Document Type : Research Paper

Authors

Mechanical Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

Abstract

Latent thermal energy storage systems are widely utilized to match the inequality between heat supply and demand. Despite these systems' wide range of uses in various applications, their high potential is limited by the slow charging rate. The target of this study is to augment the thermal performance of paraffin-based on triplex tube heat storage by dispersion of two different types of conductive mono nanoparticles (Al2O3, CuO) and hybrid Nano additives of various volume fractions (0.4, 0.8, 1.6, 3.2%) into paraffin wax. The experimental work involves measurements and preparation of the considered Nano-PCM. The enthalpy porosity model and finite volume method simulated the melting process. The study also investigated the temperature and liquid fraction variations in the axial, radial, and angular directions throughout melting to aid in predicting heat transfer in the storage throughout the phase transition process of PCM. Results revealed that including 1.6% of hybrid nanoparticles in PCM can increase the stored energy by 5.97%. The results also indicated that the hybrid nano-PCM exhibits the best phase transition rate and energy recovery for all volume fractions compared to mono-nano-PCM. At 1.6% volume fraction, the storage efficiency can be improved up to 76.8%, 75.5%, and 73.63% for hybrid nano-PCM, Al2O3-PCM, and CuO-PCM, respectively.

Graphical Abstract

Highlights

  • The heat transfer performance of energy storage was improved.
  • Hybrid nano-PCM was the most efficient enhancer.
  • An optimal 1.6% volume fraction balanced performance and economics.
  • 1.6% hybrid nano-PCM reduced overall melting time by 16.8%.

Keywords

Main Subjects

  1. Khudhair, F. Hatem, and D. Mohammed Ridha, Enhancement of Thermal Storage Properties of Phase Change Material by Using Metallic Swarf, J. Eng. Technol., 36 (2018) 586-595. https://doi.org/10.30684/etj.36.5A.15
  2. Akram H. Abed, Thermal Storage Efficiency Enhancement For Solar Air Heater Using a Combined Shsm and PCM Cylindrical Capsules System: Experimental Investigation, J. Eng. Technol., 34 (2016) 999-1011. https://doi.org/10.30684/etj.34.5A.16
  3. . Kalidasan, A. Pandey, S. Shahabuddin, M. Samykano, M. Thirugnanasambandam, and R. Saidur, Phase Change Materials Integrated Solar Thermal Energy Systems: Global Trends and Current Practices in Experimental Approaches, J. Energy Storage, 27 (2020) 101118. https://doi.org/10.1016/j.est.2019.101118
  4. Fang, J. Niu, and S. Deng, Numerical analysis for maximizing effective energy storage capacity of thermal energy storage systems by enhancing heat transfer in PCM, Energy Build., 160 (2018) 10-18. https://doi.org/10.1016/j.enbuild.2017.12.006
  5. Safari, H. Abolghasemi, L. Darvishvand, and B. Kamkari, Thermal Performance Investigation Of Concentric And Eccentric Shell And Tube Heat Exchangers With Different Fin Configurations Containing Phase Change Material, J. Energy Storage, 37 (2021) 102458. https://doi.org/10.1016/j.est.2021.102458
  6. S. Sodhi and P. Muthukumar, Compound Charging and Discharging Enhancement in Multi-PCM System Using Non-Uniform Fin Distribution, Renew. Energy, 171 (2021) 299-314. https://doi.org/10.1016/j.renene.2021.02.084
  7. Ebrahimi, M. J. Hosseini, A. A. Ranjbar, M. Rahimi, and R. Bahrampoury, Melting Process Investigation Of Phase Change Materials in a Shell and Tube Heat Exchanger Enhanced With Heat Pipe, Renew. Energy, 138 (2019) 378-394. https://doi.org/10.1016/j.renene.2019.01.110
  8. -Z. Ling, X.-S. Zhang, F. Wang, and X.-H. She, Performance Study Of Phase Change Materials Coupled With Three-Dimensional Oscillating Heat Pipes With Different Structures For Electronic Cooling, Renew. Energy, 154 (2020) 636-649. https://doi.org/10.1016/j.renene.2020.03.008
  9. Haddad, F. Iachachene, M. A. Sheremet, and E. Abu-Nada, Numerical Investigation And Optimization Of Melting Performance For Thermal Energy Storage System Partially Filled With Metal Foam Layer: New Design Configurations, Appl. Therm. Eng., 223 (2023) 119809. https://doi.org/10.1016/j.applthermaleng.2022.119809
  10. Righetti, C. Zilio, G. A. Longo, K. Hooman, and S. Mancin, Experimental Study On The Effect Of Metal Foams Pore Size In A Phase Change Material Based Thermal Energy Storage Tube, Appl. Therm. Eng., 217 (2022) 119163. https://doi.org/10.1016/j.applthermaleng.2022.119163
  11. K. Singh, S. K. Verma, and R. Kumar, Thermal performance and behavior analysis of SiO2, Al2O3 and MgO based nano-enhanced phase-changing materials, latent heat thermal energy storage system, J. Energy Storage, 48 (2022) 103977. https://doi.org/10.1016/j.est.2022.103977
  12. Nie, S. Deng, J. Liu, and Z. Rao, Performance Evaluation Of Shell-Tube Latent Heat Storage Unit Using Nanoparticles With Cascaded Concentration, J. Energy Storage, 62 (2023) 106892. https://doi.org/10.1016/j.est.2023.106892
  13. Yu and Y. Tao, Improvement of thermal cycle stability of paraffin/expanded graphite composite phase change materials and its application in thermal management, J. Energy Storage, 63 (2023) 107019. https://doi.org/10.1016/j.est.2023.107019
  14. Tang et al., Preparation and Application of Paraffin/Expanded Graphite-Based Phase Change Material Floor for Solar-Heat Pump Combined Radiant Heating Systems, Sustain. Chem. Eng., 11 (2023) 2871-2884. https://doi.org/10.1021/acssuschemeng.2c06289
  15. A. Fikri et al., Thermal Conductivity, Reliability, And Stability Assessment Of Phase Change Material (PCM) Doped With Functionalized Multi-Wall Carbon Nanotubes (FMWCNTs), J. Energy Storage, 50 (2022) 104676. https://doi.org/10.1016/j.est.2022.104676
  16. Li et al., Carbon nanotubes modified graphene hybrid Aerogel-based composite phase change materials for efficient thermal storage, Energy Build., 273 (2022) 112384. https://doi.org/10.1016/j.enbuild.2022.112384
  17. A. Al-Abidi, S. Mat, K. Sopian, M. Y. Sulaiman, and A. T. Mohammad, Internal And External Fin Heat Transfer Enhancement Technique For Latent Heat Thermal Energy Storage In Triplex Tube Heat Exchangers, Appl. Therm. Eng., 53 (2013) 147-156. https://doi.org/10.1016/j.applthermaleng.2013.01.011
  18. Shahsavar, A. Goodarzi, P. Talebizadehsardari, and M. Arıcı, Numerical Investigation Of A Double‐Pipe Latent Heat Thermal Energy Storage With Sinusoidal Wavy Fins During Melting And Solidification, Int. J. Energy Res., 45 (2021) 20934-20948. https://doi.org/10.1002/er.7152
  19. Baou, F. Afsharpanah, and M. A. Delavar, Numerical Study Of Enhancing Vehicle Radiator Performance Using Different Porous Fin Configurations And Materials, Heat Transf. Res., 49 (2020) 502-518. https://doi.org/10.1002/htj.21624
  20. Liu, J. Lin, and Y. Zhuang, PIV Experimental Study On The Phase Change Behavior Of Phase Change Material With Partial Filling Of Metal Foam Inside A Cavity During Melting, Int. J. Heat. Mass. Transf.,187 (2022) 122567. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122567
  21. Abbasi, S. M. Mousavi, B. J. Lee, J. A. Esfahani, N. Karimi, and M. Y. Mamaghani, Examination Of The Effects Of Porosity Upon Intensification Of Thermal Storage Of Pcms In A Shell-And-Tube Type System, Case Stud. Therm. Eng. 33 (2022) 101963. https://doi.org/10.1016/j.csite.2022.101963
  22. Du, R. Wang, Q. Zhuo, and W. Yuan, Heat Transfer Enhancement Of Fe3O4‐Water Nanofluid By The Thermo‐Magnetic Convection And Thermophorestic Effect, Int. J. Energy Res., 46 (2022) 9521-9532. https://doi.org/10.1002/er.7821
  23. Hamali and M. Y. Almusawa, Transient Heat Transfer Of NEPCM During Solidification Using Galerkin Method, Case Stud. Therm. Eng., 35 (2022) 102114, https://doi.org/10.1016/j.csite.2022.102114
  24. A. Rothan, Thermal Analysis For Solidification Of PCM Including Nanoparticles Within A Container, Case Stud. Therm. Eng., 33 (2022) 101920. https://doi.org/10.1016/j.csite.2022.101920
  25. Chibani et al., A Strategy For Enhancing Heat Transfer In Phase Change Material-Based Latent Thermal Energy Storage Unit Via Nano-Oxides Addition: A Study Applied To A Shell-And-Tube Heat Exchanger, J. Environ. Chem. Eng., 9 (2021) 106744. https://doi.org/10.1016/j.jece.2021.106744
  26. Zhang, S. Han, Y. Wu, C. Zhang, and H. Guo, Investigation On Convection Heat Transfer Performance Of Quaternary Mixed Molten Salt Based Nanofluids In Smooth Tube, Int. J. Therm. Sci., 177 (2022) 107534. https://doi.org/10.1016/j.ijthermalsci.2022.107534
  27. Ghalambaz, A. Doostani, E. Izadpanahi, and A. Chamkha, Phase-Change Heat Transfer In A Cavity Heated From Below: The Effect Of Utilizing Single Or Hybrid Nanoparticles As Additives, J. Taiwan. Inst. Chem. Eng., 72 (2017) 104-115. https://doi.org/10.1016/j.jtice.2017.01.010
  28. Ghalambaz, S. M. H. Zadeh, S. Mehryan, I. Pop, and D. Wen, Analysis Of Melting Behavior Of Pcms In A Cavity Subject To A Non-Uniform Magnetic Field Using A Moving Grid Technique, Appl. Math. Model., 77 (2020) 1936-1953. https://doi.org/10.1016/j.apm.2019.09.015
  29. Sadiq, S. Aljabai, and A. Karamallah, Effect Of Al2O3/Cuo Hybrid Nanoparticles Dispersion On Melting Process Of PCM In A Triplex Tube Heat Storage, FME Transactions, 51 (2023) 606-626. https://doi.org/10.5937/fme2304606S
  30. Afsharpanah, M. Izadi, F. A. Hamedani, S. S. Mousavi Ajarostaghi, and W. Yaïci, Solidification of nano-enhanced PCM-porous composites in a cylindrical cold thermal energy storage enclosure, Case Stud. Therm. Eng., 39 (2022) 102421. https://doi.org/10.1016/j.csite.2022.102421.
  31. Arıcı, E. Tütüncü, Ç. Yıldız, and D. Li, Enhancement of PCM Melting Rate Via Internal Fin And Nanoparticles, Int. J. Heat Mass Transf., 156 (2020) 119845. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119845
  32. H. Mohamed, F. S. Soliman, H. El Maghraby, and Y. M. Moustfa, Thermal Conductivity Enhancement Of Treated Petroleum Waxes, As Phase Change Material, By Α Nano Alumina: Energy Storage, Renew. Sust. Energ. Rev., 70 (2017) 1052-1058. https://doi.org/10.1016/j.rser.2016.12.009
  33. M. Kumar, K. Mylsamy, K. Prakash, M. Nithish, and R. Anandkumar, Investigating Thermal Properties Of Nanoparticle Dispersed Paraffin (NDP) As Phase Change Material For Thermal Energy Storage, Mater. Today: Proc., 45 (2021) 745-750. https://doi.org/10.1016/j.matpr.2020.02.800
  34. Fathi and A. Hanifi, Evaluation And Characterization Of Nanostructure Hydroxyapatite Powder Prepared By Simple Sol–Gel Method, Mater. Lett., 61 (2007) 3978-3983. https://doi.org/10.1016/j.matlet.2007.01.028
  35. Agyenim, P. Eames, and M. Smyth, Experimental Study On The Melting And Solidification Behaviour Of A Medium Temperature Phase Change Storage Material (Erythritol) System Augmented With Fins To Power A Libr/H2O Absorption Cooling System, Renew. Energ., 36 (2011) 108-117. https://doi.org/10.1016/j.renene.2010.06.005
  36. J. Hosseini, M. Rahimi, and R. Bahrampoury, Experimental And Computational Evolution Of A Shell And Tube Heat Exchanger As A PCM Thermal Storage System, Int. Commun. Heat Mass Transf., 50 (2014) 128-136. https://doi.org/10.1016/j.icheatmasstransfer.2013.11.008
  37. J. Moffat, Describing The Uncertainties In Experimental Results, Exp. Therm. Fluid Sci., 1 (1988) 3-17. https://doi.org/10.1016/0894-1777(88)90043-X
  38. Brent, V. R. Voller, and K. Reid, Enthalpy-Porosity Technique For Modeling Convection-Diffusion Phase Change: Application To The Melting Of A Pure Metal, Numer. Heat Transf.; A: Appl., 13 (1988) 297-318. https://doi.org/10.1080/10407788808913615
  39. M. Mahdi and E. C. Nsofor, Solidification Of A PCM With Nanoparticles In Triplex-Tube Thermal Energy Storage System, Appl. Therm. Eng., 108 (2016) 596-604. https://doi.org/10.1016/j.applthermaleng.2016.07.130
  40. Sheikholeslami, Numerical Analysis Of Solar Energy Storage Within A Double Pipe Utilizing Nanoparticles For Expedition Of Melting, Sol. Energy Mater Sol. Cells, 245 (2022) 111856. https://doi.org/10.1016/j.solmat.2022.111856
  41. Li, A. Shahsavar, A. A. A. A. Al-Rashed, and P. Talebizadehsardari, Effect Of Porous Medium And Nanoparticles Presences In A Counter-Current Triple-Tube Composite Porous/Nano-PCM System, Appl. Therm. Eng., 167 (2020) 114777. https://doi.org/10.1016/j.applthermaleng.2019.114777
  42. Mourad et al., The numerical analysis of the melting process in a modified shell-and-tube phase change material heat storage system, J. Energy Storage, 55 (2022) 105827. https://doi.org/10.1016/j.est.2022.105827
  43. Bellos and C. Tzivanidis, Thermal Analysis Of Parabolic Trough Collector Operating With Mono And Hybrid Nanofluids, Sustain. Energy Technol. Assess., 26 (2018) 105-115. https://doi.org/10.1016/j.seta.2017.10.005
  44. Khanafer and K. Vafai, A Critical Synthesis Of Thermophysical Characteristics Of Nanofluids, Int. J. Heat Mass Transf., 54 (2011) 4410-4428. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048
  45. Sabah, Thermal and Hydrodynamic Characteristics of Hybrid Nano-Fluid Multiphase Flow in a Wavy Tube," Degree of Doctor of Philosophy, Mech. Eng. Dep., University of Technology, 2023.
  46. Batchelor, The Effect Of Brownian Motion On The Bulk Stress In A Suspension Of Spherical Particles, J. Fluid Mech., 83 (1977) 97-117. https://doi.org/10.1017/S0022112077001062
  47. Amani, P. Amani, A. Kasaeian, O. Mahian, and S. Wongwises, Thermal Conductivity Measurement Of Spinel-Type Ferrite Mnfe2o4 Nanofluids In The Presence Of A Uniform Magnetic Field, J. Mol. Liq., 230 (2017) 121-128. https://doi.org/10.1016/j.molliq.2016.12.013
  48. Al-Jethelah, S.H. Tasnim, S. Mahmud, Melting of nano-PCM in an enclosed space: Scale analysis and heatline tracking, Int. J. Heat Mass Transf., 119 (2018) 841-859. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.106
  49. V. Arasu and A. S. Mujumdar, Numerical study on melting of paraffin wax with Al2O3 in a square enclosure," Int. Commun. Heat Mass Transf., 39 (2012) 8-16. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.106
  50. O. Elsayed, Numerical Study On Performance Enhancement Of Solid–Solid Phase Change Materials By Using Multi-Nanoparticles Mixtures, J. Energy Storage, 4 (2015) 106-112. https://doi.org/10.1016/j.est.2015.09.008
  51. A. Alawi, N. A. C. Sidik, H. W. Xian, T. H. Kean, and S. N. Kazi, Thermal Conductivity And Viscosity Models Of Metallic Oxides Nanofluids, Int. J. Heat Mass Transf., 116 (2018) 1314-1325. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.133
  52. S. Vajjha and D. K. Das, Experimental Determination Of Thermal Conductivity Of Three Nanofluids And Development Of New Correlations, Int. J. Heat Mass Transf., 52 (2009) 4675-4682. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027
  53. Israa Y. Daood, Effects of Nano-Fluids Types, Volume Fraction of Nano-Particles, and Aspect Ratios on Natural Convection Heat Transfer in Right-Angle Triangular Enclosure, J. Eng. Technol., 28 (2010) 5365-5388.
  54. Patankar, Numerical Heat Transfer And Fluid Flow, Washington, DC: Hemisphere, 1980, Google Scholar| Crossref.
  55. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method. Pearson education, 2007.
  56. Voller, A. Brent, and K. Reid, A Computational Modeling Framework for the Analysis of Metallurgical Solidification Process and Phenomena, Solidification Processing 1987, Third Int, in Conf., Sheffield, England, 1987.
  57. R. Voller and C. Prakash, A Fixed Grid Numerical Modelling Methodology For Convection-Diffusion Mushy Region Phase-Change Problems, Int. J. Heat Mass Transf., 30 (1987) 1709-1719. https://doi.org/10.1016/0017-9310(87)90317-6
  58. Albojamal, H. Hamzah, A. Haghighi, and K. Vafai, Analysis Of Nanofluid Transport Through A Wavy Channel, Numer. Heat Transf.; A: Appl., 72 (2017) 869-890. https://doi.org/10.1080/10407782.2017.1412679
  59. D. Vo et al., Effectiveness Of Various Shapes Of Al2O3 Nanoparticles On The MHD Convective Heat Transportation In Porous Medium: CVFEM Modelling, J. Therm. Anal. Calorim., 139 (2020) 1345-1353. https://doi.org/10.1007/s10973-019-08501-4