Document Type : Research Paper

Authors

1 Production Engineering and Metallurgy Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq

2 Production Engineering and Metallurgy Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

Abstract

In this study, multi-structured coatings of biocompatible and antibacterial materials on a 316L stainless steel (SS) implant have been electrophoretically deposited for orthopedic applications. Two layers of composite coatings have been deposited; the first layer of composite coating biopolymer layer consists of (chitosan with Gelatin) and the second composite coating layer of bio-ceramic comprises Hydroxyapatite with chitosan. The first layer was deposited at (3 g/L concentration of Gelatin, 20 voltage, and 3 min and 0.5 g/L chitosan) parameters, and the second layer was deposited at (6 g/L, 40 voltage, 1 min, and 0.5 g/L chitosan) parameters. In this study, the stability of the suspension was evaluated using the Zeta potential test, which manifested good stability. The adhesion strength between the composite coatings' first layer and the 316L stainless steel substrate, as well as between the coating layers themselves, was determined using the Tape test, and the removal area for the first layer was 8.06% while for the second layer was 6.01%. The wettability test elucidated for the 316L stainless steel and first coating layer and the second coating layer, the second composite coating layer became super hydrophilic, and a very high wettability was exhibited with multilayer coating. Scanning electron microscopy showed that the surface's topology revealed a homogenous and defect-free composite coating. The result of the antibacterial efficiency of the 316L SS substrate improved as the number of coating composite layers increased, and the resistance to corrosion of 316L SS enhanced as the number of coating composite layers increased.

Graphical Abstract

Highlights

  • Novel multifunctional composite coating layers on a 316L SS substrate was fabricated
  • The first coating layer involves composite of biopolymer (Gelatin with chitosan)
  • The second composite coating layer was consist of bioceramic (HA) with chitosan
  • Enhanced antibacterial activity and corrosion resistance in the 316L stainless steel substrate
  • Contact angle  of the substrate becomes super hydrophilic after  coated with multilayer 

Keywords

Main Subjects

  1. Kose, R. Kacar, In vitro bioactivity and corrosion properties of laser beam welded medical grade AISI 316L stainless steel in simulated body fluid, Int. J. Electrochem. Sci., 11 (2011) 2762–2777. http://dx.doi.org/10.20964/110402762
  2. B. Goodman, Z. Yao, M. Keeney, F. Yang, The future of biologic coatings for orthopedic implants, Biomaterials, 34 (2013) 3174–3183..https://doi.org/10.1016/j.biomaterials.2013.01.074
  3. T. Aro, J.J. Alm, N. Moritz, T.J. Mäkinen, P. Lankinen, Low BMD affects initial stability and delays stem osseointegration in cement less total hip arthroplasty in women: a 2-year RSA study of 39 patients, Acta Orthop, 83 (2013) 107–114. .https://doi.org/10.3109/17453674.2012.678798
  4. Gristina, A., Naylor, P., and Myrvik, Q., Biomaterial centered infections: microbial adhesion versus tissue integration, in: T. Wadström, I. Eliasson, I. Holder, Å. Ljungh (Eds.), Pathog. Wound Biomater. Infect. SE-25, Springer, London, (1990)193–216. http://dx.doi.org/10.1007/978-1-4471-3454-1_25.
  5. Okuno, M. Sumita, Y. Ikada, and T. Tateishi, The history of metallic biomaterials, Metallic Biomaterials - Fundamentals and Applications, ICP, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Surgical Implants and other Foreign Bodies, Lyon, 74 (1999) 65-84.
  6. C. Wang, F. Chen, L.M. Huang, and C.J. Lin, Electrophoretic Deposition and Characterization of Nano-Sized Hydroxyapatite Particles, J. Mater. Sci., 40 (2005) 4955-4957. http://dx.doi.org/10.1007/s10853-005-3871-x
  7. Balamurugan, G. Balossier, J. Michel, and J.M.F. Ferreira, Electrochemical and Structural Evaluation of Functionally Graded Bioglass-Apatite Composites Electrophoretically Deposited onto Ti6Al 4V Alloy, Electrochim. Acta, 54 (2009) 1192-1198. https://doi.org/10.1016/j.electacta.2008.08.055
  8. S. Kumbar, T. C. Laurencin, and Meng Deng, Natural and Synthetic Biomedical Polymers, Newnes, 2014.
  9. Stoch, A. Brożek, G. Kmita, J. Stoch, W. Jastrzębski, and A. Rakowska, Electrophoretic Coating of Hydroxyapatite on Titanium Implants, J. Mol. Struct., 596 (2001) 191-200. https://doi.org/10.1016/S0022-2860(01)00716-5
  10. Liu , B. Zhang, K.M. Gray, Y. Cheng, E. Kim, G.W. Rubloff,W.E. Bentley, Q. Wang, G.F. Payne, Electrodeposition of a weak polyelectrolyte hydrogel: remarkable effects of salt on kinetics, structure and properties, Soft Matter., 9 (2013) 2703-2710. http://dx.doi.org/10.1039/C3SM27581G
  11. Song, Q. Chen, Y. Zhang, M. Diba, E. Kolwijck, J. Shao, J. A. Jansen, et al, Electrophoretic Deposition of Chitosan Coatings Modified with Gelatin Nanospheres to Tune the Release of Antibiotics, ACS Appl. Mater. Interfaces, 8 (2016) 13785-13792. https://doi.org/10.1021/acsami.6b03454
  12. Ben-Nissan, C. Chai, and L. Evans, Crystallographic and spectroscopic characterization and morphology of biogenic and synthetic Apatites, in Encyclopedic Handbook of Biomaterials and Bioengineering Vol. 1, Part B: Applications, eds. D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, and E.R. Schwartz, (Marcel Dekker Inc., New York,(1995) 191-221.
  13. Matsushita, and H. Takahashi, 17- Orthopedic Applications of Metallic Biomaterials, Met. Biomed. Devices, (2019) 431-73. https://doi.org/10.1016/B978-0-08-102666-3.00017-1
  14. Zhang, T. Jiang, K. Ma, X. Cai, Y. Zhou, Y. Wang, Low temperature electrophoretic deposition of porous chitosan/silk fibroin composite coating for titanium biofunctionalization, J. Mater. Chem., 21 (2011) 7705-7713. https://doi.org/10.1039/C0JM04164E
  15. Heise, M. Hohlinger, Y.T. Hernández, J.J.P. Palacio, J.A.R. Ortiz, V. Wagener, S. Virtanen, AR. Boccaccini, Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates, Electrochim. Acta , 232 (2017) 456-464. https://doi.org/10.1016/j.electacta.2017.02.081
  16. R. Boccaccini, S. Keim, R. Ma, Y. Li, and I. Zhitomirsky, Electrophoretic Deposition of Biomaterials, J. R. Soc. Interface, 7 (2010) S581-S613. https://doi.org/10.1098/rsif.2010.0156.focus
  17. Valdez, Alejandra, and A. R. Boccaccini, Innovations in Electrophoretic Deposition: Alternating Current and Pulsed Direct Current Methods, Electrochim. Acta, 65 (2012) 70-89. https://doi.org/10.1016/j.electacta.2012.01.015.
  18. Besra, and M. Liu, A Review on Fundamentals and Applications of Electrophoretic Deposition (Epd), Prog. Mater. Sci., 52 (2007) 1-61. https://doi.org/10.1016/j.pmatsci.2006.07.001
  19. J. Kadhim, N. E. Abdullatef, M.H. Abdulkareem, Optimization of Nano Hydroxyapatite/chitosan Electrophoretic Deposition on 316L Stainless Steel Using Taguchi Design of Experiments, Al-Nahrain J. Eng. Sci., 20 (2017) 1215-1227.
  20. Jasim, A. N. Enhancing The Mechanical Properties and Biological Characteristics of EPD Nano Composites Functionally Graded Organic/Inorganic Systems for Medical Applications, University of Technology Department of Production Engineering and Metallurgy, 2020.
  21. Mathina , E. Shinyjoy, S. Ramya, L. Kavitha , D. Gopi a, Multifunctional crab shell derived hydroxyapatite/metal oxide/ polyhydroxybutyrate composite coating on 316L SS for biomedical applications, Mater. Lett., 313 (2022) 131701. https://doi.org/10.1016/j.matlet.2022.131701
  22. Vaez, R. Emadi , S. Sadeghzade , H. Salimijazi , M. Kharaziha, Electrophoretic deposition of chitosan reinforced baghdadite ceramic nano-particles on the stainless steel 316L substrate to improve biological and physical characteristics, Mater. Chem. Phys., 282(2022) 125991 . https://doi.org/10.1016/j.matchemphys.2022.125991
  23. Mathew, G. Bhardwaj, Q. Wang, L. Sun, B. Ercan, M. Geetha, and T. J. Webster, Decreased Staphylococcus Aureus and Increased Osteoblast Density on Nanostructured Electrophoretic-Deposited Hydroxyapatite on Titanium without the Use of Pharmaceuticals, Int. J. Nanomed., 9 (2014) 1775-1781. https://doi.org/10.2147/ijn.s55733
  24. ASTM D7334-08: Standard practice for surface wettability of coatings, substrates and pigments by advancing contact angle measurement: active standard, Am. Soc. Test. Mater., 08 (2013) 1–3.
  25. Anon, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens., ASTM Spec. Tech. Publ., 90 (1985) 505–510.
  26. ASTM International, G5-14 Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic, 14 (2014) 1–8.
  27. Chapter 10 Microfluidic methods for measuring zeta potential. in Interface Science and Technology, 2 (2004)
  28. Predoi, S. L. Iconaru, M.V. Predoi , M. Motelica-Heino, R. Guegan , N. Buton, Evaluation of antibacterial activity of zinc-doped hydroxyapatite colloids and dispersion stability using ultrasounds, Nanomaterials, 9 (2019) 515. https://doi.org/10.3390/nano9040515
  29. C. Rattan, B.P.Singh, L. Besra, S. Bhattacharjee, Multiwalled carbon nanotubes reinforced hydroxyapatite-chitosan composite coating on Ti metal: corrosion and mechanical properties, J. Am. Ceram. Soc., 95 (2012) 2725–2731. https://doi.org/10.1111/j.1551-2916.2012.05195.x
  30. H. Abdulkareem, , A. H Abdalsalam, and A.J. Bohan, Influence of Chitosan on the Antibacterial Activity of Composite Coating (Peek/Hap) Fabricated by Electrophoretic Deposition, Prog. Org. Coat., 130 (2019) 251-259. https://doi.org/10.1016/j.porgcoat.2019.01.050
  31. P. Queiroz , R. S. de Molon, F. Á. Souza, R. Margonar, A. H. A. Thomazini, A. C. Guastaldi, E. Hochuli-Vieira, In Vivo Evaluation of Cp Ti Implants with Modified Surfaces by Laser Beam with and without Hydroxyapatite Chemical Deposition and without and with Thermal Treatment: Topographic Characterization and Histomorphometric Analysis in Rabbits, Clin. Oral Investig., 21 (2017) 685-699. https://doi.org/10.1007/s00784-016-1936-7
  32. Huang, G. Song, X. Chang, Z. Wang, X. Zhang, S. Han, Z. Su, H. Yang, D. Yang, X. Zhang. Nanostructured Ag+-Substituted Fluorhydroxyapatite-Tio2 Coatings for Enhanced Bactericidal Effects and Osteoinductivity of Ti for Biomedical Applications, Int. J. Nanomed., 13 (2018) 2665-2684. https://doi.org/10.2147/IJN.S162558
  33. Liu, J. Liue, J. Liu, S. Attarilar, C. Wang, M. Tamaddon, C. Yang, K. Xie, et al., Nano-Modified Titanium Implant Materials: A Way toward Improved Antibacterial Properties, Front. bioeng. Biotechnol., 8,2020,576969. https://doi.org/10.3389/fbioe.2020.576969
  34. Shen, J. Wang, and G. Xin, Effect of the Zeta Potential on the Corrosion Resistance of Electroless Nickel and Pvdf Composite Layers Using Surfactants , ACS omega, 48 (2021) 33122-33129. https://doi.org/10.1021%2Facsomega.1c05490
  35. Saleem, M. Wahaj, M. A. Akhtar, and M. A.U.Rehman, Fabrication and Characterization of Ag–Sr-Substituted Hydroxyapatite/Chitosan Coatings Deposited Via Electrophoretic Deposition: A Design of Experiment Study, ACS omega, 36 (2020) 22984-22992. https://doi.org/10.1021/acsomega.0c02582
  36. Molaei, M. Yari, and M. R. Afshar, Modification of Electrophoretic Deposition of Chitosan–Bioactive Glass–Hydroxyapatite Nanocomposite Coatings for Orthopedic Applications by Changing Voltage and Deposition Time, Ceram. Int., 10 (2015) 14537-14544. https://doi.org/10.1016/j.ceramint.2015.07.170
  37. Aydın, A. İ.Bahçepınar, M. Kırman, and M. A. Çipiloğlu, Ha Coating on Ti6al7nb Alloy Using an Electrophoretic Deposition Method and Surface Properties Examination of the Resulting Coatings, Coatings, 9 (2019) 402. https://doi.org/10.3390/coatings9060402
  38. Wu, P.M. Vilarinho, and A.I. Kingon, Electrophoretic Deposition of Lead Zirconate Titanate Films on Metal Foils for Embedded Components,  J. Am. Ceram. Soc., 89 (2006) 575-581. https://doi.org/10.1111/j.1551-2916.2005.00732.x
  39. G. Gristina, Biomaterial-Centered Infection: Microbial Adhesion Versus Tissue Integration, Science, 237 (1987) 1588-1595. https://doi.org/10.1126/science.3629258