Document Type : Research Paper

Authors

Laboratoire de recherche LR-18ES45 Physique, Mathématique, Modélisation Quantique et Conception Mécanique, Institut Préparatoire aux Études d’Ingénieurs de Nabeul (IPEIN), université de Carthage, Tunisie, Campus Mrezgua, 8000 Nabeul,Tunisia.

Abstract

Dialysis machines operate in an uncertain environment with several sources of disturbances; therefore, it is necessary to take account of the uncertainties during all their life phases. This paper presents a study of the random reliability of the dialysis machine in a stochastic environment through the two-parameter for Weibull distribution. The shape and scale parameters were estimated through analytical and graphical methods based on the failure history of the devices. The formulation of the analytical methods and their exploitation using numerical simulations was one of the objectives of this work. The uncertainties in the stochastic environment of the machines are related to variability in physical and geometric parameters, fluctuations in load conditions, stress boundary conditions, and also to physical laws and simplifying assumptions used in the modeling process. The Weibull parameters introduced these uncertainties, and their effect on the device's reliability was studied. The main contribution is the study of the effect of the uncertainties in Weibull parameters on the reliability of the dialysis machine. The question of the uncertainties in the Weibull parameters was treated. The involved parameters were considered a Gaussian variable, and their means and standard deviations were calculated in several configurations of the dialysis devices. The random failure rate and reliability were treated and discussed. The random systematic inspection period is studied to install an efficient preventive maintenance program.

Graphical Abstract

Highlights

  • The Weibull parameters were calculated using several methods
  • The uncertainties of the shape and scale parameters were estimated
  • The random failure rate and reliability of the dialysis devices were studied
  • The systematic inspection period of the dialysis devices was estimated in a stochastic environment

Keywords

Main Subjects

  1. S. Dhillon, Medical Device Reliability and Associated Areas, CRC Press, 1st edition (2000), ISBN-13: 978-0849303128.
  2. World Health Organization, Regional Committee for the Eastern Mediterranean, The role of medical devices and equipment in contemporary health care systems and services, EM/RC53/Tech.Disc.2, 2006.
  3. H. Zamzam, A. K. Abdul Wahab, M. M. Azizan, S. C. Satapathy, K. W. Lai, K. Hasikin, A Systematic Review of Medical Equipment Reliability Assessment in Improving the Quality of Healthcare Services, Front. Public Health, 9 (2021) . https://doi.org/10.3389/fpubh.2021.753951
  4. S. Arunraj, J. Maiti, Risk-based maintenance-Techniques and applications, J. Hazard. Mater., 142 (2007) 653-661. https://doi.org/10.1016/j.jhazmat.2006.06.069
  5. Brissaud, D. Charpentier, M. Fouladirad, A. Barros, C. Bérenguer, Failure rate evaluation with influencing factors, J. Loss Prev. Process Ind., 23 (2010) 187-193. https://doi.org/10.1016/j.jlp.2009.07.013
  6. Valdez-Flores, R. M. Feldman, A survey of preventive maintenance models for stochastically deteriorating single-unit systems, Naval Research Logistics, 36 (1989) 419-446. https://doi.org/10.1002/1520-6750(198908)36:4%3C419::AID-NAV3220360407%3E3.0.CO;2-5
  7. Rausand, A. Barros, A. Hoyland, System Reliability Theory Models, Statistical Methods, and Applications, 3th Edition, Wiley, 2020, ISBN: 978-1-119-37352-0.
  8. Deloux, Politiques De Maintenance Conditionnelle Pour Un Systeme A Degradation Continue Soumis A Un Environnement Stressant, Sciences de l’ingénieur [physics], Université de Nantes, Français, 2008.
  9. Alfares, A simulation model for determining inspection frequency, Comput. Ind. Eng., 36 (1999) 685-696. https://doi.org/10.1016/S0360-8352(99)00159-X
  10. Salameh, Méthodes de modélisation statistique de la durée de vie des composants en génie électrique, PhD thesis, Institut National Polytechnique de Toulouse - INPT, Français, 2016.
  11. B. Booher, Optimal Periodic Inspection of a Stochastically Degrading System, Theses and Dissertations, 2006.
  12. Aven, S. Sklet, J. E. Vinnem, Barrier and operational risk analysis of hydrocarbon releases (BORA-Release): Part I. Method description, J. Hazard. Mater., 137 (2006) 681-691. https://doi.org/10.1016/j.jhazmat.2006.03.049
  13. Brissaud, B. Lanternier, D. Charpentier, P. Lyonnet, Modélisation des taux de défaillance en mécanique - Combinaison d’une loi de Weibull et d’un modèle de Cox pour la modélisation des taux de défaillance en fonction du temps et des facteurs d’influence. Performance et Nouvelles Technologies en Maintenance, 2007.
  14. Couallier, L. Denis, F. Bayle, Calcul de MTBF des systèmes aéronautiques inspectés périodiquement soumis à rupture aléatoire de systèmes de régulation, Conference: Congrès Lambda Mu 20 de Maîtrise des Risques et de Sûreté de Fonctionnement, Saint Malo, France, 2016. https://doi.org/10.4267/2042/61795
  15. Daniellou, M. Simard, I. Boissières, Human and organizational factors of safety: a state of the art. Number 2011-01 of the Cahiers de la Sécurité Industrielle, Foundation for an Industrial Safety Culture, Toulouse, France (ISSN 2100-3874), 2011. https://doi.org/10.57071/429dze.
  16. S. Dhillon, Medical Equipment Reliability: A Review, Analysis Methods And Improvement Strategies, Int. J. Reliab. Qual. Saf. Eng., 18 (2011) 391–403. https://doi.org/10.1142/S0218539311004317
  17. B. Khalaf, Y. Hamam, , The effect of maintenance on the survival of medical equipment, J. Eng. Des. Technol., 11(2013) 142-157. https://doi.org/10.1108/JEDT-06-2011-0033
  18. Bahreini, L. Doshmangir, A. Imani, Affecting Medical Equipment Maintenance Management: A Systematic Review, J. Clin. Diagnostic Res., 12 (2018) 1–7. https://doi.org/10.7860/JCDR/2018/31646.11375
  19. Emughedi, Analysis of Factors Affecting Maintenance Strategy Selection in NNPC Lokoja Pump Station in Kogi State, Am. J. Eng. Res. 10 (2021) 63-73.
  20. J. M. Jiménez, R. A. Vingerhoeds, B. Grabot, S. Schwartz, An ontology model for maintenance strategy selection and assessment. J. Intell. Manuf., 34 (2023) 1369-1387. https://doi.org/10.1007/s10845-021-01855-3
  21. Sielaffa, D. Lucke, An Approach for an Integrated Maintenance Strategy Selection considering the Context of the Value-Adding Network, Procedia 54th CIRP Conference on Manufacturing Systems 104 (2021) 815–820.
  22. M. Hamasha, A. H. Bani-Irshid, S. Al Mashaqbeh, et. al., Strategical selection of maintenance type under different conditions, Sci. Rep. 13, 15560 (2023). https://doi.org/10.1038/s41598-023-42751-5
  23. O’Connor, A. Kleyner, Practical reliability engineering, John Wiley and Sons, Chichester, UK, 5th Edition, 2012.
  24. Lyonnet, Tools of Total Quality: An Introduction to statistical Process Control, 1st Edition, Chapman and Hall, London, 1991.
  25. Yong, Extended weibull distributions in reliability engineering. PhD thesis, National University of Singapore, 2004.
  26. A. Lihou, G.D. Spence, Proper use of data with the Weibull distribution, J. Loss. Prev. Process. Ind., 1 (1988) 110-113. https://doi.org/10.1016/0950-4230(88)80021-4
  27. N. Luko, A review of the Weibull Distribution and Selected Engineering Applications, SAE Technical Paper Series, (1999) 398-412. https://doi.org/10.4271/1999-01-2859
  28. Fidanoglu, U. Ungor, I. Ozkol, G. Komurgoz, Application of Weibull Distribution Method for Aircraft Component Life Estimation in Civil Aviation Sector, J. Traffic Transp. Eng., 5 (2017). https://doi.org/10.18178/jtle.5.1.40-44
  29. Rausand, A. Barros, A. Hoyland, System Reliability Theory: Models, Statistical Methods, and Applications. 3th Edition, Wiley, 2020.
  30. Tebbi, Estimation des lois de fiabilité en mécanique par les essaies accélérés, PhD thesis, Université d’Angers, Français, 2005.
  31. Gouno, L. Guérineau, Failure Rate Estimation in a Dynamic Environment, Econ. Qual. Control, 30 (2015) 1-8. https://doi.org/10.1515/eqc-2015-6001
  32. M. Razali, A.A. Salih, A.A. Mahdi, Estimation Accuracy of Weibull Distribution Parameters, J. Appl. Sci. Res., 5 (2009) 790-795.
  33. R. Pasha, S. Khan, A. H. Pasha, Empirical Analysis of The Weibull Distribution for Failure Data, J. Stat., 13 (2006) 33-45.
  34. P. Soman, K. B. Misra, A least square estimation of three parameters of a Weibull distribution, Microelectron. Reliab., 32 (1992) 303-305. https://doi.org/10.1016/0026-2714(92)90057-R
  35. Aydi, F. S. Alduais, Estimating Weibull Parameters Using Least Squares and Multilayer Perceptron vs. Bayes Estimation, Comput. Mater. Contin., 71 (2022) 4033-4050. https://doi.org/10.32604/cmc.2022.023119
  36. Hadroug, A. Hafaifa, , A. Kouzou, A. Chaibet, Improvement of gas turbine availability using reliability modeling based on fuzzy system, Advances in Technical Diagnostics: International Congress on Technical Diagnostic, Gliwice, Poland, (2016) 15-28. https://doi.org/10.1007/978-3-319-62042-8_2
  37. Ahsan, T.A. Lemma, M.A. Gebremariam, Reliability analysis of gas turbine engine by means of bathtub-shaped failure rate distribution, Process Saf. Prog., 39 (2019). https://doi.org/10.1002/prs.12115
  38. Chi-chao, A Comparison between the Weibull and Lognormal Models used to Analyze Reliability Data, PhD thesis, University of Nottingham, UK, 1997.
  39. C. Cohen, B. Whitten, Modified maximum likelihood and modified moment estimators in the three-parameter Weibull distribution. Commun. Statist.-Theor. Meth., 11 (1982) 2631-2656. https://doi.org/10.1080/03610928208828412
  40. F. Kappenman, Estimation for the three-parameter Weibull, lognormal, and gamma distributions, Comput. Stat. Data Anal., 3 (1985) 11-23. https://doi.org/10.1016/0167-9473(85)90054-4
  41. K. Chu, J.C. Ke, Computation approaches for parameter estimation of Weibull distribution, Math. Comput. Appl., 17 (2012) 39-47. https://doi.org/10.3390/mca17010039
  42. G. Kendall, A. Stuart, J. K. Ord, Kendall's Advanced Theory of Statistics. Oxford University Press, Inc, New York, USA, 1987.
  43. T. Azar, The Influence of Maintenance Quality of Hemodialysis Machines on Hemodialysis Efficiency, Saudi J. Kidney Dis. Transpl., 20 (2009) 49-56.
  44. Jamshidi, S. A. Rahimi, D. Ait-kadi, Medical devices Inspection and Maintenance; A Literature Review, Ind. Syst. Eng. Res. Conference, 2014.
  45. O. Hamza, M. O. Osman, M. O. Khider, Evaluation of Mechanical and Electrical Faults in Dialysis Machines, J. Phys. Ther. Health Promot., 1 (2013) 1-7. https://doi.org/10.18005/PTHP0101001
  46. H. Tsarouhas, Reliability Analysis into Hospital Dialysis System: A Case Study, Qual. Reliab. Eng. Int., 29 (2013) 1235-1243. https://doi.org/10.1002/qre.1468
  47. Hajji, Evaluation des risques au niveau des établissements d’hémodialyse : Application d’une démarche AMDEC, Msc Thesis, Ecole Nationale de Commerce et de Gestion de Casablanca, Maroc, 2019. https://doi.org/10.13140/RG.2.2.13828.14720