185° ~208* +85°)
)

in which S=x/4 «and b is
width of the strip.
For an orthotropic strip, the
curvature and moment vectors
are given by:

{o)=3 (821w}

mr=1

m}=[p*] o)

ar

3)

C))
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D, D, 0 |[-8*w/éx?
D, D, 0 K-'w/&’
L0 0 D, ||26°w/oxdy
(5)
where D , D ,... etc, are the
bending rigidities of the

orthotropic plate and [D"’J is
bending rigidity matrix. The
total potential energy of a strip
under load function g{x,y)

can be expressed as:
Ur==f [y {ebaxay
29 2

(6)
T I g(x.y )WY dxdy

Substituting equations (3)-(5)
into (6) and minimizing the
resulting  expression  with
respect to all the deformation
amplitudes; leads to, and for a
particular harmonic m,

s b= ez}

where {S :,] and {F;} are the
bending stiffness and force
matrices, respectively. Using a
similar procedure as outlined
previously for the plate
formation, the in-plane strip
stiffness and force matrices can
be given:

szl ei=t} ®
The direction cosine matrix will
transfer the local force system

(7
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{F } to the global system

m

{}'_;, }, and couples the bending
and in-plane actions, where:

FI=[RIEY ©

and

.}

but
[s,] w,}={F,} «an

1l

RI'W,} o

Substituting equations (9) and
(10) into (11) gives

5,1 7.)=F) v

where

S, 1=[RI[s, JR] a3)

is the global stiffness matrix.

Derivation of the Consistent
Mass Matrix
The displacement function of
any strip has the general
form as following [6]:

(==Y v,

mr=1
(14)
where [N m] combines together

the series and the shape
functions and can be given as:

v, 1=[cly, =[Clsink,y
(15)

in  which [C] represents

coefficients matrix for either

bending or in-plane
displacement functions. Thus
the basic unit submatrix in a
consistent mass matrix is [6]:

[r],, = [phIN, [V], d (area)
| (16)

where o is the mass per unit
volume and # the thickness of
strip.

Based on equation (16), the
consistent mass matrix of
higher order strip in bending
can be given as

'], =] €T el
? phsin’k, ydxdy
(17)

and the consistent mass matrix
of higher order in-plane strip
can be derived by the same
manner with the following
expression of [N],

cr, 0 Gy 0

|
M=o g 0 2o,
L nor nT

Gr, 0 CY 0 1
0 Zcy, 0 =cr|
REr mr i
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in which C,,C,,C;andC,
are

in which C,,C,,C,andC,
are defined as following for the
in-plane analysis
C,=1-35+8S"-45°

C, =48 —45°
C,=(-25+65° -4S*)b

C, =8S—-45% +45°

(19)
where S=x/b
Guyan Reduction
A  popular method of
reduction is  the  static
condensation method. This
method, though simple to

apply, is only approximate and
may produce relatively large
errors when applied to dynamic
problems [7]. For dynamic
analysis, a similar type of
condensation was introduced by
Guyan [8].

This method, called “Guyan
Reduction” method or “Mass
Reduction” method [9], will be
used in this study to eliminate
the auxiliary nodal line
parameters for both bending
and in-plane actions. For more
details about Guyan reduction,
readers are referred to the [8,9].
However, the resulting system
matrices are identical to those
of a lower order finite strip.
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Modeling of the Vehicle.

A moving vehicle
represents a highly complex
dynamic system. Most heavy
vehicles consist of several
major components, such as
tractors, trailers and suspension
systems, Vehicle models with

muiti- degrees of freedom
usually used to study the
dynamic behavior of the
vehicle system and rider

comfort. The vehicle model
used in this paper includes
moving force travel the bridge
by the same velocity of the
vehicle and with magnitude
represents the vehicle weight.
This model is called *“Single
Moving Force Model” and is
used to simplify the dynamic
problem in order to understand
the dynamic response of the
bridges more than that of the
vehicles. It is assumed that the
moving force will remain in
contact with the bridge surface,
therefore, no jumps occur
between the moving force and
the bridge.

Equations of the Dynamic
Response

Forced Vibration Analysis
The forced vibration equations
defining motion in the mth
longitudinal mode may be
expressed as:
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[M B ]m {Wn}m + [AB ]m

W' + 1851, 073,

(20)
in which {W }m represents the
nodal global degrees of

freedom including both bending
and in-plane effects.

[Mﬁ],[AS] and [Sg]are the
mass, damping and stiffness
matrices of the structure,
respectively, 7"} and {7’}
are the acceleration and

velocity amplitude vectors
respectively. The load vector

{F o }m represents the nodal

= {FB }m

m

loads (in the mth longitudinal
mode) caused by the presence
of vehicles upon the deck [1],
which varies as the vehicle
fraverses across the bridge.

Solution of the Equation of
Motion

Equation (20) represents the
matrix differential equation of

system motion. Let {AW}
denote the increment in {W}
occurring during the time step
from ¢ to t+Ar. By
Newmark’s finite difference
scheme, the vector {/ }and its
derivatives at the instant
t + Af can be related to those at
the instant ¢ [10]:
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W.x =l -a W} —a i)

(2la)
W =W +a, 7},
+a {W"}Hm
(218)
and

Whew =}, +{aW} @10)

where the quantities with
subscript ¢ are those occurring

at time [, assumed to be
known. Using Newmark’s
parameters S and y, the

coefficients and those to be
used later can be given as [11]:

1 ¥
QU: 3 a;:‘_—
prat)” Bt
!
Ay = m
i
fomtod  gpmde
2p B

(22)
The parametric values of f=
025 and y= 0.5 are used
throughout, implying that the

marching scheme is
unconditionally stable.
After calculate the initial

acceleration vector {W”}O at
time t =0 :

U ARG OIS 8 Vg

-8, 1 3,) (23)
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and forming the effective

stiffness matrix [SB] :

[SB] :[SH]‘i'ao[ﬂ’[a]"{“al[AB]
(24)

It will be possible, for each

time step, to calculate the

dynamic response in the

following steps:

L. Calculate the effective

force vector at time ¢+ Af as
following:

Fa b = (Fadio +1M5] +

(a, {W}: +4a, {Wr_}r +a; {W”}r 7

Hazl(a, (), +a, Y, +a, 7}, )
(25)

2 Solve for the

displacements at time £ + Az :

{Ss] “tW}Hm = {ﬁs }fm;

n 1(~
{W}H;_\r T [SB]- {FB }:m;
(26)
Equation (26) sometimes called
the pseudo-static equation.

3. Calculate the
accelerations and velocities at
time ¢+ Af according to

equation (21).

Free Vibration Analysis

Making {ﬁ’g
(20), the equation of free
vibration of the undamped
structure is:

}m zero 1n equation
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[MB ]{W"}m + SB ]m {W}m =0
@7
The  standard  eigenvalue

formulation of the problem is
therefore [12]:

([S5), - @nlM; Dy, = 0}
(28)
Where @ is an eigenvalue and

{l,!/}m is the corresponding

eigenvector. The subspace
iteration algorithm [13] is
employed for solving equation
(28) to determine the natural
frequencies and their
corresponding mode shapes.

It has been shown that, for
each harmonic term,
corresponding elements of the

stiffness matrix [S,] will be

different. It follows that
equation (28) will have to be
solved for each harmonic term
in the series [12]. The lowest
natural frequency for the
(m+1)th term will be higher
than the lowest natural
frequency of the rth term but
will usually be lower than the
highest natural frequency of the
mith term.

il

Numerical Examples

In order to demonstrate the
capability and efficiency of the
formulation presented and the
reliability of the higher order
finite strip with one ANL in
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dealing with dynamic
problems, four typical
examples of free and forced
vibration of bridges have been
studied.

Example 1: Free Vibration of
Straight Slab/Beam Bridge
For the slab/beam bridge

shown in Fig. 1 with the
geometrical  and  material
properties, the  transverse

section is discretised using 12
higher order strips. In Fig.2
natural frequencies for the
lowest five modes of the first
harmonic obtained in the
analysis are compared well
with the results reported by
Hinton [14].

Example 2: Free Vibration of
Straight Box- Girder Bridge
A single-cell, simply
supported and straight box-
girder bridge presented by
Huang ef al. [15] is chosen and
shown in Fig.3. This concrete
box-girder bridge has a span
length of 45.72 m (150 ft) and a
roadway width of 9.144 m (30
ft). The density of the material
used is 2750 kg/m’ (ie., p=
mass density = 0.262 kg-
sec’/m"). The first six natural
frequencies are plotted in Fig.4,
which shows a good agreement
with the values obtained by
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thin-walled beam element in
Ref.[15].
Example 3: Plate under
Moving Force

In this example, a simply
supported square plate is
subjected to a 0.907 kg moving
force. The moving force
traverses along the centerline of
the plate. The following data
are adopted [16]: modulus of
elasticity £= 2.11x10° kg/cm’,
length =10 cm, width b=10
cm, thickness # = 0.25 cm,
mass density p= 1.1x107 kg-
sec’/em’®, Poisson’s ratio b =
0.3. The dynamic amplification
factors or normalized
displacements (which is defined
as the maximum dynamic
deflection divided by maximum
static  deflection) for the
moving force on the plate are
given in Fig.5. As can be seen,
good agreement has been
achieved between the present
solution and the finite element
method.

It can be observed from
Fig.6 that the dynamic
amplification ~ factors  for
various  velocities of the
moving force are in good
agreement with the values
obtained by the finite element
method.
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Example 4: Simply Supported
Box-Girder Bridge subjected
to a Moving Force.

Consider a simply
supported box-girder bridge
subjected to a constant force of
(P=500 kN) moving at a
constant speed of (v=60 mph)
(26.82 m/s), as shown in Fig.7.
The following data are used in
this example: span length = 50
m (164 ft), Young’s modulus £
=3.34x10" N/m’, mass density
= 2400 kg/m’.

The results obtained from
the method presented in this
paper are compared well with
the resuits obtained from the
simple beam theory (where the
bridge is simulated as a simply
supported beam with 40-
element model).

The deflection time-history
of the midpoint of the bridge
due to moving force for both
top and bottom flanges is
plotted in Fig.8, along with
analytical solution given in [17]
based on the simple beam
approximation of the box-girder
bridge.

The results obtained from
Ref. [17] referred to the point at
the centriod of the box-girder
cross-section due to the simple
beam theory used. Therefore,
the results by the present
method are given for the top
and bottom flanges in order to
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match the case of centriod
response as in the beam theory.

As can be seen, good
agreement has been achieved
between the present solution
and the analytical ones. The
deflection response at point
(span/5) from end is also given
in Fig.9, which shows again the
good performance of the
present formulation.

Conclusions

In this paper a higher order
finite strip formulation for
dynamic analysis of box-girder
bridges has been presented. The
method is also extended to the
dynamic analysis of flat plates
and stiffened panels. A
comparison of the present
results with those in the
literature  shows that the
subspace iteration technique
and the single moving force
model can satisfactorily
simulate the dynamic behavior
of box-girder bridges. The
model of the simple moving
force (without springs,
dampers, etc.) has been easily
used to investigate the dynamic
deflections and amplifica-tion
factors (normalized
displacements) of both plates
and box-girder bridges. It is
also  concluded that the
dynamic magnification factor
increase with the velocity of the
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moving vehicle up to specific
limit then the bridge dynamic
response tends to decrease with
the vehicle speed increases. The
method of Guyan reduction has

been wused successfully to
eliminate deformation
parameters at the auxiliary

nodal line. Due to the accuracy
of the results obtained by this
model; it can be concluded that
the higher order (6+3) finite
strip with one ANL, in
conjunction with the single
moving force simulation, can
be used successfully in the
dynamic analysis and design of
simply supported box-girder
bridges.
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