Document Type : Research Paper

Authors

Materials Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

Abstract

The rapid growth in wireless telecommunication systems has spurred a strong interest in lightweight, compact, and cost-effective materials. One promising solution for achieving these characteristics is using polymer matrix ceramic-reinforced composites. In this context, complex oxide materials, specifically Zn1-xCuxWO4 (where x=0 and x=0.03), were used to reinforce three different polymer matrices: epoxy, polyurethane, and silicone rubber. The primary objective was to create composites with low loss factors and high dielectric constants, essential qualities for telecommunications systems. To create the complex oxides, the solid-state reaction method was employed. In particular, the X-ray diffraction (XRD) analysis confirmed that Zn0.97Cu0.03WO4 exhibited a monoclinic phase structure similar to that of ZnWO4. Moreover, the impact of substituting copper ions on the dielectric properties was thoroughly examined through Rietveld refinement of X-ray diffraction data. Subsequently, composite materials were prepared using a simple hand-mixing method with 5% and 10% volume fractions of Zn1-xCuxWO4 (x=0 and x=0.03) integrated into the three different polymer matrices. To this end, the study extensively analyzed how the filler content and its concentration influenced the dielectric properties of these composites. The dielectric properties were characterized within the C-band frequency range, specifically from 4 to 8 GHz, utilizing transmission/reflection measurements with a vector network analyzer (VNA). The results confirm the potential enhancement of Zn0.97Cu0.03WO4/polymer composites compared to ZnWO4/polymer composites. More precisely, 10% Vf. Zn0.97Cu0.03WO4/epoxy composite and 10% Vf Zn0.97Cu0.03WO4/polyurethane composite showed satisfactory properties with (ϵr= 1.36 x 102, tanδ= 4.72 x 10-1 at 7.1 GHz) and (ϵr= 1.18 x 102, tanδ= 4.72 x 10-1 at 7.1 GHz), respectively.

Graphical Abstract

Highlights

  • Novel Zn0.97Cu0.03WO4 excels in microwave composites, offering wireless communication efficiency at a low cost.
  • Dielectric properties measured (4-8) GHz via Vector Network Analyzer using transmission/reflection method.
  • Optimal outcomes achieved with 10% Vf. Zn0.97Cu0.03WO/epoxy & polyurethane composites, ensuring peak performance.

Keywords

Main Subjects

  1. Ohsato, Functional advances of microwave dielectrics for next generation, Ceram. Int., 38 (2012) 141-146. https://doi.org/10.1016/j.ceramint.2011.04.068
  2. Raveendran, M.T. Sebastian, S. Raman, Applications of microwave materials: A review, J. Electron. Mater., 48 (2019) 2601-2634. https://doi.org/10.1201/9781003459880-7
  3. J. Rothwell, R.O. Ouedraogo‏, Antenna miniaturization: definitions, concepts, and a review with emphasis on metamaterials,  J. Electromagn. Waves Appl.,  28 (2014) 2089-2123. https://doi.org/10.1080/09205071.2014.972470
  4. H. Kuo, C.C. Chang, T.Y. Su, W.K. Wang, Dielectric behaviours of multi-doped BaTiO3/epoxy composites,  J. Eur. Ceram. Soc., 21 (2001) 1171-1177. https://doi.org/10.1016/s0955-2219(00)00327-7
  5. H. Kuo, C.C. Chang, T.Y. Su, W.K. Wang, Dielectric properties of three ceramic/epoxy composites, Mater. Chem. Phys., 85 (2004)201-206. https://doi.org/10.1016/j.matchemphys.2004.01.003
  6. C. Manika, G.C. Psarras, Barium titanate/epoxy resin composite nanodielectrics as compact capacitive energy storing systems, EXPRESS Polym. Lett., 13 (2019) 749-758. https://doi.org/10.3144/expresspolymlett.2019.63
  7. Guo, X. Zhao, T. Herisson De Beauvoir, J.H. Seo, S.S. Berbano, A.L. Baker, C. Azina‏, Recent progress in applications of the cold sintering process for ceramic–polymer composites, Adv. Funct. Mater., 28 (2018) 1801724. https://doi.org/10.1002/adfm.201801724
  8. Qi, Q. Luo, J. Shen, L. Zheng, J. Zhou, W. Chen, Surface modification of BMN particles with silane coupling agent for composites with PTFE, Appl. Surf. Sci., 414 (2017)147-152. https://doi.org/10.1016/j.apsusc.2017.04.072
  9. Popielarz, C.K. Chiang, Polymer composites with the dielectric constant comparable to that of barium titanate ceramics, Mater. Sci. Eng. B, 139 (2007) 48-54. https://doi.org/10.1016/j.mseb.2007.01.035
  10. Dimos, S.J. Lockwood, R.W. Schwartz,Thin-film decoupling capacitors for multichip modules, IEEE  Trans. Compon. Packag. Manuf. Technol., Part A: 18 (1995) 174-179. https://doi.org/10.1016/0026-2714(96)84499-4
  11. R .Popielarz, C.K. Chiang, R. Nozaki, J. Obrzut, Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz, Macromolecules, 34 (2001) 5910-5915. https://doi.org/10.1021/ma001576b
  12. Ogitani, S.A. Bidstrup-Allen, P. Kohl, Development of high-K photo-definable epoxy composites for embedded capacitors, In Twenty Third IEEE/CPMT Int. Electron. Manufacturing Technol. Symp., (1998) 199-205. https://doi.org/10.1109/iemt.1998.731076
  13. Zhang, J. Zhang, S. Li, J. Liu, M. Dong, Y. Li, N. Lu, Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites, Compos.B:Eng., 176 (2019) 107338. https://doi.org/10.1016/j.compositesb.2019.107338
  14. C. Pullar, S. Farrah, N.M.N. Alford, MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics, J. European Ceram. Soc., 27 (2007) 1059-1063. https://doi.org/10.1016/j.jeurceramsoc.2006.05.085
  15. Lu, B. Quan, K. Zheng, P. Chu, J. Wang, G. Shen, Sc modification induced short-range cation ordering and high microwave dielectric performance in ZnGa2O4 spinel ceramics, J. Alloys Compd., 873 (2021) 159758. https://doi.org/10.1016/j.jallcom.2021.159758
  16. Wang, J. Lv, J. Wang, F. Shi, Z .Qi, Lattice vibrational characteristics, crystal structure and dielectric properties of Ba2MgWO6 microwave dielectric ceramic, Ceram. Int., 47 (2021) 17784-17788. https://doi.org/10.1016/j.ceramint.2021.02.224
  17. N. Sota, F.C. Ros, J. Hassan‏, Synthesis and characterisation of AWO4 (A= Mg, Zn) tungstate ceramics, J. Phys. Conf. Ser., 1083 (2018) 012002.https://doi.org/10.1088/1742-6596/1083/1/01200
  18. Ouhassan, S. Bri, M. Habibi‏, Complex permittivity of FeSiAl/Al2O3 ceramic composite at X-band frequencies, In E3S Web of Conferences, 297 (2021) 01013. https://doi.org/10.1051/e3sconf/202129701013
  19. Mabhouti, M. Karamirad, P. Norouzzadeh, Measurement of nickel doped zinc oxide NPs resonance frequencies and electromagnetic properties in X-Band, Phys. B: Condens. Matter, 602 (2021) 412532. https://doi.org/10.1016/j.physb.2020.412532
  20. H. Jiang, Y. Yuan, Microwave dielectric properties of SrAl2Si2O8 filled polytetrafluoroethylene composites, IOP Conf. Ser.: Mater. Sci. Eng., 479 (2019) 012090. https://doi.org/10.1088/1757-899x/479/1/012090
  21. K. Yoon, H.G. Lee, W.S. Lee, E.S. Kim, Dielectric properties of ZnNb2O6/epoxy composites, J. Electroceram.,30 (2013) 93-97. https://doi.org/10.1007/s10832-012-9737-0
  22. Dash, .RN.P. Choudhary, A .Kumar, M.N. Goswami‏, Enhanced dielectric properties and theoretical modeling of PVDF–ceramic composites, J. Mater. Sci. Mater. Electron., 30 (2019) 19309-19318. https://doi.org/10.1007/s10854-019-02291-z
  23. Hasan, N.S.M. Hussain, A.A.M. Faudzi, Cured epoxy resin dielectric characterization based on accurate waveguide technique, AIP Conf. Proc., 2129 (2019) 020080. https://doi.org/10.1063/1.5118088
  24. M. Seng, K.Y. You, F. Esa, M.Z.H. Mayzan‏, Dielectric and Magnetic Properties of Epoxy with Dispersed Iron Phosphate Glass Particles by Microwave Measurement, J. Microw. Optoelectron. Electromagn. Appl., 19 (2020) 165-176. https://doi.org/10.1590/2179-10742020v19i2824