
Ens. & TechnoloEv. Vol.24_ No.5.2005

Dynamic Analysis of Box-Girder Bridges Using a
Higher Order Finite Strip Fomalation

Dr.A, A- Abdul-Razzak* & A, A. Mohammed*
Received on: 28/2/2004
Accepted on:18/5/2005

Abstrdct
I this paper d highet oderJinite srriplomulatiorl bdred on

,he auxiliaty nodal lirre (ANL) techrrique J both ltee n d forced
ibralion anabsis of box-girdo hridges is presented. The free
vibration analjsis has beet petformed usifug the subspace iterulior,
hrelhod. The bharnic rcsponse of both slifle ed plate @td box-
girdet bridge ur.det ,oving vehicles is i vestigdted.

Ihe tehicle is ilealized as a single aovingforce. Four examples
have been stutlied lo shox' the good perfomanee of lhe higher ordet
finite stfip with one ANL lor free a d forced fibration analysis of
plare, stwied plate aad box-gitdo bridges. Gttlan reductiott ( ass
reductioa) techtique is adopted lo elirfiinate the aLriliaty nodal line
pararrretersJot both bending arrd in-pldne actions-

KE tl'onls: Box-Gifier Btidge, D),nanic Response, Finite Strip,
Forced Vibration Analysis, Free Yibration Analrsis, MofinE Force
Model.
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Notation
a Len$h ofstrip

k] Damping matdx

, Width of strip

[B] strain matrtx

[Cl Coefficient matrix for the displacement function

[a] rugiatty matrix

E Modulus ofelasticitv

f) oispi*"-entti,ncti*

{F} Force vecto.

& Thickness ofstrip

nr Particular harmonic number

[M] vass matri*

{M} Vector of bendirg moments

[ar] =[c]sinr.y
,, Specified number ofharmonic tems in a solution

tnl Transformationmatrix

tS] stiffness matrix
/ Time
v Velocity ofvehicle
pt I Vecto. ofnodal displacements

y Spafl-wise directioil

Y. Hamonic firnction

0,f Parameters ofNewmark time integration scheme

b| vector ofcuvatures

{Vl Eigen vector
p Mass per unit volu0e
D Poisson's ratio
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Natural frequency (radlsec)

Introduction
It is well recognized that the

dynamic respome analysis of
box-girder bidges (as a
structure of considerable
complexity) which exhibit
constanl material and
geometrical properties in the
longitudinal direction can be
easily sjmplified by using the
finite strip simulation. The
basic function of a box-girder
bridge is to carry traffic.
Bridges are subjected to
dynami. loads in the form of
vehicular traffic, which causes
them to vibrate. The top flange
ofa box-girder bidge is Ioaded
by goups of either point loads
or patch loads, which represents
th€ wheel loading of th€
moving vehicles- For
simplicity, engineers itcrcase
the static live load on bridges
by a factor called the impact
factor (, to aceount for the
dynamic behavior.

The free vibmtion analysis
must be made first before the
forced vibration analysis in
order to determine the
fuoda$ental natural frequency
of the bridge to avoid
resonaflce. Moreover, the effect
of bridge damping on the
dynamic response depends on
the assumption used for the
bridge damping. Viscous
damping usually assumed for
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bridges and its formulation is
based on the determination of
the fiIst two natural fiequencies
ofthe bridge.

Du ng the past decades,
extensive works have be€n
undertakefl to study the factors
affecting the djmamic behavior
of bridges. Hutton and Cheung

ul presented a lower otder
finite stiip solution of the
dynamic response of slab'on,
girder and box-girder bridges.
Canet et al. 12) in 1989 used the
simple two node linear strip
element for dynamic response
ofthick and thin prismatic shell
type structures. Exarnples for
freo and forced vibmtion
analysis of the plates and
bridges have been presented.
In 1997, Senthilvasan et al l3l
developed a spline finite strip
analysis for dyumic response
of curved box-girder bridges.
The bridge was considered as
an assemblage of cu.ved folded
plates discrctized by spline
finite stdp. Natural freqsencies
of curved box-girder bridge has
been calculated and dynamic
response to a moving vehi.le is
also carried out in their study. It
was included irl their study that
the dynamic response increases
with the speed of the vehicle;
and the dlnarnic defiections iD
some cases are lower for higher
speed ofthe vehicle.
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An investigation of the
effect of d)mamic loads on the
dynamic amplifi cation factors
of an existing continuous
bridge has been presented irr
1998 by Fafard et al. l4].
Expeaimefltal testing has b€en
conducted ard two vehicle
models, having seven and
eleven DOF, are considered in
the analysis of the vehicle-
bridge interaction. A finite
element model to analyze the
bridge has been developed. It is
corcluded that the current
design codes tend to
underestimate dynamic
amplifi cation factors, especially
for long-span continuous
bridges.

In the prcsent study, a
higher order fin;te stip with
sbdh order bending strips
combined with third order in-
plane displacement function
have beeo used for the dynamic
response of box-girder bridges
in bolh free and forced
vibration analysis. The vehicle
has been represented by single
moving force with the same
velocity as the vehicle.

Basic Concepts
Derivatioo of the Stiffness
Matrix

The finite strip method is
based on combining lourier

Iongitudinal
direction of the structure with
po\momials alorg the
transverse direction [2]. Thus,
the finite stdp method may be
thouglt of as a special form of
the finite element method. The
procedurc assumes that the
structurc rmder analysis is
divided into a number of
nanow longitudinal finite
strips, each ofwhich may have
independent material and
geometric properiies [ ].
The high€r order finite strip
with one auxiliary nodal li.e
(ANL) used herein has (6+3)
order of polynomial functions
which incorporates the 6d'order
stuip for bending combined
with an in-plane 3'd order strip.
The 6'h order bending
displacement function for a
simply supported strip with one
ANL can be given as [5]

, 1'. y1 = 2fc'lfir X\"i, r,, y

(l)
in which:

.y : Span wise direction
a: Span length
r: Number of
harmonics

lcb I = [q,c,,......,q]Ne
coefficients (from boundary
conditions) and functions of .r

"prismatic"

expansions along lhe
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only; and can be defined as
following:

C I = I -395') + t6253 -2765!
+ 2l6S' 645o

Cr=41-85+255, -3853
+285t -8Sr )

cj =48s') - 224st +432sr

- 3845j + 1285d

C.!=r(-3s+325')-4053 + 16s1 )

q =l €-t25+26s'z-24f +&Y)

c6= gs'+62sr 156s1

+ 1685j 64so

C, =(S-7S'?+1tt' -20Y +8S)

{2)
in which S=.t/D ,and Dis
width ofthe strip.
Fo. an orthotopic strip, the
curv&fute and moment vectors
are given by:

o, a )f t)r tx)
D o il n' ?y,l
r, D ll2d'" &&l

ln

t;
i0

',ol=fb:,
lul =ln'l

fr.l
1,'l=
IM" ]

(3)lW:l

(5)
where D",Dr,.-. etc, are tie
bending rigidities of the
orthotopic ptate *a [a'J It
bending rigidity matrix. The
total potential energy of a stdp
urder load llmction 4(x,y)
can be expressed as:

u"=ji,i wrav,+ (6)

-i i a'.rt|*l a,r,

Substituting equations (3)-(5)
into (6) and minimizing the
resultiflg expression with
respect to all the deformation
amplitudes; leads to, and for a
particular hannonic rr,

t"S W:l={r:l (1)

*r'o" [s; ] ana {r,j} a,e *"
bending stiffness and forc€
matrices, respectively. Using a
similar procedure as outlined
previously for the plate
formation, ihe in-piaDe stoip
stiffness and force matrices can
be given:

t'tl@:l={r:} (s)
The direction cosine matrix will
transfer the Iocal force system

{o} $)
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{f',, } r tt" global system

{F. }, ana couples the benaing

and in-plane actions, wherc:

{4,}=lrl'{4,} (e)

and

fii,.|=lnl'@.\ (10)

but

ts,I {r,}= {4,} (11)

Substituting equations (9) and
(10) hto (1i) gjves

ts.lk;)={4} $2)
where

[s-, ]= Iotts., ttof (r3)

is the global sliffness malrix.

Derivation of {he CoNistent
Ma6s Matrix

The displacement function of
any st p has the general

form as following [6]:

\f\=lNhw}=L LN.lW.)
(14)

*rr"." pf,, ] combifles together

the series and the shaPe

functions and can be given as:

Iil,,1= tclv. = [6]sin r,1
(r5)

in which [C] represents

coefricients matrix for either

bending or in-plane

displacement funclions. Thos

the basic unit submatrix in a

consistent mass,natrix is [6]:

1v1,,,,, = Jn r[,t ]1, [.r ],, a <**l
(16)

where p is the mass per unit

volurne aud i the thickness of
strip.
Bascd on equalion (16), the
consistent mass matrix of
higher order strip in bending
can be given as

L,/ l,=j tcl'tcl

I phtn k,,1 d: dt

(1r)
and ihe consistenl nrass matrix
of higher o.der in plane strip
can be derived by lhe same

Dar,ner with the foliowing
exp,es"ion of [N]-

l(,\,, a c.t,, o
I^t ,_trrl.' r/ -aL-t, , --L?),,

|rutut
(1i- o c.y., 0)-L
a ilt.y,. o !t.\,1

ll

crY. 0 c,Y,,

o Lc.v,, o

o)
LC,\

( t8)
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in which C, , C, , C., and C,

in which C,, C, C, and C,
are defined as following lor ihe
in-plane analysis

q = 1-5S+ 8s'7 4.9r

C, =45 - qs'

c3 = (*2.! + 6'9, - 4Sr)'
C. =S - 45': + 4Sr' (l v)
where S =.t /6

Guya[ R€duction
A popular method of

reduction is the stalic
condeusation method. This
method, though simple to
apply, is only approximate and
may produce relatively large
errors when applied to dJmamic

Foblems [7]. For dynamtc
analysis, a similar type of
condensation was intodDced by
Guyan [E].

This method, called "cuyaD
Reduction" nethod or "Mass
Reduction" method [9], rir'ill be
used in this study to eliminate
the auxiliary nodal line
pammeters for both bending
and in-plane actions. For more
details about Guyan reduction,
readers are relened to the [8,9].
However, ihe resulting system
matrices are identical to those
of a lower order finite strip.

607

Modelitrg oI the Vehicle.
A moving vehicle

rcpresents a highly complex
dynamic system. Most heavy
vehicles consist of several
major components, such as
tractors, tEilers and suspension
systems. Vehicle models ri/ith
multi- degrees of freedom
usually us€d to study the
dynamic behavior of the
vehicle system and rider
comfort. The vehicle model
used in this paper inciudes
moving force travei the bridge
by the same velocity of the
vehicle ard with magnitude
represents tie vehicle weight.
This rnodel is called "Single
Moving Foice Model" and is
used to simplit, the d,,namic
problem in order to understand
the dynamic response of the
bridges more than that of the
vehicles. It is assumed that the
moving force will remain in
contact with the bddge surface,
therefore, no jumps occur
between the moving force and
the brjdge.

Equations of the Dynamic
Response
Forced Vibration ADalysis
The forced vibration equations
defining motion it the ,,r,h
Iongitudinal mode may be
expressed as:
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lu"l,,lw"l, +lt,l,,
lw'1, *ls 

"L1wl. 
=1"t'

(20)
in which [iz]. .epresents rhe

nodal global degrees of
fieedorn including both bending
and in-plane effects.

lu "\le,l ^"a [,s, ]are the
mass, darnping and stiffness
matrices of the structure,

respectively; W'\. *a W'j,
are the acceleration and
velocity aDplitude vectors
respectively. The load vector

{-F', },, represents the nodai

loads (in the ,rth longitudiml
mode) c.aused by the presencc
of vehicles upon the deck [1],
which varies as the vehicle
haverces across the b dge.

Solutioa of the f,qualiod of
Motion

Equation (20) represents the
matrix differential equation of
system motion. tet {tW}
denote the increment in {D/}
occurring during the time step
from I to 1+Ar. By
Newmark's finite difference
scheme, the vecror f/)and its
derivatives at the instMt
, + AJ can be related to those at
the iNtant , [10]:
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(2ta)
=fr,\,.+ a,lw,l,
+ a,{w'1,,"

\w j,." = qiNt/t-q1[/], ,,"\t4/1,

lw'1,."

(21b)
and

{w},-, =1w}, + \tw} 12t"1

wher€ the quantities with
subscript / are those occurring
at time ,, assumed to be
known. Using Neri,,mark's
parameters B and y, the

coefficients and those to be
used Iater can be given as [1 1l:

I!
' B(ar)' ' Pt

I
' Par

u. = L-t o- =L-t'28 B
(22)

The parsmetric values of B=
0.25 aad y= 0.5 are used

throughout, implying that the
marching scheme is
unconditionally stable.
After calculale the initial
acceleration vector W')o at

time/=0:
ln i,=[M,l'(.))Fel lA,,]ln l

-I,s,l{n},I (23)
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and forming the effective
I^',l

stiffiress matrix [Su] :

[S,] =1s,1*,"1a2,1*,,1a1
(24)

It will be possible, for each
time step, to calculate the
dynamic response in the
following steps:
L Calculate the effective
force vecto at time ,+A/ as

following:

b,1,.,, = \r,t,.,, 4a "l 
*

laolw\, + a,{w'1, + a,{w'1, 1

+14]1 a,\trl, +",prrl, *,,1v'1,1
(2s)

2. Solve for the
displacements at tilne ,+4, :

[r, ] {r},., = {o,},.^,

t l*"=[r,l'{q}.^,
(26)

Eq}ation (26) sometimes called
the pseudo-static equatiotr.
3- Calculate the
acoelerations and velocities at

time , + Al according to
equation (2 i ).

Free Vibration An.lvsis

Making 1.Fs f- zero in equation

(20), the equation of f.ee
vibr'ation of the undamped
stauctrre is:

tu,lW\.+[s,].{tr}, =o
Q't)

The standard eigenvalue
formulation of the problem is
therefore [12]:
(ls 

"),, 
- a:lM 

"b{y,\^ 
= lol

(28)

Where arj is an eigenvalue and

fu), ;r tt " corresponding

eigenvector. The subspace

iteration algodthm L13l is
employed for solving equation
(28) to derermine the natural
frequencies and their
corresponding rnode shapes.

It has been shown tlat, for
each harmonic term,
coresponding elemeDts of the

stiffness matrix [Sr], *itt Ue

different. It lollows that
equarion (28) will have to be
solved for each hamonic term
in the series nzl. The lowest
natural ftequency for the
(D1+1)th telm will be higher
thrn the Iowest natural
frequency of the .rrth telm but
will usually be lower than the
highest natural frequency ofihe
mth tearn.

Numerical Examples
In ord€r to demonstrate the

capability and elliciency of the
formulation presented and the
reliability of the higher order
fiBite s(fip with one ANL in
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dealing with dynamic
problems, four tYPical

exalmples of free and forced
vibration of bridges have been

studied.

Erample 1: Free Vibratiotr of
Straiqht Slab/Beam Bridge

For thr slab/beam bridge
showl in Fig. 1 with the
geometical and material
properties, the tIansveme

section is discretised using 12

higher order strips. In Fig.2
natural frequencies for the
lowest five modes of the first
harmonic obtained in the
analysis are compared weil
with the results reported bY

Hinton [14].

Example 2: Free Vibration of
Straight Box- Girder Bridge

A single-cell, simPlY

supported and straiSht box-
girder bridge presented by
Hnang et a!. [15] is chosen and

shown in Fig-3. This conclete
box-girder bridge has a span

length of45.72 m (150 ft) and a

.oadway width of 9.144 m (30

ft). The density of the.material
used rs 2/5U kg/m' (1.e.. p=
msss density = 0.262 kA'
sec2lml). The first six natuml
frequencies are plotted in Fig.4,
which shows a good agreement
with rhe values obtained bv' 610

thin-walled beam element in
Ref.[1s].

Example 3: Plate under
MoYing Force

ln this example, a simply
supported square Plate is

subjected to a 0.907 kg moving
force. The moving force
trave$es along the centerline of
the plate. The following data

are adopted 6l: modulus of
elasticity E= 2.11x106 kglcm',
length a=10 cm, width ,=i0
cm, tlickness h : 0.25 cr0,

mass density p= 1.1x105 kg-

sec2/cm4, Poisson's ratio u =
0.3. The dynamic amplification
factors or normalized
displacements (which is defined
as the maximnm dyrtamic
deflection divided by maximum
static deflection) for the
moving force on the Plate ar€

given in Fig.5. As can be seen,

good a$eement has been

achieved between the Present
solution and the finite element

method.
It oan be observed from

Fig.6 that the dYnamic

amplification factors for
various velocities of the
moving force are in good

sgreement with the values

obtained by the finite element
method.
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Ex.mple 4: Simply Supported
Bor-Girder Bridge subjected
to a Movitrg Eorce.

Consider a simply
supported box-girder bridge
subjected to a constant force of
(P=500 kN) moving at a
constant speed of (v=60 mph)
(26.82 m/s), as shown in Fig.7.
The following data are used in
this example: span Iength = 50
m (164 ft), Young's modulus E
= 3.14' I0ro N/mr, mass density
: )4OOko/m'

The iesults obtained from
th€ method prcsented in this
paper are compared well with
the results obtained from the
simple beam theory (where the
b dge is simulated as a simply
supported beaIn with 40
element model).

The deflection time-history
of the midpoint of the bridge
due to moving force for both
top and bottom flanges is
plotted in Fig.8, along with
analy,tical solution given in [17]
based on the simple beam
approximation of the box-girder
bridge.

The results obtained from
Ref. [17] refered to the point at
the centriod of the box-girder
c.oss-section due to the simple
beam theory used. Therefore,
the results by the present
method are given for the top
and boftom flanqes in order to -- -- htl

match the case of centriod
response as in the bearn theory.

As can be seen, good
agreement has been achieved
between the present solution
and the analytical ores. The
deflection rcsponse at point
(spaa/5) from end is also given
in Fig-g, which shows again the
good performance of the
presenl fomulation.

Conclusions
In this paper a higher order

finite strip formulation for
dyramic analysis of box-girder
bridges has been presented. The
method is also extended to the
d;,namic analysis of flat plates
and stiffened panels. A
comparison of the present
results with those in the
literature shows that the
subspace iteration technique
and the single moving force
model can satisfactorily
simulate the dynamic behavior
of box-girder bddges. The
model of the simple moving
force (without springs,
dampers, etc.) has been easily
used to itvestigate the dynamic
deflections and amplifica-tion
factors (normaliz€d
displacements) of both plates
and box-girder bridges. It is
also concluded that the
dynamic magnification factor
increase with the velocity ofthe
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movirg vehicle up to specific
limit then the bridge dynamic
aesponse tends to decrcase with
the vehicle speed increases. The
method of Guyan reduction has
been used successfully to
eliminate

Tharnbiratnam, Bridge-
vehicle ioteraction i.
curved box girder bridges.
Microcomputers itl Ciril
Engineering, Yol. 12, 1'71-
l8 i, i997.
M. Fafard, M. Lafla0me,
M. Savard and M. Bennur,
Dynamic analysis of
existing continuos bridge.
ASCE, J. bridge
engineerin& Vol. 3, No. 1,

1998.
M. A. Abdullah and A. A.
Abdul-Razzak, Finite strip
analysis of prestressed box-
girders. Computers &
Structures, Vol. 36, No. 5,
817-822,1990.
Y. K. Cherng, The Ftuite
Strip Method in St/uctural
lrrl.},Jij. Pergamon Press,
Oxford (1969)-
M. PM, Structural
Dynamics: Theory arul
Applicatiotl. CBS
Publishe.s and Distribuiors,
Delhi (1987).
R. J. Guyan, Reduction of
stiffness and mass mahices.
AIAA J., Vol. 3, No-2,
1965.
W. Weaver and P. R.
Johnslon.
D))namics by Fi ite
Elements. Prentice-Hali,
Inc., New Jersey (1987).

10. Y. B. Yang and Y. S. Wu,
A versatile elemont for

pa€rneters at the ouxiliary
nodal line. Due to the accuracy
of the results obtained by this
model; it can be concluded ihat
the higher order (6+3) finite
strip with one ANL, in
conjunction with the single
moving force simulation, can
be used successfully in the
dynamic analysis and design of
simply supported box-girder
bridges.
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Fig. 1. Straight SIaVBeam Bridge (Exampl€ 1)
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Fig. 2. Natural Frequencies of Straight Slab/Beam
Bridee (first eode)
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trie.3. Simply Support€d Box-Gird€r Bridge (Exrmple 2)
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Fig, 4.Natdral Frequencies of Simply Supported Box-Girder Bridge
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Fig.S. Normalizzd Displacements of. Square plate u[der Moving Force

Fig. 6. Dynsmic Bagnilicatiotr factors for movirg force on plate

6l5

:"



Ilne & T.chroloq\. vol21 \o_5, ?!!i

T
?5n

I
i :0. I

Cross-Section

Fig. 7. Simply Supported Box-Girder Bridge uDder Moving
Force (Example 4)

trig. E Deflection RespoDse ofBox-Girder Bridge at Midspan due to
MoYitrg Force
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Fig, 9. Deflection Relponse of Box-Girder Bridge at Poitrt L/5
from End due to Moying Force
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