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H I G H L I G H T S   A B S T R A C T  
• This study evaluated climate effects on 

Mosul Dam streamflow under 3 warming 
scenarios with 4 climate models. 

• Findings projected temperature rise and 
diverse precipitation changes by 2100 based 
on scenarios. 

• This research is the inaugural extensive 
examination of physical and meteorological 
traits in Iraq, Turkey, and Syria. 

 Climate change plays a crucial role in shaping the hydrological dynamics of 
rivers owing to its immediate implications on the driving meteorological 
parameters. Therefore, Understanding climate change and its implications is 
essential for sustainable water resource management. This study aims to assess 
the extent of climate change and its effects on streamflow in the Mosul Dam 
watershed Under three global warming Representative Concentration Pathways 
scenarios (i.e., 2.6, 4.5, and 8.5) based on mean climate data extracted from four 
Global Circulation Models (i.e., Beijing Climate Center, China, Commonwealth 
Scientific and Industrial Research Organization, Australia, Met Office Hadley 
Center, United Kingdom, and Norwegian Climate Center, Norway). For this 
purpose, the stochastic weather generator model (LARS – WG) and soil and 
water assessment tool (SWAT) were used. The hydrological model (SWAT) was 
calibrated and validated for 2001-2013 and 2014-2020, respectively. The 
performance of the swat model according to the four statistical parameters (i.e., 
coefficient of determination, Nash-Sutclife, Root mean square error to the 
standard deviation, and percent bias test) was classified as very good for two 
calibration and validation processes. Additionally, results showed that the mean 
temperature would probably rise by 1.3, 2.4, and 4.5°C under RCP 2.6, RCP 4.5, 
and RCP 8.5 at the end of this century, respectively. At the end of the century, 
the simulated average annual precipitation decreased from 772 mm/y to 756.7 
and 741.6 mm/y under RCP4.5 and RCP8.5, respectively. In contrast, under the 
RCP2.6 scenario, the mean annual precipitation increased to 803 mm/year. As a 
result, the projected mean annual streamflow decreased from 501.52 m3/s to 
429.7, 391.9, and 376.6 m3/s at the end of the century under RCP2.6, RCP4.5, 
and RCP8.5, respectively. Finally, the study region will potentially face water 
shortage due to climate change, exacerbated by population growth and increased 
water demands from agriculture and municipalities. Therefore, this paper 
emphasizes the need for reevaluating and adapting to accommodate changing 
streamflow patterns, ensuring a sustainable water supply for human needs while 
protecting the environment. 
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1. Introduction 
Climate change poses a worldwide challenge, impacting various aspects of life, including water resources. The emission of 

greenhouse gases, predominantly caused by human activities, contributes significantly to global warming, consequently 
affecting social and natural systems through climate alterations. The hydrological system is an essential component of the 
climate regime. As such, the negative consequences of climate change primarily manifest in water resources by disrupting the 
hydrological cycle through changes in evapotranspiration and precipitation patterns [1,2]. 

  In the late 20th century, the World Climate Research Program (WCRP) established the Coupled Model Intercomparison 
Project (CMIP) to facilitate climate change investigation. CMIP5, proposed by the WCRP, has become a commonly employed 
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framework for analyzing the trends and attributes of future climate change [3]. Currently, the Representative Concentration 
Pathways, i.e., RCP 2.6, RCP 4.5, and RCP 8.5 scenarios within CMIP5, are extensively utilized as climate simulation 
prediction models [4].  

Global Climate Models (GCMs), or atmospheric circulation models, effectively project climate trends for future periods. 
However, these models suffer from low spatial resolution, typically around 200 km × 200 km, which limits their ability to 
provide detailed information at regional scales. Additionally, the output data generated by different GCMs are large-scale grid 
data, leading to a lack of precision in predicting regional climate scenarios [5]. Hence, downscaling methods are necessary to 
achieve more accurate regional climate scenarios [6]. There are two frequently employed software tools for climate predictions 
and the downscaled analysis of past and future climate data: the Stochastic Weather Generator (LARS-WG) and Statistical 
Downscaling Models (SDSM) [7]. Statistical Downscaling Models (SDSM) can also analyze past climate data. The Long 
Ashton Research Station Weather Generator  LARS-WG model is a random weather generator. It is one of the most 
widespread models created to assess the effects of climate change. It has been committed to investigating various 
environmental circumstances, during which it has performed admirably compared to other generators [8]. Numerous 
investigations have been carried out to simulate various climatic variables such as air temperature, precipitation, and runoff 
using the combined approach of LARS-WG and GCMs [9-12]. 

Hydrological models are utilized to simulate future water cycles, with Global Climate Models (GCMs) providing projected 
precipitation and temperature data to drive these models. The choice of an appropriate hydrological model depends on factors 
such as the spatial scale of the model, basin characteristics, data availability, desired accuracy, research objectives, and ease of 
calibration [13]. However, the effectiveness of hydrological models decreases in basins with high elevations and limited 
measurement data, mainly when snowmelt significantly contributes to the water flow [14]. Hence, estimating runoff in such 
catchments poses significant challenges owing to the configuration of the catchment’s constraints. 

 In recent years, many hydrologic models have been developed, each with unique structural characteristics. Semi-
distributed models, out of all the many types of models, are normally the most successful for hydrological modeling. This is 
because semi-distributed models avoid problems commonly encountered with entirely distributed models and lumped models 
[15]. A prime instance of such a model is the Soil and Water Assessment Tool (SWAT), a commonly used model. The model 
is a complete, physically grounded parameter model that necessitates a multitude of input factors, including soil characteristics, 
topographical features, and plant characteristics [16]. The USDA Agriculture Research Service developed the method to assess 
the impact of land management strategies throughout extensive and intricate watersheds [17]. The SWAT model is extensively 
used in hydrologic research to evaluate and forecast both surface and subsurface flow patterns [18-22], a consideration of the 
consequences that climate change would have on streamflow [1,23,24] and the assessment of water quality [25,26], including 
nutrient loading, total daily peak concentrations, pesticides, and microorganisms. The SWAT hydrological model may be used 
not only in arid areas but also in semi-arid and humid regions, such as India, as described by Li and Fang [27], Tunisia, as 
described by Hemrassi et al. [28], Ghana, as described by Samuel et al. [29], and Laos, as described by Vilaysane et al. [30]. 

Iraq's water resources have significantly reduced over the last several decades. The water shortage situation in Iraq has 
been influenced by various factors, including the water policies implemented by surrounding nations, the impact of recent 
climatic changes, and the inadequate management of water resources inside the country. This mismanagement encounters 
challenges, including heightened water demand resulting from rapid population expansion, elevated river sediment levels, and 
the disregard for sanitation infrastructure. Consequently, improperly mixing wastewater with rainwater and subsequent direct 
discharge into rivers leads to pollution and degradation of their overall quality [31]. 

The Tigris River upstream of Mosul Dam in Iraq has little attention concerns with the impact of climate change on the 
water resources that enter the reservoir. To the best of my knowledge, limited studies were conducted to assess the water 
scarcity in the catchment. Further research is required to comprehensively understand the future water resources in the Mosul 
Dam Watershed, particularly in the context of global warming. This knowledge is crucial for developing effective strategies 
and plans to ensure the sustainable management of water resources in the region. Hence, the present study seeks to examine the 
ramifications of global warming on the forthcoming trajectory of the climatic and hydrological systems inside the Mosul Dam 
Watershed. As such, the study emphasizes the role of the watershed's temperature, precipitation, and streamflow as configuring 
parameters in shaping the water availability of the catchment.  

This study is the first thorough hydrological dynamics examination of the Mosul dam watershed, including the physical 
and climatic attributes of the surrounding riparian watersheds in Turkey and Syria, which distinguishes it from earlier research. 
To achieve the objective, the minimum and maximum temperatures and precipitation data collected from eight climate stations 
during the reference period of 2001–2020 were used. These recorded values were then projected into four future periods: 2021-
2040, 2041-2061, 2061-2080, and 2081-2100. The LARS-WG model was employed with four Global Climate Models (GCMs) 
and three Representative Concentration Pathways (RCPs) to carry out these projections. In addition, the researchers used the 
existing and anticipated climatic data to establish a SWAT-based model for evaluating the streamflow inside the Mosul Dam 
watershed.  

2. Material and methods 
In this study, material and methods are divided into six sub-divisions, including the study area, data collection, 

methodology, SWAT model description, and criteria for evaluation of the SWAT model and presented as follows: 

2.1 Study area 
The Tigris River spans a length of over 1800 kilometers and has its source in the Taurus Mountains, located in the eastern 

region of Turkey. The geographical location of the area in question is around 25 kilometers southeast of Elazig, with an 
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additional proximity of around 30 kilometers from the origin of the Euphrates River. As shown in Figure 1, the watershed of 
the Tigris River that is situated upstream of the Mosul dam has an estimated area of 54,300 km2 and is divided into three 
different regions. The upper stretch of the river can be found located upstream of the Illisu dam, while the middle section of the 
river can be found between the Illisu dam and the proposed Cizre dam [32]. In conclusion, the lower part may be found near 
the Cizre and Mosul dams. This research focused primarily on the southern section of the area included by the Iraq-Turkey-
Syria borders, as seen in Figure 1. Specifically, the study examined the region between the latitudes of 36º35ʹ20ʺ and 37º48ʹ00ʺ 
N and the longitudes of 41º46ʹ33ʺ and 43º29ʹ17ʺ E. The Mosul Dam is among the largest dams in Iraq. The location in question 
is situated 52 kilometers upstream of Mosul city, namely on the Tigris River, inside the western province of Nineveh [32]. The 
primary objectives of the dam are to facilitate the storage of surplus water for flood control, agriculture, and electricity 
production. The yearly generation of electrical power amounted to 1060 MW, while the historical data on water flow into the 
reservoir indicated that the highest, lowest, and average monthly inflow between 2001 and 2020 were around 2881, 77, and 
477 m3/sec, respectively. In this region, temperature records from climate stations indicate that the highest temperature was 
46ºC, observed in August, whereas the lowest temperature was recorded in January. The rainy season in this area typically 
commences in October and lasts until May. Furthermore, the annual rainfall in this region exceeds 1000 mm [33]. 

 
Figure 1: Location of Mosul Dam Watershed 

2.2 Data 

2.2.1 Meteorological data 
The historical daily weather data were downloaded from the selected eight meteorological stations across the watershed in 

Turkey and Iraq from 2001-2020, as illustrated in Table 1. The five weather data sources are provided by the Climate Hazards 
Group Infrared Precipitation with Station data (CHIRPS) and the National Aeronautics and Space Administration (NASA), 
respectively. 

Table 1: Geographical coordinates of the selected meteorological stations 

Station No. Lat. Long. Length of Record Location 
1 37º08ʹ00 42º43ʹ12ʺ 2001-2020 Iraq 
2 36º52ʹ12ʺ 43º00ʹ00ʺ 2001-2020 Iraq 
3 37º15ʹ36ʺ 43º10ʹ00ʺ 2001-2020 Iraq 
4 37º30ʹ00ʺ 42º54ʹ00ʺ 2001-2020 Turkey 
5 37º24ʹ00ʺ 42º30ʹ00ʺ 2001-2020 Turkey 
6 37º12ʹ00ʺ 42º24ʹ00ʺ 2001-2020 Turkey 
7 36º57ʹ00ʺ 42º30ʹ00ʺ 2001-2020 Iraq 
8 36º42ʹ00ʺ 42º45ʹ00ʺ 2001-2020 Iraq 

 

2.2.2 Digital elevation data 
This study used the Shuttle Radar Topography Mission (SRTM) version 3.0's digital elevation model (DEM) with a spatial 

resolution of 30 m (1-acre-second) to delineate the watershed of the Mosul dam, extract streams, and calculate sub-basins as in 
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source [34]. This information is visually shown in Figure 2. The Shuttle Radar Topography Mission (SRTM) dataset was 
obtained from the open topography website (https://portal.opentopography.org) in June 2022. The data was downloaded in a 
TIF file and first stored in the geographic coordinate system. Subsequently, the dataset was transformed and projected into the 
Universal Transverse Mercator (UTM) coordinate system. The catchment area included 11,108 square kilometers, with Iraq 
accounting for 48% of this area, Turkey for 44%, and Syria for 8%. 

2.2.3 Land use and soil data 
The land use/land cover map was downloaded from the climate data store website (https://land.copernicus.eu/global/.) for 

the year 2015, which has been defined using the United Nations Food and Agriculture Organization's (UN FAO) Land Cover 
Classification System (LCCS) with a spatial resolution of 100 m. The land cover in the watershed of Mosul Dam can be 
classified into seven distinct classes, as depicted in Figure 3. The major parts of the watershed's land use were pasture 
(52.26%) and agricultural land (36.15%). 

The study region's soil classification map was created using the Food and Agriculture Organization of the United Nations 
soil classification system's worldwide soil dataset (Fao, 1995), which provides data for over five thousand soil varieties at a 
one-to-five-million-scale In watershed modeling, soil type affects hydrological processes. FAO-UNESCO soil categorization 
comprised soil texture, accessible water content, bulk density, organic carbon content, and hydraulic conductivity (Fao, 1995). 
Before being included in the ArcSWAT2012 model for modeling, these characteristics must be examined. Figure 4 and Table 
2 demonstrate that 48.15%, 16.96%, and 34.89% of the Mosul Dam watershed's soil were loam, clay loam, and clay soil, 
respectively. 

 
Figure 2: Digital elevation map for Mosul dam watershed 

 
Figure 3: LU/LC map of Mosul dam watershed 

https://portal.opentopography.org/
https://land.copernicus.eu/
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Figure 4: Soil classification of Mosul Dam watershed 

Table 2: Soil types and Coverage area for the Mosul Dam watershed 

SWAT Soil Class Soil type Hydrologic Group of watershed  area% Area (Km2) 
I-Be-c-3093 Loam D 16.92 1880 
I-E-Xk-bc-3108 Loam D 10.39 1154.4 
I-Rc-Xk-c-3122 Loam D 20.84 2314.8 
Lc63-3bc-3191 Clay-Loam D 9.65 1072.3 
Vc1-3a-3276 Clay D 25.74 2859 
Vc47-3b-3277 Clay D 0.40 45 
Vc50-3ab-3279 Clay D 8.75 971.6 
Xk26-2-3a-3298 Clay-Loam D 0.04 4.24 
Xk29-ab-3301 Clay-Loam D 2.23 247.6 
Xy5-a-3323 Clay-Loam D 5.04 559.3 

2.2.4 Streamflow data 
 Al Dabbagh [35] and the Ministry of Water Resources/ General Directorate of Dams and Reservoirs provided the monthly 

inflow data for the Mosul Dam reservoir. Figure 5 illustrates the average monthly point source discharge to the watershed in 
the SWAT model for the period (2001-2020), which was derived based on the average monthly flow recorded at the Cizre 
gauge station. This gauge station is situated upstream in the Mosul watershed. 

 
Figure 5: Average monthly streamflow at Cizre station from 2001-2020 
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2.3 Representive concentration pathways scenarios 
Four scenarios RCPs (Representative Concentration Pathways), namely 2.6, 4.5, 6.5, and 8.5, were established to represent 

different radiative forcing levels, ranging from 2.6 to 8.5 W/m2. The radiative forcing magnitude depends on carbon dioxide 
emission levels [36]. This study utilized three RCP scenarios (RCP2.6, RCP4.5, and RCP8.5) representing low, medium, and 
high socioeconomic developments. These three scenarios have been widely employed in numerous studies assessing the 
impacts of climate change [3,38]. Four GCMs (i.e., BCC- CSM1-1, CSIRO_MK3.6, HaDGEM2-ES, and NorESM1-M) were 
chosen depending on the previous literature to reduce the uncertainty in projected climate data. 

As stated previously, the output of GCM models has little resolution and cannot be directly applied to the hydrological 
model. In this study, the LARS-WG model was chosen to downscale the output of the Four GCMs model for the period (2021-
2100). The LARS-WG model has been effectively utilized in various water resource applications with a positive outcome 
[39,40]. This model utilized a semi-empirical distribution to generate future weather time series by statistically analyzing 
records from a single weather station. 

2.4 Swat model description  
Soil and Water Assessment Tool (SWAT) is a comprehensive, physically based parameter that requires a lot of input 

parameters such as soil information, topography, and vegetation nature [41]. It was developed by the USDA Agriculture 
Research Service to measure the effect of land management techniques in sizable, complicated watersheds [42]. Using spatial 
datasets, SWAT divides the main basin into many subbasins, and each subbasin is subsequently divided into smaller units 
called Hydrologic Response Units (HRUs) that contain unique combinations of topography, LULC, and soil characteristics. 
Hydrologic simulation of any basin in the Soil and Water Assessment Tool passes through two phases. Firstly, in the land 
phase, the runoff is calculated based on the water balance equation for each Hydrologic Response Unit level as in Equation (1), 
and the results are combined for the basin [22]. 

 SWt = SWo +∑ (𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑄𝑄𝑆𝑆 − 𝐸𝐸𝑎𝑎 −𝑊𝑊𝑆𝑆 − 𝑄𝑄𝑔𝑔𝑔𝑔)𝑡𝑡
1   (1) 

Where SWt represents the water content of the soil in (mm), SWo represents the initial water content in soil (mm), t the 
time (day), Rday is the daily rainfall in (mm), Ea the evapotranspiration (mm), Ws represents the water stored in vadose (mm), 
Qg The amount of water returning from the ground to the surface (mm), and Qs represents the surface runoff (mm) that is 
calculated based on Soil Conservation Service  Curve Number method (SCS-CN). This method calculates the volume of runoff 
and peak value of surface runoff for each Hydrologic Response Unit as: 

 Er = (𝑅𝑅−0.2𝑟𝑟)2

(𝑅𝑅−0.8𝑟𝑟)
  (2) 

Er Excess rainfall is measured in  (mm), and the retention parameter (r) is measured in millimeters. The retention 
parameter (r ) is defined as follows and has the following correlation with the curve number of the average moisture condition 
for the day (CNII): 

   r = 25.4(1000
𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼

− 10) (3) 

Secondly, the SWAT model undertakes flow routing in the context of flow within channels and reaches. This involves 
predicting downstream water movement within channels or reaches. This prediction can be based on the variable storage 
coefficient method [43] or the Muskingum routing method. These approaches are routed in kinematic wave models. 

Soil and Water Assessment Tool calibration and uncertainty program (SWAT-CUP) was employed with the semi-
automated global search procedure, i.e., the Sequential Uncertainty Fitting version 2 (SUFI-2) algorithm, to calibrate and 
validate the SWAT model. This algorithm is characterized by achieving calibration results faster than the remainder of the 
algorithms included in this program, such as particle swarm [44]. 

Parameter uncertainties in a SUFI-2 calibration/uncertainty analysis encompass uncertainties from driving variables like 
rainfall, the model itself, parameters, and measured data such as flow. The effectiveness of accounting for these uncertainties is 
determined using the P-factor (percentage of measured data within the 95% prediction uncertainty, 95PPU) and the R-factor 
(ratio of average 95PPU band thickness to the standard deviation of measured data). These measures collaboratively minimize 
the uncertainty band to encompass a significant portion of measured data. Calibration aimed to derive optimal runoff 
parameters. 

2.5 Methodology 
This study calibrated and validated the SWAT model against the measured monthly inflow data into the Mosul Dam 

Reservoir. The model was set up using the relevant climate data of the base period of 2001-2020. After that, the LARS-WG 
was employed to downscale the future climate data up to 2100 from four Global Climate Models (BCC- CSM1-1, 
CSIRO_MK3.6, HaDGEM2-ES, and NorESM1-M) under three different RCP scenarios, i.e., RCP2.6, RCP4.5, and RCP8.5, 
respectively. The average downscaled climate data were fed into the calibrated SWAT model to assess the availability of water 
resources during four different future periods ( 2021-2040, 2041-2060, 2061-2080, and 2081-2100).  
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2.6 Evaluation criteria 
Four statistical criteria were used to evaluate the effectiveness of the Soil and Water Assessment Tool (SWAT) model 

simulation of the Mosul Dam Reservoir watershed. The ratio of the Root Mean Square Error (RMSE) to the standard deviation 
of observed data (STDobs) (RSR), the percent bias (Pbias), the Nash-Sutcliffe efficiency (NSE), and the coefficient of 
determination (R2) were among the criteria used. 

Nash-Sutcliffe efficiency (NSE) quantifies the degree to which the simulated value predicts the component of interest 
better than the mean observed value, with an NSE value of 1 showing ideal modeling. The NSE value ranges from (-∞) to 1, 
with values greater than or equal to 0, pointing to the replicated value predicting the component of interest with greater 
precision than the mean observed value. The NSE values were calculated using the following Equation: 

 NSE = 1 − ∑ (𝑄𝑄𝑖𝑖−𝑀𝑀𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ (𝑄𝑄𝑖𝑖−𝑄𝑄𝑎𝑎)2𝑁𝑁
𝑖𝑖=1

  (4)  

The variables Qi and Mi represent the observed and simulated stream flow values for the ith pair of stream flow values. Qa 
denotes the mean value of the observed stream flow values, whereas N represents the total number of paired stream flow data. 

The root mean square error ratio to the observed data's standard deviation is a statistical measure used to evaluate a 
model's or prediction's accuracy. The simulation will take input values of RSR that are below 0.5. The aforementioned 
equation was used to compute the RSR values: 

 RSR = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜

 = 
�∑ (𝑄𝑄𝑖𝑖−𝑀𝑀𝑖𝑖)2𝑁𝑁

𝑖𝑖=1

�∑ (𝑄𝑄𝑖𝑖−𝑄𝑄𝑎𝑎)2𝑁𝑁
𝑖𝑖=1

  (5) 

The percent bias test is used to ascertain whether or not the general trend of the modeled data is more or less than that of 
the data that has been observed. If the Pbias values are zero, the modeled data is superior to the real data on average. On the 
other hand, negative numbers suggest that the average of the modeled data is lower than the average of the observed data. 
When the value of Pbias is equal to zero, the simulation will behave in the expected way and display the usual features. The 
values for Pbias were derived by applying the following equation to the data: 

 Pbias=
∑ (𝑄𝑄𝑖𝑖−𝑀𝑀𝑖𝑖)𝑁𝑁
𝑖𝑖=1
∑ 𝑄𝑄𝑖𝑖𝑁𝑁
𝑖𝑖=1

 (6) 

The coefficient of determination, often known as R2, is a statistical tool that evaluates how effectively a model replicates 
observed data based on the percentage of the total variance accounted for. R2 values may vary from 0 to 1, with closer to 1 
indicating greater model performance. The range of R2 values can be thought of as a continuous scale. To compute the R2 
values, the following Equation was utilized: 

 R2 = [∑ (𝑄𝑄𝑖𝑖−𝑄𝑄𝑎𝑎)(𝑀𝑀𝑖𝑖−𝑀𝑀𝑎𝑎)]𝑁𝑁
𝑖𝑖=1

2

∑ (𝑄𝑄𝑖𝑖−𝑄𝑄𝑎𝑎)2𝑁𝑁
𝑖𝑖=1  ∑ (𝑀𝑀𝑖𝑖−𝑀𝑀𝑎𝑎)2𝑁𝑁

𝑖𝑖=1
  (7) 

where Ma The mean value of the modeled stream flow. 

3. Results and discussion 

3.1 Future trends in climate variables 
The anomaly of the downscaled monthly temperature and precipitation data from the ensemble mean of the GCMs under 

three RCPs scenarios of the eight stations across the Mosul dam catchment area compared to the future evaluated periods were 
plotted as shown in Figures 6 and 7. As can be seen from Figure 6 (a-f), there is an increasing trend in temperatures averaged 
over the entire basin. The higher increase was noticed under RCP 8.5. At the same time, the lowest increase was obtained from 
RCP2.6.  

From Figure 6, the lowest difference (increase) in minimum and maximum temperatures occurred in December for all 
future periods under three greenhouse gas emission scenarios. On the other hand, the highest increase in minimum and 
maximum temperatures fluctuated between May and July for all future periods under three different scenarios. These results 
were consistent with the results presented by Saeed [45] and Haithem and Al-Mukhtar [46]. 

Figure 7 (a-c). shows the future trend in precipitation. The future trend in the predicted precipitation for the Mosul Dam 
watershed was generally decreased. For example, under all three scenarios, the highest decrease in precipitation occurred in 
May for future periods (i.e., 2021-2040,2041-2060, 2061-2080, and 2081-2100), respectively. However, a significant increase 
in predicted precipitation over the Mosul Dam watershed under RCP2.6 and RCP8.5 reached 20% and 15% for the same future 
period (2021-2040), respectively. 
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3.2 Sensitivity analysis of swat model 
 Twenty hydrological factors were examined to identify the key parameters that contribute to the accurate modeling of 

stream flow in the watershed of the Mosul reservoir dam. Sequential Uncertainty Fitting version 2 (SUFI2) method, a semi-
automated global search process, was utilized in the calibration and uncertainty program of the Soil and Water Assessment 
Tool (SWAT). Based on the statistical parameters, namely the p-value and t-stat value, it was observed that six hydrological 
parameters exhibited significant sensitivity in the calibration of the Mosul Dam reservoir watershed model. These findings are 
shown in Table 3. Parameters were deemed to possess significant sensitivity when the P-value was below 0.1. The most 
sensitive parameters were the curve number factor (CN2), the baseflow alpha factor (ALPHA_BF), the effective hydraulic 
conductivity in main channel alluvium (CH_K2), the soil available water capacity (SOL_AWC), the snowfall temperature 
(SFTMP), and the snowmelt base temperature (SMTMP). 

Table 3: Watershed sensitivity analysis of the Mosul Dam Model parameters for runoff calibration 

Parameter  Rank P - Value t- value Initial values Final values Fitted value 
ALPHA_BF 1 0.00 16.9 0– 1 0.12 -  0.87 0.69 
SMTMP 2 0.00 -13.68 -5 - 5 -3.1   -    3.6 2.66 
CN2 3 0.00 -7.3 -0.3 - 0.3 -0.15 – 0.03 -0.10 
SFTMP 4 0.00 -5.78 -5 - 5 -3.23   -   3.96 9.39 
SOL_AWC(..) 5 0.02 2.24 -0.5 – 0.5 -0.12   -   0.33 0.10 
CH_K2 6 0.04 -2.03 100-200 115.24- 155.62 147.27 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6: Future Differences in Min and Max. Temperatures for the Mosul Dam watershed under three scenarios (a): Difference in 
Min. Temp under RCP2.6, (b) Difference in Max. Temp under RCP2.6, (c): Difference in Min. Temp under RCP4.5, 
(d): Difference in Max. Temp under RCP4.5, (e): Difference in Min. Temp under RCP8.5, and (f): Difference in Max. 
Temp under RCP8.5 
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(b) 

 
(c) 

Figure 7: Future trend in precipitation for Mosul Dam watershed under different scenarios, (a): RCP2.6 Scenario, (b):  
                       RCP4.5 Scenario, and (c): RCP8.5 Scenario 
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3.3 Calibration, validation, and model performance 
The SWAT model was calibrated and validated against the measured monthly inflow data into the Mosul Dam Reservoir, 

spanning from 2001 to 2020. The streamflow data collected from 2001 to 2013 were used for calibration purposes, whereas the 
data from 2014 to 2020 were employed for validation. The SWAT-CUP software was executed many times throughout the 
calibration process, including 700 simulations for each iteration. The calibrated parameter ranges were selected based on the 
results obtained from the last iteration, as seen in Table 3. The results of Nash-Sutclife (NSE) and Coefficient of determination 
(R2) for calibration and validation processes were consistent with the results of the monthly runoff simulation on different 
studied watersheds conducted by various researchers such as Al-Kaky et al. [22], Wu and Chen. [47], and Robert et al. [48].  

The validation procedure was conducted using the same parameters, without altering their ranges, and with a consistent 
number of simulations. Figures 8 and 9 depict the streamflow time series over the calibration and validation period, 
showcasing the measured and simulated data. Additionally, Figures 9a and 9b illustrate the correlation between the measured 
and modeled streamflow for two consecutive periods ( calibration and validation). 

To determine whether or not the SWAT model for the Mosul Dam watershed is accurate, it was required to use the 
parameters for statistical analysis provided by Moriasi et al. [49]. This was the case. Calculations for the present and the past 
were used to analyze these variables, as evidenced by Table 4, which displays the results. Based on the values of these 
parameters, it was determined that the accuracy of the Mosul Dam Reservoir catchment model was extremely high during both 
the calibration and validation periods. 

 
Figure 8: Observed and Modeled streamflow time series for Mosul Dam watershed 

 
(a) 

 
(b) 

Figure 9: Relationship between Observed and Simulated stream flow for (a) Calibration period, (b) Validation period 

Table 4: Statistical parameters for calibration and validation periods 

Period  NSE R2 RSR Pbias (%) 
Calibration period (2001 – 2013) 0.97 0.97 0.17 0.1 
Validation period (2014 – 2020) 0.94 0.93 0.26 1.8 
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3.4 Future trend of streamflow 
The calibrated SWAT model was further employed to assess the future behavior of the Mosul dam catchment area using 

climate data from four GCMs. The anomaly of the monthly future streamflow concerning the baseline period was calculated. 
The results of the future average monthly streamflow under three RCP scenarios are shown in Figure 10 (a-c). The average 
data of the global circulation models were considered in calculating the streamflow of the Mosul Dam watershed to avoid 
biased results in some models. The mean annual streamflow of the watershed in the baseline period was 501.52 m3/sec, with a 
peak value of 1253.3 m3/sec in April. As such, the mean annual streamflow tends to decrease to 438.2, 399.7, 410.4, and 429.7 
m3/sec under the RCP2.6 scenario for 2021-204, 2041-2060, 2061-2080, and 2081-2100, respectively. Similarly, the decrease 
in mean annual streamflow will be more noticeable under the RCP4.5 scenario (i.e., 409.6, 397.5, 390.5, 391.9 m3/sec for 
2021-204, 2041-2060, 2061-2080, and 2081-2100, respectively). Additionally, under RCP8.5 scenarios, the mean annual 
streamflow tends to decline to 398.4, 391, 376.4, and 376.6 m3/sec for 2021-204, 2041-2060, 2061-2080, and 2081-2100, 
respectively.  

The future monthly streamflow changes in the Mosul Dam watershed under three RCP scenarios are shown in Figure 11 
(a-c). The highest decrease in streamflow occurred in November under three scenarios for all future periods. Conversely, the 
smallest decrease in streamflow exhibited variability across all scenarios considered in this study throughout future periods. 
The results of this study were consistent with the results in [46]. 

 
(a) 

 
(b) 

 
(c) 

Figure 10: Mean monthly simulated future streamflow under different scenarios of global warming, (a): RCP2.6 
                             Scenario, (b): RCP4.5 Scenario, and (c): RCP8.5 Scenario 
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(a) 

 
(b) 

 
(c) 

Figure 11: Monthly Change in future streamflow under different global warming scenarios,(a):RCP2.6  
                                     Scenario, (b): RCP4.5 Scenario, and (c): RCP8.5 Scenario 
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4. Conclusions and Recommendations  
 This study investigates the relationship between the impact of climate changes and streamflow in the Mosul Dam 

watershed over four periods, i.e., 2021-2040, 2041-2060, 2061-2080, and 2081-100, considering three global warming 
scenarios (three Representative Concentration Pathways (RCPs), 2.6, 4.5, and 8.5) of four global circulation models were 
ensemble to assess the future water resources behavior of the catchment. To this end, the SWAT model coupled with the 
statistical downscaled climate data from the LARS-WG was run, and the results were compared to the baseline period of 2001-
2020. According to the results of this study, the most important conclusions are: 

 Mosul Dam watershed has suffered from high dryness and temperatures at the end of the century due to climate 
changes induced by global warming.  

 Due to the decrease in rainfall at the end of the century under climate change scenarios,  the study proved that there 
would be a significant decrease in the expected streamflow. 

 The study also highlights the substantial influence of CN2, groundwater, soil, and snow parameters on streamflow in 
watersheds, being the most sensitive parameter affecting the hydrological behavior of the catchment. 

 The watershed will face a water shortage due to climate change, exacerbated by population growth and increased water 
demands from agriculture and municipalities. Therefore, this paper recommends reevaluating and adapting the plans 
for water resource management to accommodate the changes in streamflow patterns and ensure a sustainable water 
supply for human needs while protecting the environment.   
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