Document Type : Research Paper

Authors

1 Department of Industrial Physics, Abia State University, Uturu, Abia State, P.M.B. 2000, Nigeria.

2 Department of Physics, Federal University of Technology Owerri, Imo State, P.M.B. 1526, Nigeria

Abstract

This study was designed to investigate how some important physical properties of Plaster of Paris (POP) ceilings are affected by the utilization of untreated oil palm mesocarp fiber (UOPMF) and treated oil palm mesocarp fiber (TOPMF) as a modifier. Both fibers were utilized separately at various weight proportions (0, 10, 20, 30, and 40%) to fabricate the ceiling samples. The samples were dried completely and then tested for water absorption, porosity, bulk density, thermal conductivity, specific heat capacity, thermal diffusivity, heat flow time, and flakiness. All the samples could improve thermal insulation performance better than conventional ceilings like asbestos and polyvinyl chloride (PVC). However, the UOPMF enhanced a greater potential than the TOPMF over the control sample. Loading up to 30% of the fiber was optimum for a good blend, considering the resistance to wear offered by the samples.

Graphical Abstract

Highlights

  • The effect of chemical modification of oil palm mesocarp fiber is considered.
  • The effect of the sample’s thickness on heat flow time is investigated.
  • The properties of the POP composites depend on the proportion of the fiber.  

Keywords

Main Subjects

  1. E. Etuk, A.N. Ikot, N.J. George, S.D. Ekpe, E.U. Nathaniel, Comparative Study of Thermal Conductivity Values of Different Percentage Compositions of Ground Arachis hypogea(Groundnut) Husk and Vigna unguiculata (Beans) Husk Compressed Fiberboards, J. Therm. Sci. Eng. Appl., 8 (2016) 1–4. https://doi.org/10.1115/1.4031887
  2. H. Esmaeilkhanian, F. Sharifianjazi, E. Ahmadi, A. Ijadi, H. Meskher, R. Zarei, M. Nili-Ahmadabadi, M. Irandoost, N. Karimi, A. Ghiasvand, Thermal barrier coating with improved durability: An overview of doped, nanostructured, multilayered, and gradient-structured zirconia-based thermal barrier coatings, Materialstoday Communication, 37 (2023) 107514. https://doi.org/10.1016/j.mtcomm.2023.107514
  3. O. Ojoko, H.O. Abubakar, O. Ojoko, E. Ikpe, Sustainable Housing Development in Nigeria: Prospect and Challenges, J. multidiscip. Eng. Sci.Technol., 3 (2016) 4851 – 4860
  4. W. Robert, S.E. Etuk, O.E. Agbasi, S.A. Ekong, Z.T. Abdulrazzaq, A.U. Anonaba, Investigation of Thermal and Strength Properties of Composite Panels fabricated with Plaster of Paris for Insulation in Buildings, Int. J. Thermophys., 42 (2021) 25. https://doi.org/10.1007/s10765-020-02780-y
  5. E. Etuk, U.W. Robert, O.E. Agbasi, N.J. Inyang, Evaluation of Thermophysical and Strength Properties of Composite Panels Produced from Sugarcane Bagasse and Waste Newspapers, Adv. Mater. Sci., 23 (2023) 19 – 31. https://doi.org/10.2478/adms-2023-0002
  6. W. Robert, S.E. Etuk, O.E. Agbasi, S.A. Ekong, Properties of Sandcrete Block produced with Coconut Husk as Partial Replacement of Sand, J. Build. Mater. Struct., 7 (2020) 95 – 104. https://doi.org/10.5281/zenodo.3993274
  7. P. Umoren, U.S. Okorie, A.C. Casmir, E.B. Umoren, Recycling of Waste Cartons and Musanga Cecropioides Heartwood into Composite Panels for Structural Application, Science, J. Eng. Technol., 3 (2023) 75–83. https://doi.org/10.54327/set2023/v3.i2.89
  8. A. Ekong, D.A. Oyegoke, A.A. Edema, U.W. Robert, Density and water absorption coefficient of sandcrete blocks produced with waste paper ash as partial replacement of cement, Adv. Mater. Sci. Eng., 22 (2022) 85–97. https://doi.org/10.2478/adms-2022-0021
  9. W. Robert, S.E. Etuk, O.E. Agbasi, U.S. Okorie, Z.T. Abdulrazzaq, A.U. Anonaba, T. Ojo, On the hygrothermal properties of sandcrete blocks produced with sawdust as partial    replacement of sand, J. Mech. Behav. Mater.               , 30 (2021) 144–155. https://doi.org/10.1515/jmbm-2021-0015
  10. B. Ochang, P.R. Jubu, A.N. Amah, J.L. Oche, Investigation of thermal properties of fabricated Plater of paris – Rice Husk Ash composites with varying matrix-filler volumes fractions for thermal insulation application, Am. J. Eng. Res., 7 (2018) 215–222
  11. Mórales-Segura, C. Porras-Amores, P. Villoria-Sáez, D. Caballol-Bartolomé, Characterization of Gypsum Composites Containing Cigarette Butt Waste for               Building Applications, Sustainability, 12 (2020) 1–13. https://doi.org/10.3390/su12177022
  12. W. Robert, S.E. Etuk, U.A. Iboh, G.P. Umoren, O.E. Agbasi, Z.T. Abdulrazzaq, Thermal and Mechanical properties of fabricated Plaster of Paris filled with groundnut seed coat and waste newspaper materials for structural application,  Építôanyag, J. Silic. Bas. Comp. Mate., 72 (2020) 72–78. https://doi.org/10.14382/epĩtõanyag-jsbcm.2020.12
  13. P. Umoren, A.O. Udo, I.E. Udo, Suitability of Lagenaria brevifloraRind filled plaster of Paris ceilings for building design, Researchers’ J. Sci. Technol., 3 (2023) 1–14.
  14. P. Fantilli, D. Jóźwiak-Niedźwiedzka, P. Denis, Bio-fibres as a reinforcement of gypsum composites, Materials, 14 (2021) 1–14. https://doi.org/10.3390/ma14174830
  15. A. Pedreño-Rojas, M.J. Morales-Conde, F. Pérez-Gálvez, C. Rodríguez-Liñán, Eco-efficient acoustic and thermal conditioning using false ceiling plates made from plaster and wood waste, J. Cleaner Prod., 166 (2017) 690–705. https://dx.doi.org/10.1016/j.jelepro.2017.08.077
  16. F.A.A. Rizal, M.F. Ibrahim, M.R. Zakaria, S. Abd-Aziz, P.L. Yee, M.A. Hassan, Pre-treatment of Oil Palm Biomass for Fermentable Sugars Production, Molecules, 23 (2018) 1381. https://doi.org/10.3390/molecules23061381
  17. S.H. Md Yunos, A.S. Baharuddin, K.F. Md Yunos, M.N. Naim, H. Nishida, Physiochemical property changes of oil palm mesocarp fibers treated with high-pressure steam, BioResources, 7 (2012 ) 5983 – 5994
  18. Kabir, A.T. Mohd Din, B.H. Hameed, Pyrolysis of oil palm mesocarp fiber catalyzed with steel slag-derived zeolite for bio-oil production, Bioresour. Technol., 2017. https://doi.org/10.1016/j.biortech.2017.09.190
  19. F. Olusunmade, D.A. Adetan, C.O. Ogunnigbo, A Study on the Mechanical Properties of Oil Palm Mesocarp Fiber-Reinforced Thermoplastic, J. Compos., (2016) Article ID 3137243. http://dx.doi.org/10.1155/2016/3137243
  20. Meskher, S.B. Belhaouari, K. Deshmukh, C.M. Hussain, F. Sharifianjazi, A MagnetiteComposite of Molecularly Imprinted Polymer and Reduced Graphene Oxide for Sensitive and Selective Electrochemical Detection of Catechol in Water and Milk Samples: An Artificial Neural Network (ANN) Application, J. Electrochem. Soc., 170 (2023) 047502.https://doi.org/10.1149/1945-7111/acc97c
  21. E. Etuk, U.W. Robert, O.E. Agbasi, Thermophysical properties of oil empty fruit bunch peduncle for use as a mulching material, J.Oil Palm Res., (2022). https://doi.org/10.21894/jopr.2022.0065
  22. W. Robert, S.E. Etuk, O.E. Agbasi, Modified Water Displacement Method and its Use for Determination of Bulk Density of Porous Materials, J. Renew. Energy Mech., 1 (2019) 1–16. https://doi.org/10.25299/rem.2029.vol1(01).2292
  23. W. Robert, S.E. Etuk, O.E. Agbasi, U.S. Okorie, Quick Determination of Thermal Conductivity of Thermal Insulators using a Modified Lee – Charlton’s Disc Apparatus Technique, Int. J. Thermophys., 42 (2021) 113. https://doi.org/10.1007/s10765-021-02864-3
  24. W. Robert, S.E. Etuk, O.E. Agbasi, U.S. Okorie, N.E. Ekpenyong, A.U. Anonaba,On the Modification of Lee – Charlton’s Disc Apparatus Technique for Thermal Conductivity Determination, Res., J. Sci. Technol., 2 (2022) 1–17
  25. E. Etuk, U.W. Robert, O.E. Agbasi, Design and Performance evaluation of a device for determination of specific heat capacity of thermal insulators, Beni-Suef University, J. Basic Appl. Sci., 9 (2020) 1–7.https://doi.org/10.1186/s43088-020-00062-y
  26. S. Okorie, U.W. Robert, U.A. Iboh, G.P. Umoren, Assessment of the suitability of tiger nut fiber for structural applications, J. Renew. Energy Mech., 3 (2020) 32–39. https://doi.org/10.25299/rem.2020.vol3(01).4417
  27. E. Etuk, L.E. Akpabio, I.O. Akpan, Comparative Study of Thermal transport in Zea mays straw and Zea maysheartwood (cork) boards, Thermal Science, 14 (2010) 31–38
  28. E. Etuk, O.E. Agbasi, Z.T. Abdulrazzaq, U.W. Robert, Investigation of thermophysical properties of Alates (swarmers) termites wing as potential raw material for insulation, Int. J. Scientific World, 6 (2018) 1–7. https://doi.org/10.14419/ijsw.v6i1.8529
  29. W. Robert, S.E. Etuk, J.B. Emah, O.E. Agbasi, U.A. Iboh, Thermophysical and Mechanical Properties of Clay-Based Composites developed with Hydrothermally Calcined Waste Paper Ash Nano-material for Building Purposes, Int. J. Thermophys.,43 (2022) 1–20. https://doi.org-/10.1007/s107650-22-02995-1
  30. M Rahman, M.A. Khan, Surface treatment of coir (cocos nucifera) fibers and its influence on the fiber’s physic-mechanical properties, Composite Science and Technology, 67 (2007) 2369–2376. https://doi.org/10.1016/j.comscitech.2007.01.009
  31. [31] M.Y. Hashim, A.M. Amin, O.M.F. Marwah, M.H. Othman, M.R.M. Yunus, N.C. Huat, The effect of alkali treatment under various conditions on physical properties of kenaf fiber, International Conference on Materials Physics and Mechanics, 914 (2017) 012030
  32. R.E. Rajput, Heat and Mass Transfer. 6th Revised edn. S. Chand & Company PVT Ltd, Ram Nagar, New Delhi, p. 15 (2015)
  33. J. George, V.I. Obianwu, G.T. Akpabio, I.B. Obot, Comparison of thermal insulation efficiency of some selected materials used as ceiling in building design, Arch. Appl. Sci. Res., 2 (2010) 253–259
  34. Twidell, T. Weir, Renewable Energy Resources, E and F.N. Spon, London, pp. 41 (1990)
  35. W. Robert, S.E. Etuk, O.E. Agbasi, U.S. Okorie, A. Lashin, Hygrothermal properties of sandcrete blocks produced with raw and hydrothermally-treated sawdust as partial substitution materials for sand, J. King Saud Univ. Eng. Sci., (2021). https://doi.org/10.1016/j.jksues.2021.10.005
  36. Berge, Asbestos Fundamentals, Origin and Properties. McGraw-Hill, London, p. 56 (1963)