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H I G H L I G H T S  
 

A B S T R A C T  

 The  Weibull parameters were calculated 

using several methods 

 The uncertainties of the shape and scale 

parameters were estimated 

 The random failure rate and reliability of the 

dialysis devices were studied 

 The systematic inspection period of the 

dialysis devices was estimated in a 

stochastic environment 

 Dialysis machines operate in an uncertain environment with several sources of 

disturbances; therefore, it is necessary to take account of the uncertainties during 

all their life phases. This paper presents a study of the random reliability of the 

dialysis machine in a stochastic environment through the two-parameter for 

Weibull distribution. The shape and scale parameters were estimated through 

analytical and graphical methods based on the failure history of the devices. The 

formulation of the analytical methods and their exploitation using numerical 

simulations was one of the objectives of this work. The uncertainties in the 

stochastic environment of the machines are related to variability in physical and 

geometric parameters, fluctuations in load conditions, stress boundary 

conditions, and also to physical laws and simplifying assumptions used in the 

modeling process. The Weibull parameters introduced these uncertainties, and 

their effect on the device's reliability was studied. The main contribution is the 

study of the effect of the uncertainties in Weibull parameters on the reliability of 

the dialysis machine. The question of the uncertainties in the Weibull parameters 

was treated. The involved parameters were considered a Gaussian variable, and 

their means and standard deviations were calculated in several configurations of 

the dialysis devices. The random failure rate and reliability were treated and 

discussed. The random systematic inspection period is studied to install an 

efficient preventive maintenance program. 
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1. Introduction 

Recent medical machines and materials have become very sophisticated with high technology and operate under 

unfavorable conditions. Health establishments must guarantee that their essential medical equipment is accurate, safe, reliable, 

available, and operating efficiently. A surgical device is a critical component of an efficient healthcare degree in a medical 

institution. Currently, medical devices exceed 5000 varieties in the developed hospitals [1]. In the face of the objectives of 

current healthcare and the development performance of medical machines, several countries give particular importance to 

improving the quality and reliability of the operating materials in their hospitals. The Health Organization in the World (WHO) 

estimates that about 50% of medical equipment in developing nations is not functioning correctly because of inefficient 

maintenance, aging deterioration in equipment quality, and decreased services provided [2]. 

Medical device failure can disturb the efficiency of healthcare work, cause hard health problems for patients, and harm the 

environment [3]. Damage is defined as a loss of part or all of the properties of a component, which severely diminishes and can 

cause a complete lack of its functioning capability. This malfunction may be caused by its design, fabrication processes, 

installation, usage method, or even maintenance [4,5]. Various phenomena affect Any manufacturing system over time, such as 

aging and wear of its functional compartments [6]. These outstanding physical phenomena lead to failure, significantly 

impacting the equipment's operating cost and operational safety. In the literature, many researchers presented various 

classifications of damages [7,8] and studied the effect of fatigue and the aging of the mechanical mechanisms on availability, 

maintenance, and reliability [9,10]. Equipment degradation can result from several techniques, such as operating conditions, 

vibrations, fatigue,  wear, strains, stresses, etc. Modeling the failure rate over time becomes essential for monitoring and 
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diagnosing the risks of this sensitive equipment. Booher treated in his paper [11] the diverse origins of the degradation 

mechanisms of mechanical constituents, which include various, frequent, and complicated causes; let us cite cracking, wear, 

creep, fatigue, cracking, etc. These degradation modes are characterized by many parameters, such as material, geometrical 

and dimensional characteristics, operating conditions, external stresses. etc. [12].  

The influence factors are external or internal parameters affecting the machine's reliability. A classification of these 

different factors, based on the life phase of the considered system, was offered by Brissaud [13]. There are several categories 

of these factors, and we can classify them according to their origins and cite design, manufacturing, system installation, 

operating, and maintenance factors. Organizational and human factors that generally cause a broader effect on the system can 

be added to this list [12,14]. This type of factor is defined as a multidisciplinary field focusing on how to increase safety, 

enhance performance as well as increase user satisfaction, and cover various axes such as usable procedures, training and 

competence, safety-critical communication, health and safety culture, maintenance, inspection, and testing error [15]. 

Dhillon [16] described in his work the maintenance of medical devices as an indispensable act to retain the equipment in 

the best working condition, ensure its reliability, or restore it to a specific operating condition. Mathematical maintenance can 

improve medical equipment reliability through many methods and procedures. The main objective of Khalaf and Hamam's [17] 

paper  The aim of the work presented by Bahreini [18] is to extract the influencing factors affecting the maintenance 

management of medical devices. A good maintenance strategy helps reduce downtime and its costs and improves productivity, 

profitability, and competitiveness by ensuring the efficient operation of equipment [19]. In their study, Jiménez et al. [20] 

proposed an ontology model for maintenance strategy selection and assessment. An approach for an integrated maintenance 

strategy selection considering machine failures and the context of other machines within the value-adding network is 

developed in [21,22]. 

In current engineering developments, the best distribution characterizing a data set must be chosen thoroughly to present 

uncertain parameters [23] rigorously. The Weibull distribution is one of the most employed probability density functions in the 

industry domain. According to Lyonnet [24], the Weibull theory is the most appropriate for efficiently analyzing mechanical 

components' reliability. This distribution's principal benefit is its ability to account for little illustration of history failure data. 

However, the graphical method is suggested in the case of the probabilistic model with small-size data to guarantee the results' 

accuracy and precision [25]. The couples fit various failure models and simulate several other statistical distributions used in 

engineering, which is a major quality of the Weibull distribution [26]. The Weibull probability synthesis is widely used in 

treating life data and may be applied to various conditions. Weibull distribution is employed in several fields [27], such as civil 

aviation, aerospace, automotive industries, electronics, and materials [28]. This statistical method can efficiently study semi-

conductor reliability, ball bearings, spot welding, engines, and biological organisms [29]. 

The study of reliability through a deterministic approach is insufficient to describe the random data in a stochastic 

environment. Indeed, all the uncertain reliability parameters are represented by unfavorable values. In that context, the 

behavioral prediction must be estimated through probabilistic approaches. The uncertainties and errors observed in the final 

results are attached to variability in geometrical and physical parameters, stress in boundary conditions, fluctuations in badly 

known load conditions, and simplifying assumptions and physical laws considered in the modeling process [30]. Several 

researchers [31] confirmed that the influencing factors mainly affect the shape and the scale parameter. This work introduced 

the uncertainties due to the methods used, the considered approximations, the modeling, and the influencing variables in the 

Weibull parameters, and their effect on device reliability was studied. 

This paper presented a study of the random reliability of the dialysis machine in a stochastic environment through the two-

parameter Weibull distribution. The stochastic environment has a random effect on the reliability of the device. The 

uncertainties, which depend on external factors, are diversified and have a difficult, complex, and inappropriate modeling 

because of their random behavior. In this paper, an approach that takes into account the impact of the influencing factors on 

reliability is proposed. The methodology consists of introducing perturbations on the shape and scale parameters of the 

Weibull distribution and studying their effect on the reliability indicators. Estimating the Weibull parameters is offered through 

analytical methods based on the failure history of the devices. These parameters are considered random variables following a 

Gaussian distribution. The mean and the standard deviation of the shape and scale parameters will be calculated. The 

numerical simulations presented the statistics of the random reliability of the dialysis machine. 

2. Estimation of the stochastic weibull parameters 

The Weibull approach is widely employed to describe many kinds of reliability characteristics through an efficient 

estimation of Weibull parameters thanks to its flexibility. This distribution may be exploited with scale, shape, and/or location 

parameters. There are many analytical developments for extracting the Weibull parameters presented by Razali et al. [32]. 

These methods are considered more reliable and accurate than the graphical methods (GM), which are relatively fast but not 

recommended for this problem [25]. The Weibull distribution with a two-parameter is a probabilistic approach following a 

continuous distribution widely exploited for analyzing lifetime data and reliability [33]. The following paragraph details the 

different analytical methods used to estimate the two Weibull parameters. 

2.1 Least square method (LSM) 

The problem of regression is to find a relationship that may exist between two sets of data, x={x1, x2, …, xn} and y={y1, 
y2, …, yn}, with size n, obtained experimentally or measured on a population. When the relationship sought is affine (y=ax+b), 
it is a linear regression. But even if such a relation is present, the measured data do not verify this relation exactly. To account 
for the differences (errors) observed in the mathematical model, the x and y data will be considered as realizations of two 
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random variables, X and Y. The principle of the least squares method (LSM) consists in choosing the values of a and b, which 
minimize the squares of the deviations given by Equation (1) [34,35]: 

             ∑   
  

    ∑ (   (     ))
  

                                                                     (1) 

where ɛi is the difference observed between yi and (axi+b) and 
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 is the variance, given by Equation (4): 
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The Weibull parameters can be estimated using the LSM. The estimation of the shape parameter β and  the scale parameter 
η can be done through the following mathematical development according to Equations (6) and (7), respectively [36]: 
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Failure times, denoted by TBFi,  were collected and arranged in ascending order to calculate the cumulative density 
function (CFD), denoted by F(ti), by using the Bernard’s formula [33] to assign median ranks to each failure given in Table 1 
[37]. 

Table 1: Formulae available for median ranking 

Method Formula F(ti) Recommended for 

Mean ranking  (  )  
 
   ⁄       

Median rank  (  )  
     

     ⁄       

Systematic  (  )  
     

 ⁄          
 

where i is the order of failure and n is the total number of data,  Benard’s formula approximates the median rank estimator 

[33]. Benard’s median rank shows the best performance and is the most widely used to estimate F(ti) [38]. The procedure for 

ranking complete data consists of listing the time to failure data from small to large and then using Benard’s formula to assign 

median ranks to each failure. 

2.2 Maximum likelihood method (MLM) 

The maximum likelihood method is an algorithm that attempts to fit the given observations to find parameters that 
maximize the likelihood function. For the two-parameter Weibull distribution, the shape parameter β and  the scale parameter η 
are estimated using this technique for the probability density function [39] given in Equation (8): 

 ( )  (  ⁄ )(  ⁄ )       ( (  ⁄ ) )                                                            (8) 

The maximum likelihood estimators are obtained by maximizing, with respect to β and ɳ, the following function given by 
Equation (9): 

        (   )  ∏  (      )
 
                                                                             (9) 

The logarithmic likelihood is formulated in the following Equation (10): 

  ( (   ))  ∑   ( (      ))
 
                                                                 (10) 

To determine the maximum likelihood estimators, the following system of Equations (11) and (12) must be solved: 

            ( (   ))   ⁄                                                                             (11) 

            ( (   ))   ⁄                                                                             (12) 

The development of this system makes it possible to obtain the logarithmic likelihood for the two-parameter Weibull 
distribution according to Equation (13): 
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The following system Equations (14) and (15) can be extracted [40,41]: 
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The resolution of this system by Newton Raphson's method leads to calculating the shape parameter β and the scale 
parameter η. 

2.3 Method of moments (MOM) 

The method of moments is generally used because it is very simple to apply. It also makes it possible to provide parameter 
estimation when the maximum likelihood method does not converge. Moreover, the method of moments can be used to 
initialize the parameters of the iterative process in the case of maximum likelihood. The theoretical moments, first and second 
order, of the Weibull distribution are given respectively by Equations (16) and (17) [42]: 

            ( )    (    ⁄ )                                                                          (16) 

              ( )    [ (    ⁄ )    (    ⁄ )]                                                       (17) 

where Γ is the gamma function. 
The method of moments applied to the two-parameter Weibull distribution consists of equalizing the first and the second 

moment (mean and variance) of the sample to the corresponding theoretical moments (μ1 and μ 2) Equation (18): 
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From the previous equations, the following system of Equations (19), (20) and (21) can be deduced: 

          (    ⁄ )  
 

 
∑   
 
                                                                           (19) 

                    [ (    ⁄ )    (    ⁄ )]
 

  *
 

 
∑ (    ̅)  
   +

 

                                             (20) 

([ (    ⁄ )    (    ⁄ )]
 

  (    ⁄ )⁄ ) (
 

 
∑   
 
   )  [

 

 
∑ (   

 

 
∑   
 
   )

 
 
   ]

 

 

           (21) 

This system cannot be solved explicitly; an iterative procedure must be used. The Newton-Raphson method can be further 

used to obtain β, and the parameter ɳ is subsequently determined as a function of β. 

2.4 Case study: dialysis machine 

The reliability of dialysis devices is critical to ensure patient safety and the continuity and efficiency of treatment. Azar 
suggests in his study [43] that there is a correlation between patients' medical results and dialysis device maintenance. So, lack 
of maintenance causes high levels of complications and wrong dialysis seance. Therefore, it is primordial to implement a 
simple and practical approach to ensure the efficiency and safety of dialysis processes. A literature review concerning the 
maintenance and inspection of medical machines was shown in [44]. The electrical and mechanical damages in dialysis 
equipment were treated in [45] to explain their origins and their best preventive solutions. The work presented in [46] 
developed the maintainability and reliability of dialysis devices using Weibull distribution. 

In this section, the reliability of 10 dialysis devices (Mi, i=1:10) will be developed. The failure history of these machines 
was collected during 9 years, from 2013 to 2022. Table 2 summarizes the data on the failure history of the machines. All the 
machines operate for 3.5 hours per day and 6 days per week. This work rhythm makes it possible to reach 288 operating days 
per year. For example, a machine put into service on 01/01/2013 detected its first failure on 05/06/2015. This machine has been 
operating for 700 days, so its uptime is 2450 hours. The estimation of the Weibull parameters through the graphical and 
analytical methods is given in Table 3. The shape and scale parameters were calculated based on the failure history and using 
the methods detailed in the previous sections. 

The environment of the dialysis machine is uncertain. Indeed, such uncertain data are present in various fields, such as 
disease and healthcare. There are uncertainties related to the methods used in the formulation steps and the approximations in 
the mathematical development and modelings. A significant amount of missing values in the data can affect the results. The 
influencing external factors present a real origin of perturbation and can be classified according to [47] in various categories; 
let us cite for example, individual factors related to technical abilities, competence, training, motivation, stress or fatigue, 
physical and psychological state of operator, factors linked to team functioning such as communication and supervision, factors 
related to operational procedures such as dispatch, planning and availability, and factors caused by the working environment in 
relation to materials, sites and premises, equipment, supplies, working conditions.  

In classical reliability analysis, deterministic unfavorable characteristic values describe The shape and scale parameters. To 
solve this problem, the two Weibull parameters are considered as random variables following a Gaussian distribution as given 
in Equation (22): 
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β and ɳ are The mean of the random shape and scale parameters, respectively, σβ and σɳ are the standard deviations of the 
Shape and scale parameters, and ɛ is a reduced centered Gaussian variable. The mean is calculated using the following 
Equation (23): 

   (  ⁄ )∑   
 
          (  ⁄ )∑   

 
                                                       (23) 

where βi and ɳi are the shape and scale parameters, respectively, for the  th draw, and N is the total number of draws. The 
standard deviations of the shape and scale parameters are given by Equation (24): 

    (   ⁄ )√∑ (    )  
           (   ⁄ )√∑ (    )  

       (24) 

Table 4 offers the mean and the standard deviation of the shape and scale parameters estimated for each device. The 
calculations are made according to equations 23 and 24. The N draws are the 4 methods used to calculate β and ɳ (GM, LSM, 
MLM, and MOM). Based on the numerical results in Table 4, the dialysis machines can be classified according to their life 
phase. Indeed, M5 and M10, which have a shape parameter β>1, are in the aging life. M1, M2, and M6 are in the useful life 
with a shape parameter β≈1. M3, M4, M7, M8, and M9 have a shape parameter β<1 and work in early life. 

This case study illustrates the behavior of Weibull parameters in a stochastic environment. The graphical and analytical 
methods used to calculate the shape and scale parameters present an origin of the errors because of the considered 
developments and mathematical approximations. The uncertainties observed make it possible to calculate the Weibull 
parameters' mean and standard deviation. Hence, our study consists of estimating the effect of the uncertainties of the shape 
and scale parameters on the reliability of the dialysis machines. 

Table 2: The failure history (TBF) of dialysis machines 

Failure 

number 

M1 M2 M3 M4 M5 

Failure 

date 

TBF 

(h) 

Failure 

date 

TBF 

(h) 

Failure 

date 

TBF 

(h) 

Failure 

date 

TBF 

(h) 

Failure 

date 

TBF 

(h) 
1 05/06/15 2450 05/06/15 2450 29/01/14 1085 17/04/15 2313.5 05/06/15 2450 

2 09/11/15 427 20/11/17 2481.5 04/01/16 1904 05/06/15 119 15/05/17 1949.5 
3 20/11/17 2047 23/01/19 1155 19/10/16 609 29/05/17 1988 20/11/17 514.5 

4 27/07/19 1673 25/03/19 169 24/10/16 10.5 06/12/17 525 06/03/20 2268 

5 06/03/20 595 06/03/20 1039.5 29/05/17 605.5 06/03/20 3276 18/09/20 385 
6 05/09/21 1372   06/03/20 2792 24/06/20 154 16/09/21 990.5 

7 01/11/21 147   12/11/20 392     

Failure 

number 

M6 M7 M8 M9 M10 

Failure 

date 

TBF 

(h) 

Failure 

date 

TBF 

(h) 

Failure 

date 

TBF 

(h) 

Failure 

date 

TBF 

(h) 

Failure 

date 

TBF 

(h) 
1 05/06/15 2450 04/01/16 3034.5 13/03/15 2226 22/01/13 73.5 29/05/13 413 

2 29/05/17 2040 29/05/17 1389 04/01/16 766.5 15/07/13 448 12/07/13 101.5 

3 07/08/18 192.5 12/06/17 42 13/01/16 3.5 01/03/14 717.5 01/09/14 1130 

4 28/02/18 549.5 20/11/17 441 22/07/13 535.5 08/10/14 578 05/06/15 763 
5 03/08/18 311.5 15/10/18 871.5 19/09/16 140 05/06/15 3650.5 09/11/15 427 

6 06/03/20 584.5 11/09/19 903 02/08/17 878.5 29/05/17 192.5 07/08/17 1750 

7 03/08/20 280 06/03/20 486.5 08/01/18 434 07/08/17 553 31/10/18 1228 

8   29/03/21 896 05/02/18 66.5 28/02/18 73.5 09/08/19 780.5 

9   22/07/21 304.5 28/02/18 63 07/05/18 213.5 06/03/20 560 

10     10/08/18 336 03/08/18 28 29/07/20 255.5 
11     06/03/20 1575 19/11/18 294 07/01/22 1456 

12     08/07/20 203 18/09/19 829.5   

13     24/02/21 633.5 06/03/20 462   
14     05/11/21 703.5 02/12/20 560   

Table 3: Estimation of the random Weibull parameters of dialysis machines 

 
       LSM        MLM       MOM        GM 

β ɳ β ɳ β ɳ β ɳ 

M1 0.928 1363 1.078 1504 1.179 1583 0.963 1358 

M2 0.752 1957 1.058 1814 1.184 2028 0.866 1672 

M3  0.388 1253 0.723 1472 0.658 1356 0.421 1214 

M4 0.625 1342 0.859 1665 0.774 1552 0.586 1338 

M5 1.232 1642 1.318 1764 1.405 1802 1.161 1524 

M6 1.027 904 1.052 1036 1.061 1125 0.908 879 

M7 0.844 934 0.892 1148 0.954 1176 0.862 970 

M8 0.625 572 0.694 728 0.762 791 0.607 473 

M9 0.785 486 1.024 814 0.998 745 0.842 573 

M10 1.162 887 1.387 952 1.638 1050 1.105 823 
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Table 4: The mean and the standard deviation of the shape and scale parameters 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

Mean β 1.037 0.965 0.548 0.711 1.279 1.012 0.888 0.672 0.912 1.323 

Mean ɳ 1452 1868 1324 1557 1683 986 1057 641 654 928 

σβ 0.099 0.167 0.206 0.11 0.091 0.062 0.042 0.061 0.101 0.210 

σɳ 95.684 136.8 208.26 162.7 109.18 99.992 106.23 125.55 131 83.913 

Life Phase useful useful early early aging useful early early early aging 

3. Random reliability analysis 

3.1 The random failure rate estimation 

The random failure rate is expressed as a random function following a Gaussian distribution as follows Equation (25): 

 ̃( )   ( )    ( )                                                                    (25) 

where λ(t) is the mean of the failure rate, and σλ(t) is its standard deviation. 
According to the two-parameter Weibull distribution, the random failure rate is offered in Equation (26) as a function of 

the shape and scale parameter by the following expression:  

     ̃( )  ( ̃  ̃⁄ )(  ̃⁄ ) ̃                                                                     (26) 

To formulate the mean and the standard deviation of the failure rate, the logarithmic failure rate can be used following 
Equation (27): 

    ( ̃( ))    ( ̃)   ̃   ( ̃)  ( ̃   )   ( )                                                (27) 

To linearise the random failure rate given by Equation (27), we will use the first-order Taylor series expansion of the 
random quantity of log(λ(t)), log(β), and log(ɳ) in the vicinity of their mean, respectively in Equations (28), (29) and (30): 

  ( ̃( ))    ( ( ))  (  ( )  ( ))⁄                                                       (28) 

   ( ̃)    ( )  (   )⁄                                                                  (29) 

   ( ̃)    ( )  (   )⁄                                                                 (30) 

Introducing Equations (28), (29) and (30) in Equation (27), we can write the Equations (31): 

    (   )⁄   [  ( )     ( )  (   )   ( )]  [(   )⁄  (  ⁄ )       ( )  

    ( )]                                                                                                                                                              (31) 

The identification of the different terms in Equation (31) leads to extracting the mean and the standard deviation of the 
random failure rate in Equations (32) and (33), respectively: 

   ( ( ))    ( )     ( )  (   )   ( )                                             (32) 

  ( )  ( )⁄     ⁄  (  ⁄ )       ( )      ( )                                         (33) 

The mean and the standard deviation of the random failure rate can be given by Equations (34) and (35) respectively: 

 ( )  (  ⁄ )(  ⁄ )                                                                    (34) 

  ( )   ( )[   ⁄  (  ⁄ )       ( )      ( )]                                      (35) 

Figure 1 illustrates the mean Figure 1a and the standard deviation Figure 1b of the failure rate of dialysis machines in 
aging life (M5 and M10). The failure rates are classified according to the life phase. The machines M5 and M10 are in the 
aging life (β>1), and the mean of the failure rate λ(t) increases continuously over time Figure 1a. These machines must have 
permanent monitoring to avoid any possible failure. Figure 1b represents the standard deviation of the failure rate for the 
dialysis machines in aging life (M5 and M10). This study leads to analyzing the propagation of the uncertainties introduced in 
the shape and scale parameters and their effect on the failure rate. The curves have an increasing behavior over time, 
particularly in aging. The numerical simulations show that the uncertainties are amplified and the failure rates are strongly 
disturbed, so particular importance must be given to determining the Weibull parameters precisely. 

 Figure 2 illustrates the mean Figure 2a and the standard deviation Figure 2b of the failure rate of the dialysis machines in 
useful life (M1, M2, and M6). In this life phase, the mean of the failure rate is constant during the time (β=1) Figure 2a. In 
Figure 2b, the standard deviation of the failure rate related to M1, M2, and M6 increases significantly, which proves that the 
uncertainties are accumulated and amplified. The uncertainties of the Weibull parameters have influenced the failure rate of 
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machines in their useful life. This information is very important for the maintenance department to give particular importance 
to the determination of shape and scale parameters in a stochastic environment, whatever the life phase of the machine is. 

M3, M4, M7, M8, and M9, which are in the early life, have a decreasing mean failure rate (β<1) Figure 3a. The standard 
deviation of the failure rate of the machine in the early life is illustrated in Figure 3b. The numerical results show the gravity of 
the uncertainties that affect the Weibull parameters and can seriously affect the failure rate and, consequently, the machine's 
operating safety in all life phases. 

 
a. Mean 

 
b. Standard deviation 

Figure 1: Mean and standard deviation  of the failure rate of   dialysis machines in aging life 

 
a. Mean 

 
b. Standard deviation 

 

Figure 2: Mean and standard deviation of the failure rate of dialysis machines in useful life 

 
a. Mean 

 
b. Standard deviation 

Figure 3: Mean and standard deviation  of the failure rate of dialysis machines in early life 

3.2 The random reliability estimation 

The random reliability is expressed as a random function following a Gaussian distribution as follows in Equation (36): 

 ̃   ( )    ( )                                                                    (36) 
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where R(t) is the mean of the failure rate and   ( ) its standard deviation 
 
According to the two-parameter Weibull distribution, the random reliability is offered as a function of the shape and scale 

parameter by the following expression Equation 37: 

 ̃( )      (   ̃⁄ ) ̃                                                                   (37) 

The first-order Taylor series expansion of  ̃( ) is written in Equation (38): 

 ̃( )     (   ̃⁄ ) ̃    (   ̃⁄ ) ̃                                                    (38) 

The logarithmic reliability is formulated in the following Equation (39): 

  ( ̃( )   )   ̃(  (  )    ( ̃))                                                     (39) 

To linearise the random logarithmic reliability equation, we will use the first-order Taylor series expansion in the vicinity 
of the mean. The first and the second terms of the Equation (39) are developed in Equations (40) and (41) respectively: 

  ( ̃( )   )    ( ( )   )  (  ( )  ( )⁄ )                                               (40) 

 ̃(  (  )    ( ̃))     (   ̃⁄ )  (    (   ̃⁄ )  (  ⁄ )  )                                 (41) 

Ramplacing the first and the second terms of the Equation (39) by their expressions developed in Equations (40) and (41), 
we can write: 

  ( ( )   )  (  ( )  ( )⁄ )     (   ̃⁄ )  (    (   ̃⁄ )  (  ⁄ )  )                       (42) 

The identification of the different terms in equation (42) leads to extracting the mean and the standard deviation of the 
random reliability in Equations (43) and (44) respectively: 

  ( ( )   )     (   ̃⁄ )                                                             (43) 

  ( )  ( )⁄      (   ̃⁄ )  (  ⁄ )                                                     (44) 

The mean and the standard deviation of the random reliability can be given in Equations (45) and (46) respectively: 

 ( )      (   ⁄ )                                                                  (45) 

  ( )   ( )(    (   ⁄ )  (  ⁄ )  )                                               (46) 

 

The random cumulative density function is expressed in Equation (47) as a random function following a Gaussian 
distribution: 

 ̃( )     ̃( )   ( )                                                                    (47)            

where F(t) is the mean of the cumulative density function and σF(t) is its standard deviation, given in Equation (48): 

    ( )     ( )        ( )    ( )                                                    (48) 

Figures 4, 5, and 6 illustrate the mean and the standard deviation of the reliability and the cumulative density function of 
dialysis machines in aging Figure 4, useful Figure 5, and early Figure 6 life. The simulations of the mean of the reliability of 
dialysis machines are presented in Figure 4a, 5a, and 6a. According to this study, The reliability R(t) of M5 and M10 must be 
revised immediately. Their reliability  decreases significantly with time and must be supervised continuously (Figure 4a). The 
mean of the reliability of M1, M2 and M6 is showed in Figure 5a. The mean of the reliability of the machine operating in the 
useful life decreases slowly over time. The preventive maintenance must be respected to extend the life of the machine and its 
components. Figure 5a illustrates the mean of the  reliability of 5 machines in early life. These machines operate correctly and 
need to pass a trial period to reach its maximum performance. The simulations of the standard deviation of the reliability of 
dialysis machines are presented in Figures 4b, 5b, and 6b show increasing curves over time, which proves that the effect of 
uncertainties becomes more dangerous. The reliability is seriously affected by the uncertainties in the Weibull parameters. The 
level of the disturbance, introduced on the shape and scale parameters, is amplified, which presents a significant risk to the 
correct and safe operation of the machine. 
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a. Mean b. Standard deviation 

Figure 4: Mean and standard deviation of dialysis machines' reliability and cumulative density function in aging life 
 

  
a. Mean b. Standard deviation 

Figure 5: Mean and standard deviation of dialysis machines' reliability and cumulative density function in useful life 

3.3 The random probability density function estimation 

The random probability density function is expressed as a random function following a Gaussian distribution given in 
Equation (49):  

 ̃( )   ̃( )   ̃( )   ( )    ( )                                                        (49) 

The development of the random variables leads to writing the Equation (50): 

 ( )    ( )   ( ) ( )  (    ( )      ( ))                                            (50) 

The mean (Equation 51) and the standard deviation Equation (52) of the random probability density function can be 
extracted by the identification of the different terms in Equation (50): 

 ( )   ( )   ( )                                                                               (51) 

  ( )   ( )    ( )   ( )    ( )                                                             (52) 

 
a. Mean 

 
b. Standard deviation 

Figure 6: Mean and standard deviation of the reliability and the cumulative density function of dialysis machines in early life 
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Figures 7, 8, and 9 show the mean and the standard deviation of the probability density function of dialysis machines in the 

different life phases: aging Figure 7, useful Figure 8, and early Figure 9 life. The mean of the probability density function of 

dialysis machines is given in Figures 7a, 8a, and 9a. These illustrations show the influence of the life phase on the probability 

density function. The simulations of the numerical results are offered using the Equation (51) to extract the mean of the 

probability density function and the Equation (52) to extract its standard deviation. The standard deviation of the probability 

density function of dialysis machines is given in Figures 7 b, 8b, and 9b. The stochastic environment affects the probability 

density function, and its standard deviation is amplified over time.  

The study of random reliability leads to some recommendations concerning the maintenance of dialysis machines: To 

minimize the inconvenience of the failures on the dialysis system, it is recommended to upgrade the operation management. 

Moreover, the maintenance strategy must initially focus on the M5 and M10, which are in the aging phase. Dialysis machines 

operate in a stochastic environment that contains several sources of disturbances. Therefore, It is necessary to consider the 

uncertainties during all the calculation phases and for all the variables involved. 

 
a. Mean 

 
b. Standard deviation 

Figure 7: Mean and standard deviation of the probability density function of dialysis machines in aging life 

 
a. Mean 

 
b. Standard deviation 

Figure 8: Mean and standard deviation of the probability density function of dialysis machines in useful life 

 
a. Mean 

 
b. Standard deviation 

Figure 9: Mean and standard deviation of the probability density function of dialysis machines in early life 
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3.4 The random systematic inspection period of dialysis machines 

The continuous monitoring of the failure data for the dialysis system is necessary. The re-estimation of the reliability 

indices can be carried out, and the maintenance strategy of the device group can be evaluated. This could help minimize 

failures and repair times, whereas the system's efficiency can be improved. 

In practice, the aim is to have maximum reliability and operating safety, mainly for the machines in the aging phase (M5 

and M10). Several experts in this field have estimated the reliability of R=0.95 to achieve the desired objective. Based on the 

required reliability level, the systematic inspection period (θ) of the machines in question can be determined using the 

expression of reliability as a function of time as given in Equation (53): 

    (    )
 

                                                                                   (53) 

 

The calculations showed the systematic inspection period for the two dialysis devices in the aging phase (M5 and M10) in 

Table 5. 

Table 5: The systematic inspection period 

Devices  M5 M10 

θ (h) 127 70 

 

The results provide evidence of the propagation of errors that can affect a system and their significant influences on 

reliability, particularly during the aging phase. In the same context, the systematic inspection period (θ) is disturbed and can be 

expressed as a Gaussian variable. The standard deviation of the systematic inspection period is formulated through the 

following development Equation (54): 

 ̃          ̃(    )
 

 ̃                                                               (54) 

The logarithmic form of the Equation (54) leads to writing the Equation (55): 

 ̃[   (  ̃)     ( ̃)]     (   ( ))                                                    (55) 

 

The first-order Taylor series expansion of the Equation (55) is developed in Equation (56): 

(     )[   (  )  (   ⁄ )     ( )  (   ⁄ ) ]     (   ( ))                        (56) 

 

The standard deviation of the systematic inspection period can be extracted using Equation (57): 

   (  ⁄ )[  (   ⁄ )       (  )       ( )]                                           (57) 

 

The standard deviation of the systematic inspection period (σθ) of M5 and M10 are given in Table 6. 

Table 6: The standard deviation of the systematic inspection period 

devices  M5 M10 

σθ (h) 37 43 

 

We can note that the standard deviation confirms the significant uncertainty affecting the systematic inspection period. 

This uncertainty can exceed 60% of the mean in the case of the machine M10. To guarantee the functioning and availability of 

the machines, it is necessary to consider the errors observed over the periods of the systematic inspection.  

4. Conclusion 

This paper evaluates the effect of the stochastic Weibull parameters on the reliability of the dialysis machine. The shape 

and scale parameters were estimated using analytical and graphical methods from the failure history. The analytical methods 

were formulated and exploited through numerical simulations. The uncertainties in the parameters of the distribution used were 

detailed. Weibull parameters were considered a Gaussian variable, and their means and standard deviations were calculated in 

several configurations of the dialysis devices. The failure rate and reliability of dialysis machines in uncertain environments 

were treated and discussed in different life phases. The reliability indicators' mean and standard deviation were extracted 

through the first-order Taylor series expansion. Dialysis machines operate in an uncertain environment with several sources of 

disturbances; therefore, it is necessary to take account of the uncertainties during all the life phases. The numerical results 
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showed the necessity to study the uncertainties in the Weibull parameters, which can deeply affect the reliability of the 

machines. The level of the disturbance, introduced on the shape and scale parameters, is significantly amplified in the 

reliability indicators, which presents a serious risk to the correct and safe operation of the machine. The random systematic 

inspection period is investigated to install an efficient surveillance and monitoring program.  

The study of reliability in a stochastic environment leads to the extraction of some recommendations for the maintenance 

department, such as the necessity to have a safety plan, i.e., a protocol defining and implementing a series of actions to reduce 

the unnecessary errors and risks inherent to medical care. The strategy to implement safety plans in healthcare based on failure 

mode and effects analysis should be used. After a certain time, the failure mode will be re-evaluated, and a new risk priority 

study will be assigned. The Dialysis device supervisor must establish a safety culture and direct the quality assessment and 

performance improvement process. A traceability system must be implemented to collect the data and identify the technician 

responsible for the action. A continuing training and refresher program for technicians helps improve the reliability and 

availability of machines. Increased operational safety of dialysis units requires that each machine have its safety plans, which 

must consider the failure history, the machine environment, and the operating methods. 

It should be noted that the uncertainties found in the Weibull parameters are propagated and amplified and can seriously 

affect the reliability of the machines. The classical methods of reliability are insufficient to deal with these uncertainties. 

Hence, the maintenance department must reflect on new methods to control the reliability of machines in an uncertain 

environment. This work can be extended by introducing artificial intelligence to provide a permanent monitoring system, 

allowing a decision support tool for the maintenance department.  
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