Document Type : Research Paper


1 Chemical Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 NYUAD Water Research Centre, New York University Abu Dhabi Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates.

3 Chemical Engineering Dept., College of Engineering, University of Qatar, Doha, Qatar.

4 School of Chemical Engineering, Universiti Sains Malaysia (USM)14300 Nibong Tebal, Penang, Malaysia.


The present study harnessed a commercially available polydimethylsiloxane (PDMSTM4060) membrane designed for the selective separation of soluble benzene (C6H6) and toluene (C7H8) compounds from an aqueous solution employing pervaporation (PV). Two distinct mathematical models, namely the universal quasi-chemical (UNIQUAC) model and the conventional driving force model, were formulated to replicate the intricate transport mechanisms of both organic solvent and water across these membranes. These models were instrumental in projecting the membrane's performance across diverse operational scenarios. The anticipated results were rigorously compared with experimental data to validate the projected outcomes for non-ideal volatile organic compounds (VOCs)-water systems within the membrane. Correlations pertaining to diffusivity were derived from the model and experimental pervaporation data. Utilizing the UNIQUAC theory and derived diffusivity correlations enabled the estimation of VOCs and water permeation through the commercial membrane. Notably, for the PDMSTM4060 membrane, the established diffusivity correlations for VOCs and water were contingent upon temperature variations and the activity of VOCs. The anticipated permeation flux of VOCs and water through the membranes was prognosticated using the mass transport model in conjunction with the established diffusivity correlations. The resultant findings showcased a robust concurrence between the predictive model and the empirical data, affirming the reliability of the proposed approach.

Graphical Abstract


  • This study separated benzene and toluene using a PDMSTM4060 membrane.
  • The UNIQUAC and conventional driving force models adequately predicted VOC and water permeation.
  • VOC temperature and activity were important elements in the diffusivity correlations.


Main Subjects

  1. H. Rasheed, S. S. Ibrahim, Q. F. Alsalhy, and H. Sh. Majdi , Polydimethylsiloxane (PDMS) Membrane for Separation of Soluble Toluene by Pervaporation Process, Membr. J., 13 (2023) 289.
  2. K. Abbas, K.T. Rashid, S. Al-Saady, A.A. Alsarayrehd, A. Figoli, Q.F. Alsalhy, Decontamination of Aqueous Nuclear Waste via Pressure-driven Membrane Application–A Short Review, Eng. Technol. J., 41 (2023) 1152- 1174.
  3. Shukla, J. Méricq, M. Belleville, N. Hengl, N. Benes, I. Vankelecom, J.S. Marcano, Process intensification by coupling the Joule effect with pervaporation and sweeping gas membrane distillation, J. Membr. Sci., 545 (2018) 150-157.
  4. Rezakazemi, M. Sadrzadeh, T. Mohammadi, Separation via pervaporation techniques through polymeric membranes, Transport properties of polymeric membranes, Elsevier Amsterdam, 2018, pp. 243-263.
  5. L. Oatley-Radcliffe, S. Al-Aani, P.M. Williams, N. Hilal, Chapter 15 - Mass Transport in Porous Liquid Phase Membranes, in: N. Hilal, A.F. Ismail, T. Matsuura, D. Oatley-Radcliffe (Eds.), Membrane Characterization, Elsevier 2017, pp. 337-358.
  6. M. Vane, F.R. Alvarez, Vibrating pervaporation modules: Effect of module design on performance, J. Membr. Sci., 255 (2005) 213-224.
  7. Lipnizki, G. Trägårdh, Modelling of pervaporation: Models to analyze and predict the mass transport in pervaporation, Sep. Purif. Methods, 30 (2001) 49-125.
  8. S. Abrams, J.M. Prausnitz, Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J. 21 (1975) 116-128.
  9. Wilson, C. Deal, Activity coefficients and molecular structure. Activity coefficients in changing environments-solutions of groups, Ind. Eng. Chem. Fundam., 1 (1962) 20-23.
  10. Fredenslund, R.L. Jones, J.M. Prausnitz, Group‐contribution estimation of activity coefficients in nonideal liquid mixtures, AIChE J., 21 (1975) 1086-1099.
  11. Oishi, J.M. Prausnitz, Estimation of solvent activities in polymer solutions using a group-contribution method, Ind. Eng. Chem. Process Des. Dev., 17 (1978) 333-339.
  12. Goydan, R.C. Reid, H.S. Tseng, Estimation of the solubilities of organic compounds in polymers by group-contribution methods, Ind. Eng. Chem. Res., 28 (1989) 445-454.
  13. Heintz, W. Stephan, A generalized solution—diffusion model of the pervaporation process through composite membranes Part II. Concentration polarization, coupled diffusion and the influence of the porous support layer, J. Membr. Sci., 89 (1994) 153-169.
  14. Stephan, A. Heintz, Separation of Aliphatic/Aromatic Mixtures by Pervaporation Using Polyurethane Membranes: Model Calculations and Comparison with Experimental Results, Sixth International Conference on Pervaporation Process in the Chemical Industry, 1992.
  15. Ghoreyshi, F. Farhadpour, M. Soltanieh, Multi-component transport across non-porous polymeric membranes, Desalin., 144 (2002) 93-101.
  16. Wang, N. Li, B. Bolto, M. Hoang, Z. Xie, Desalination by pervaporation: A review, Desalination, 387 (2016) 46-60.
  17. P. Nunes, K.-V., Peinemann, Membrane technology, Wiley Online Library 2001.
  18. Sourirajan, S. Bao, T. Matsuura, An approach to membrane separation by pervaporation, Proceedings of the Second International Conference on Pervaporation Processes in Chemical Industry, San Antonio, TX, USA, 1987, pp. 8-11.
  19. Okada, M. Yoshikawa, T. Matsuura, A study on the pervaporation of ethanol/water mixtures on the basis of pore flow model, J. Membr. Sci., 59 (1991) 151-168.
  20. Okada, T. Matsuura, A new transport model for pervaporation, J. Membr. Sci., 59 (1991) 133-149.
  21. Peng, Y. Lan, J. Luo, Modified silica incorporating into PDMS polymeric membranes for bioethanol selection, Adv. Polym. Technol., (2019).
  22. Wang, X. Mei, T. Ma, C. Xue, M. Wu, M. Ji, Y. Li, Green recovery of hazardous acetonitrile from high-salt chemical wastewater by pervaporation, J. Clean. Prod., 197 (2018) 742-749.
  23. Li, Development of pervaporation composite membranes for brine desalination application, Ph.D. Thesis, University of UNSW Sydney, 2018.
  24. Halakoo, Thin film composite membranes via layer-by-layer assembly for pervaporation separation, Ph.D. Thesis, University of Waterloo (2019).
  25. N. Hyder, Preparation, characterization and performance of Poly (vinyl alcohol) based membranes for pervaporation dehydration of alcohols, Ph.D. Thesis, University of Waterloo (2008).
  26. XIANGYI, The development of pervaporation membranes for alcohol dehydration, Ph.D. Thesis, University of Singapore (2007).
  27. G. Wijmans, R.W. Baker, The solution-diffusion model: a review, J. Membr. Sci., 107 (1995) 1-21.
  28. Binning, R. Lee, J. Jennings, E. Martin, Separation of liquid mixtures by permeation, Ind. Eng. Chem., 53 (1961) 45-50.
  29. Binning, F. James, Permeation. A new commercial separation tool, Petrolum Refiner., 39 (1958) 88.
  30. Graham, LV. On the absorption and dialytic separation of gases by colloid septa, Lond. Edinb. Dublin philos. Mag. J. Sci., 32 (2009) 401-420.
  31. -J. Shieh, R.Y. Huang, A pseudophase-change solution-diffusion model for pervaporation. I. Single component permeation, Sep. Sci. Technol., 33 (2008) 767-785.
  32. -J. Shieh, R.Y. Huang, A pseudophase-change solution-diffusion model for pervaporation. II. Binary mixture permeation, Sep. Sci. Technol., 33 (1998) 933-957.
  33. W. Baker, Membrane technology and applications, John Wiley & Sons, UK, 2023.
  34. Lipnizki, S. Hausmanns, P.-K. Ten, R.W. Field, G. Laufenberg, Organophilic pervaporation: prospects and performance, Chem. Eng. J., 73 (1999) 113-129.
  35. C. George, S. Thomas, Transport phenomena through polymeric systems, Prog. Polym. Sci., 26 (2001) 985-1017.
  36. Mulder, Preparation techniques for immersion precipitation, Basic Principles of Membrane Technology. Kluwer Academic Publishers, Dordrecht (1996) 77-81.
  37. N. Trong, Modelling of the influence of downstream pressure for highly selective pervaporation, J. Membr. Sci., 34 (1987) 165-183.
  38. N. Kim, K. Kammermeyer, Actual concentration profiles in membrane permeation, Sep. Sci., 5 (1970) 679-697.
  39. Kamesh, S. Chenna, K.Y. Rani, Thermodynamic models for prediction of sorption behavior in pervaporation, Membrane Processes: Pervaporation, Vapor Permeation and Membrane Distillation for Industrial Scale Separations (2018) 169-209.
  40. Kamesh, S. Chenna, K.Y. Rani, Thermodynamic Models for Prediction of Sorption Behavior in Pervaporation, Membr. Process., (2018) 169-209.
  41. J. Lue, S.Y. Wu, S.F. Wang, L.D. Wang, C.L. Tsai, Modeling multi-component vapor sorption in a poly(dimethyl siloxane) membrane, Desalination, 233 (2008) 286-294.
  42. Hauser, A. Heintz, B. Schmittecker, R.N. Lichtenthaler, Sorption equilibria and diffusion in polymeric membranes, Fluid Ph. Equilibria., 51 (1989) 369-381.
  43. H. Rasheed, S.S. Ibrahima, A. Zrellib, A. Figolic, A. Alhathal, Q.F.A. AlAnezid, A Review on the Separation of Volatile Organic Compounds from Wastewater by Pervaporation Processes, Eng. Technol. J., 41 (2023) 512-528.
  44. H. Rasheed, S.S. Ibrahim, Q.F. Alsalhy, H.S. Majdi, Polydimethylsiloxane (PDMS) Membrane for Separation of Soluble Toluene by Pervaporation Process, Membranes, 13 (2023) 289.
  45. O. Yahaya, Separation of volatile organic compounds (BTEX) from aqueous solutions by a composite organophilic hollow fiber membrane-based pervaporation process, J. Membr. Sci., 319 (2008) 82-90.
  46. Aliabadi, A. Aroujalian, A. Raisi, Removal of styrene from petrochemical wastewater using pervaporation process, Desalination, 284 (2012) 116-121.
  47. Y. Ng, A.W. Mohammad, C.P. Leo, N. Hilal, Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review, Desalination, 308 (2013) 15-33.